|
from datetime import ( |
|
datetime, |
|
timedelta, |
|
) |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from pandas.compat import ( |
|
IS64, |
|
is_platform_arm, |
|
is_platform_power, |
|
) |
|
|
|
from pandas import ( |
|
DataFrame, |
|
DatetimeIndex, |
|
MultiIndex, |
|
Series, |
|
Timedelta, |
|
Timestamp, |
|
date_range, |
|
period_range, |
|
to_datetime, |
|
to_timedelta, |
|
) |
|
import pandas._testing as tm |
|
from pandas.api.indexers import BaseIndexer |
|
from pandas.core.indexers.objects import VariableOffsetWindowIndexer |
|
|
|
from pandas.tseries.offsets import BusinessDay |
|
|
|
|
|
def test_doc_string(): |
|
df = DataFrame({"B": [0, 1, 2, np.nan, 4]}) |
|
df |
|
df.rolling(2).sum() |
|
df.rolling(2, min_periods=1).sum() |
|
|
|
|
|
def test_constructor(frame_or_series): |
|
|
|
|
|
c = frame_or_series(range(5)).rolling |
|
|
|
|
|
c(0) |
|
c(window=2) |
|
c(window=2, min_periods=1) |
|
c(window=2, min_periods=1, center=True) |
|
c(window=2, min_periods=1, center=False) |
|
|
|
|
|
|
|
msg = "window must be an integer 0 or greater" |
|
|
|
with pytest.raises(ValueError, match=msg): |
|
c(-1) |
|
|
|
|
|
@pytest.mark.parametrize("w", [2.0, "foo", np.array([2])]) |
|
def test_invalid_constructor(frame_or_series, w): |
|
|
|
|
|
c = frame_or_series(range(5)).rolling |
|
|
|
msg = "|".join( |
|
[ |
|
"window must be an integer", |
|
"passed window foo is not compatible with a datetimelike index", |
|
] |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
c(window=w) |
|
|
|
msg = "min_periods must be an integer" |
|
with pytest.raises(ValueError, match=msg): |
|
c(window=2, min_periods=w) |
|
|
|
msg = "center must be a boolean" |
|
with pytest.raises(ValueError, match=msg): |
|
c(window=2, min_periods=1, center=w) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"window", |
|
[ |
|
timedelta(days=3), |
|
Timedelta(days=3), |
|
"3D", |
|
VariableOffsetWindowIndexer( |
|
index=date_range("2015-12-25", periods=5), offset=BusinessDay(1) |
|
), |
|
], |
|
) |
|
def test_freq_window_not_implemented(window): |
|
|
|
df = DataFrame( |
|
np.arange(10), |
|
index=date_range("2015-12-24", periods=10, freq="D"), |
|
) |
|
with pytest.raises( |
|
NotImplementedError, match="^step (not implemented|is not supported)" |
|
): |
|
df.rolling(window, step=3).sum() |
|
|
|
|
|
@pytest.mark.parametrize("agg", ["cov", "corr"]) |
|
def test_step_not_implemented_for_cov_corr(agg): |
|
|
|
roll = DataFrame(range(2)).rolling(1, step=2) |
|
with pytest.raises(NotImplementedError, match="step not implemented"): |
|
getattr(roll, agg)() |
|
|
|
|
|
@pytest.mark.parametrize("window", [timedelta(days=3), Timedelta(days=3)]) |
|
def test_constructor_with_timedelta_window(window): |
|
|
|
n = 10 |
|
df = DataFrame( |
|
{"value": np.arange(n)}, |
|
index=date_range("2015-12-24", periods=n, freq="D"), |
|
) |
|
expected_data = np.append([0.0, 1.0], np.arange(3.0, 27.0, 3)) |
|
|
|
result = df.rolling(window=window).sum() |
|
expected = DataFrame( |
|
{"value": expected_data}, |
|
index=date_range("2015-12-24", periods=n, freq="D"), |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
expected = df.rolling("3D").sum() |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("window", [timedelta(days=3), Timedelta(days=3), "3D"]) |
|
def test_constructor_timedelta_window_and_minperiods(window, raw): |
|
|
|
n = 10 |
|
df = DataFrame( |
|
{"value": np.arange(n)}, |
|
index=date_range("2017-08-08", periods=n, freq="D"), |
|
) |
|
expected = DataFrame( |
|
{"value": np.append([np.nan, 1.0], np.arange(3.0, 27.0, 3))}, |
|
index=date_range("2017-08-08", periods=n, freq="D"), |
|
) |
|
result_roll_sum = df.rolling(window=window, min_periods=2).sum() |
|
result_roll_generic = df.rolling(window=window, min_periods=2).apply(sum, raw=raw) |
|
tm.assert_frame_equal(result_roll_sum, expected) |
|
tm.assert_frame_equal(result_roll_generic, expected) |
|
|
|
|
|
def test_closed_fixed(closed, arithmetic_win_operators): |
|
|
|
func_name = arithmetic_win_operators |
|
df_fixed = DataFrame({"A": [0, 1, 2, 3, 4]}) |
|
df_time = DataFrame({"A": [0, 1, 2, 3, 4]}, index=date_range("2020", periods=5)) |
|
|
|
result = getattr( |
|
df_fixed.rolling(2, closed=closed, min_periods=1), |
|
func_name, |
|
)() |
|
expected = getattr( |
|
df_time.rolling("2D", closed=closed, min_periods=1), |
|
func_name, |
|
)().reset_index(drop=True) |
|
|
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"closed, window_selections", |
|
[ |
|
( |
|
"both", |
|
[ |
|
[True, True, False, False, False], |
|
[True, True, True, False, False], |
|
[False, True, True, True, False], |
|
[False, False, True, True, True], |
|
[False, False, False, True, True], |
|
], |
|
), |
|
( |
|
"left", |
|
[ |
|
[True, False, False, False, False], |
|
[True, True, False, False, False], |
|
[False, True, True, False, False], |
|
[False, False, True, True, False], |
|
[False, False, False, True, True], |
|
], |
|
), |
|
( |
|
"right", |
|
[ |
|
[True, True, False, False, False], |
|
[False, True, True, False, False], |
|
[False, False, True, True, False], |
|
[False, False, False, True, True], |
|
[False, False, False, False, True], |
|
], |
|
), |
|
( |
|
"neither", |
|
[ |
|
[True, False, False, False, False], |
|
[False, True, False, False, False], |
|
[False, False, True, False, False], |
|
[False, False, False, True, False], |
|
[False, False, False, False, True], |
|
], |
|
), |
|
], |
|
) |
|
def test_datetimelike_centered_selections( |
|
closed, window_selections, arithmetic_win_operators |
|
): |
|
|
|
func_name = arithmetic_win_operators |
|
df_time = DataFrame( |
|
{"A": [0.0, 1.0, 2.0, 3.0, 4.0]}, index=date_range("2020", periods=5) |
|
) |
|
|
|
expected = DataFrame( |
|
{"A": [getattr(df_time["A"].iloc[s], func_name)() for s in window_selections]}, |
|
index=date_range("2020", periods=5), |
|
) |
|
|
|
if func_name == "sem": |
|
kwargs = {"ddof": 0} |
|
else: |
|
kwargs = {} |
|
|
|
result = getattr( |
|
df_time.rolling("2D", closed=closed, min_periods=1, center=True), |
|
func_name, |
|
)(**kwargs) |
|
|
|
tm.assert_frame_equal(result, expected, check_dtype=False) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"window,closed,expected", |
|
[ |
|
("3s", "right", [3.0, 3.0, 3.0]), |
|
("3s", "both", [3.0, 3.0, 3.0]), |
|
("3s", "left", [3.0, 3.0, 3.0]), |
|
("3s", "neither", [3.0, 3.0, 3.0]), |
|
("2s", "right", [3.0, 2.0, 2.0]), |
|
("2s", "both", [3.0, 3.0, 3.0]), |
|
("2s", "left", [1.0, 3.0, 3.0]), |
|
("2s", "neither", [1.0, 2.0, 2.0]), |
|
], |
|
) |
|
def test_datetimelike_centered_offset_covers_all( |
|
window, closed, expected, frame_or_series |
|
): |
|
|
|
|
|
index = [ |
|
Timestamp("20130101 09:00:01"), |
|
Timestamp("20130101 09:00:02"), |
|
Timestamp("20130101 09:00:02"), |
|
] |
|
df = frame_or_series([1, 1, 1], index=index) |
|
|
|
result = df.rolling(window, closed=closed, center=True).sum() |
|
expected = frame_or_series(expected, index=index) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"window,closed,expected", |
|
[ |
|
("2D", "right", [4, 4, 4, 4, 4, 4, 2, 2]), |
|
("2D", "left", [2, 2, 4, 4, 4, 4, 4, 4]), |
|
("2D", "both", [4, 4, 6, 6, 6, 6, 4, 4]), |
|
("2D", "neither", [2, 2, 2, 2, 2, 2, 2, 2]), |
|
], |
|
) |
|
def test_datetimelike_nonunique_index_centering( |
|
window, closed, expected, frame_or_series |
|
): |
|
index = DatetimeIndex( |
|
[ |
|
"2020-01-01", |
|
"2020-01-01", |
|
"2020-01-02", |
|
"2020-01-02", |
|
"2020-01-03", |
|
"2020-01-03", |
|
"2020-01-04", |
|
"2020-01-04", |
|
] |
|
) |
|
|
|
df = frame_or_series([1] * 8, index=index, dtype=float) |
|
expected = frame_or_series(expected, index=index, dtype=float) |
|
|
|
result = df.rolling(window, center=True, closed=closed).sum() |
|
|
|
tm.assert_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"closed,expected", |
|
[ |
|
("left", [np.nan, np.nan, 1, 1, 1, 10, 14, 14, 18, 21]), |
|
("neither", [np.nan, np.nan, 1, 1, 1, 9, 5, 5, 13, 8]), |
|
("right", [0, 1, 3, 6, 10, 14, 11, 18, 21, 17]), |
|
("both", [0, 1, 3, 6, 10, 15, 20, 27, 26, 30]), |
|
], |
|
) |
|
def test_variable_window_nonunique(closed, expected, frame_or_series): |
|
|
|
index = DatetimeIndex( |
|
[ |
|
"2011-01-01", |
|
"2011-01-01", |
|
"2011-01-02", |
|
"2011-01-02", |
|
"2011-01-02", |
|
"2011-01-03", |
|
"2011-01-04", |
|
"2011-01-04", |
|
"2011-01-05", |
|
"2011-01-06", |
|
] |
|
) |
|
|
|
df = frame_or_series(range(10), index=index, dtype=float) |
|
expected = frame_or_series(expected, index=index, dtype=float) |
|
|
|
result = df.rolling("2D", closed=closed).sum() |
|
|
|
tm.assert_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"closed,expected", |
|
[ |
|
("left", [np.nan, np.nan, 1, 1, 1, 10, 15, 15, 18, 21]), |
|
("neither", [np.nan, np.nan, 1, 1, 1, 10, 15, 15, 13, 8]), |
|
("right", [0, 1, 3, 6, 10, 15, 21, 28, 21, 17]), |
|
("both", [0, 1, 3, 6, 10, 15, 21, 28, 26, 30]), |
|
], |
|
) |
|
def test_variable_offset_window_nonunique(closed, expected, frame_or_series): |
|
|
|
index = DatetimeIndex( |
|
[ |
|
"2011-01-01", |
|
"2011-01-01", |
|
"2011-01-02", |
|
"2011-01-02", |
|
"2011-01-02", |
|
"2011-01-03", |
|
"2011-01-04", |
|
"2011-01-04", |
|
"2011-01-05", |
|
"2011-01-06", |
|
] |
|
) |
|
|
|
df = frame_or_series(range(10), index=index, dtype=float) |
|
expected = frame_or_series(expected, index=index, dtype=float) |
|
|
|
offset = BusinessDay(2) |
|
indexer = VariableOffsetWindowIndexer(index=index, offset=offset) |
|
result = df.rolling(indexer, closed=closed, min_periods=1).sum() |
|
|
|
tm.assert_equal(result, expected) |
|
|
|
|
|
def test_even_number_window_alignment(): |
|
|
|
s = Series(range(3), index=date_range(start="2020-01-01", freq="D", periods=3)) |
|
|
|
|
|
|
|
|
|
result = s.rolling(window="2D", min_periods=1, center=True).mean() |
|
|
|
expected = Series([0.5, 1.5, 2], index=s.index) |
|
|
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_closed_fixed_binary_col(center, step): |
|
|
|
data = [0, 1, 1, 0, 0, 1, 0, 1] |
|
df = DataFrame( |
|
{"binary_col": data}, |
|
index=date_range(start="2020-01-01", freq="min", periods=len(data)), |
|
) |
|
|
|
if center: |
|
expected_data = [2 / 3, 0.5, 0.4, 0.5, 0.428571, 0.5, 0.571429, 0.5] |
|
else: |
|
expected_data = [np.nan, 0, 0.5, 2 / 3, 0.5, 0.4, 0.5, 0.428571] |
|
|
|
expected = DataFrame( |
|
expected_data, |
|
columns=["binary_col"], |
|
index=date_range(start="2020-01-01", freq="min", periods=len(expected_data)), |
|
)[::step] |
|
|
|
rolling = df.rolling( |
|
window=len(df), closed="left", min_periods=1, center=center, step=step |
|
) |
|
result = rolling.mean() |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("closed", ["neither", "left"]) |
|
def test_closed_empty(closed, arithmetic_win_operators): |
|
|
|
func_name = arithmetic_win_operators |
|
ser = Series(data=np.arange(5), index=date_range("2000", periods=5, freq="2D")) |
|
roll = ser.rolling("1D", closed=closed) |
|
|
|
result = getattr(roll, func_name)() |
|
expected = Series([np.nan] * 5, index=ser.index) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("func", ["min", "max"]) |
|
def test_closed_one_entry(func): |
|
|
|
ser = Series(data=[2], index=date_range("2000", periods=1)) |
|
result = getattr(ser.rolling("10D", closed="left"), func)() |
|
tm.assert_series_equal(result, Series([np.nan], index=ser.index)) |
|
|
|
|
|
@pytest.mark.parametrize("func", ["min", "max"]) |
|
def test_closed_one_entry_groupby(func): |
|
|
|
ser = DataFrame( |
|
data={"A": [1, 1, 2], "B": [3, 2, 1]}, |
|
index=date_range("2000", periods=3), |
|
) |
|
result = getattr( |
|
ser.groupby("A", sort=False)["B"].rolling("10D", closed="left"), func |
|
)() |
|
exp_idx = MultiIndex.from_arrays(arrays=[[1, 1, 2], ser.index], names=("A", None)) |
|
expected = Series(data=[np.nan, 3, np.nan], index=exp_idx, name="B") |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("input_dtype", ["int", "float"]) |
|
@pytest.mark.parametrize( |
|
"func,closed,expected", |
|
[ |
|
("min", "right", [0.0, 0, 0, 1, 2, 3, 4, 5, 6, 7]), |
|
("min", "both", [0.0, 0, 0, 0, 1, 2, 3, 4, 5, 6]), |
|
("min", "neither", [np.nan, 0, 0, 1, 2, 3, 4, 5, 6, 7]), |
|
("min", "left", [np.nan, 0, 0, 0, 1, 2, 3, 4, 5, 6]), |
|
("max", "right", [0.0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), |
|
("max", "both", [0.0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), |
|
("max", "neither", [np.nan, 0, 1, 2, 3, 4, 5, 6, 7, 8]), |
|
("max", "left", [np.nan, 0, 1, 2, 3, 4, 5, 6, 7, 8]), |
|
], |
|
) |
|
def test_closed_min_max_datetime(input_dtype, func, closed, expected): |
|
|
|
ser = Series( |
|
data=np.arange(10).astype(input_dtype), |
|
index=date_range("2000", periods=10), |
|
) |
|
|
|
result = getattr(ser.rolling("3D", closed=closed), func)() |
|
expected = Series(expected, index=ser.index) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_closed_uneven(): |
|
|
|
ser = Series(data=np.arange(10), index=date_range("2000", periods=10)) |
|
|
|
|
|
ser = ser.drop(index=ser.index[[1, 5]]) |
|
result = ser.rolling("3D", closed="left").min() |
|
expected = Series([np.nan, 0, 0, 2, 3, 4, 6, 6], index=ser.index) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"func,closed,expected", |
|
[ |
|
("min", "right", [np.nan, 0, 0, 1, 2, 3, 4, 5, np.nan, np.nan]), |
|
("min", "both", [np.nan, 0, 0, 0, 1, 2, 3, 4, 5, np.nan]), |
|
("min", "neither", [np.nan, np.nan, 0, 1, 2, 3, 4, 5, np.nan, np.nan]), |
|
("min", "left", [np.nan, np.nan, 0, 0, 1, 2, 3, 4, 5, np.nan]), |
|
("max", "right", [np.nan, 1, 2, 3, 4, 5, 6, 6, np.nan, np.nan]), |
|
("max", "both", [np.nan, 1, 2, 3, 4, 5, 6, 6, 6, np.nan]), |
|
("max", "neither", [np.nan, np.nan, 1, 2, 3, 4, 5, 6, np.nan, np.nan]), |
|
("max", "left", [np.nan, np.nan, 1, 2, 3, 4, 5, 6, 6, np.nan]), |
|
], |
|
) |
|
def test_closed_min_max_minp(func, closed, expected): |
|
|
|
ser = Series(data=np.arange(10), index=date_range("2000", periods=10)) |
|
|
|
ser = ser.astype("float") |
|
ser[ser.index[-3:]] = np.nan |
|
result = getattr(ser.rolling("3D", min_periods=2, closed=closed), func)() |
|
expected = Series(expected, index=ser.index) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"closed,expected", |
|
[ |
|
("right", [0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8]), |
|
("both", [0, 0.5, 1, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5]), |
|
("neither", [np.nan, 0, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5]), |
|
("left", [np.nan, 0, 0.5, 1, 2, 3, 4, 5, 6, 7]), |
|
], |
|
) |
|
def test_closed_median_quantile(closed, expected): |
|
|
|
ser = Series(data=np.arange(10), index=date_range("2000", periods=10)) |
|
roll = ser.rolling("3D", closed=closed) |
|
expected = Series(expected, index=ser.index) |
|
|
|
result = roll.median() |
|
tm.assert_series_equal(result, expected) |
|
|
|
result = roll.quantile(0.5) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("roller", ["1s", 1]) |
|
def tests_empty_df_rolling(roller): |
|
|
|
|
|
expected = DataFrame() |
|
result = DataFrame().rolling(roller).sum() |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
|
|
expected = DataFrame(index=DatetimeIndex([])) |
|
result = DataFrame(index=DatetimeIndex([])).rolling(roller).sum() |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_empty_window_median_quantile(): |
|
|
|
expected = Series([np.nan, np.nan, np.nan]) |
|
roll = Series(np.arange(3)).rolling(0) |
|
|
|
result = roll.median() |
|
tm.assert_series_equal(result, expected) |
|
|
|
result = roll.quantile(0.1) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_missing_minp_zero(): |
|
|
|
|
|
x = Series([np.nan]) |
|
result = x.rolling(1, min_periods=0).sum() |
|
expected = Series([0.0]) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
result = x.rolling(1, min_periods=1).sum() |
|
expected = Series([np.nan]) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_missing_minp_zero_variable(): |
|
|
|
x = Series( |
|
[np.nan] * 4, |
|
index=DatetimeIndex(["2017-01-01", "2017-01-04", "2017-01-06", "2017-01-07"]), |
|
) |
|
result = x.rolling(Timedelta("2d"), min_periods=0).sum() |
|
expected = Series(0.0, index=x.index) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_multi_index_names(): |
|
|
|
cols = MultiIndex.from_product([["A", "B"], ["C", "D", "E"]], names=["1", "2"]) |
|
df = DataFrame(np.ones((10, 6)), columns=cols) |
|
result = df.rolling(3).cov() |
|
|
|
tm.assert_index_equal(result.columns, df.columns) |
|
assert result.index.names == [None, "1", "2"] |
|
|
|
|
|
def test_rolling_axis_sum(axis_frame): |
|
|
|
df = DataFrame(np.ones((10, 20))) |
|
axis = df._get_axis_number(axis_frame) |
|
|
|
if axis == 0: |
|
msg = "The 'axis' keyword in DataFrame.rolling" |
|
expected = DataFrame({i: [np.nan] * 2 + [3.0] * 8 for i in range(20)}) |
|
else: |
|
|
|
msg = "Support for axis=1 in DataFrame.rolling is deprecated" |
|
expected = DataFrame([[np.nan] * 2 + [3.0] * 18] * 10) |
|
|
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
result = df.rolling(3, axis=axis_frame).sum() |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_rolling_axis_count(axis_frame): |
|
|
|
df = DataFrame({"x": range(3), "y": range(3)}) |
|
|
|
axis = df._get_axis_number(axis_frame) |
|
|
|
if axis in [0, "index"]: |
|
msg = "The 'axis' keyword in DataFrame.rolling" |
|
expected = DataFrame({"x": [1.0, 2.0, 2.0], "y": [1.0, 2.0, 2.0]}) |
|
else: |
|
msg = "Support for axis=1 in DataFrame.rolling is deprecated" |
|
expected = DataFrame({"x": [1.0, 1.0, 1.0], "y": [2.0, 2.0, 2.0]}) |
|
|
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
result = df.rolling(2, axis=axis_frame, min_periods=0).count() |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_readonly_array(): |
|
|
|
arr = np.array([1, 3, np.nan, 3, 5]) |
|
arr.setflags(write=False) |
|
result = Series(arr).rolling(2).mean() |
|
expected = Series([np.nan, 2, np.nan, np.nan, 4]) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_rolling_datetime(axis_frame, tz_naive_fixture): |
|
|
|
tz = tz_naive_fixture |
|
df = DataFrame( |
|
{i: [1] * 2 for i in date_range("2019-8-01", "2019-08-03", freq="D", tz=tz)} |
|
) |
|
|
|
if axis_frame in [0, "index"]: |
|
msg = "The 'axis' keyword in DataFrame.rolling" |
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
result = df.T.rolling("2D", axis=axis_frame).sum().T |
|
else: |
|
msg = "Support for axis=1 in DataFrame.rolling" |
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
result = df.rolling("2D", axis=axis_frame).sum() |
|
expected = DataFrame( |
|
{ |
|
**{ |
|
i: [1.0] * 2 |
|
for i in date_range("2019-8-01", periods=1, freq="D", tz=tz) |
|
}, |
|
**{ |
|
i: [2.0] * 2 |
|
for i in date_range("2019-8-02", "2019-8-03", freq="D", tz=tz) |
|
}, |
|
} |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("center", [True, False]) |
|
def test_rolling_window_as_string(center): |
|
|
|
date_today = datetime.now() |
|
days = date_range(date_today, date_today + timedelta(365), freq="D") |
|
|
|
data = np.ones(len(days)) |
|
df = DataFrame({"DateCol": days, "metric": data}) |
|
|
|
df.set_index("DateCol", inplace=True) |
|
result = df.rolling(window="21D", min_periods=2, closed="left", center=center)[ |
|
"metric" |
|
].agg("max") |
|
|
|
index = days.rename("DateCol") |
|
index = index._with_freq(None) |
|
expected_data = np.ones(len(days), dtype=np.float64) |
|
if not center: |
|
expected_data[:2] = np.nan |
|
expected = Series(expected_data, index=index, name="metric") |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_min_periods1(): |
|
|
|
df = DataFrame([0, 1, 2, 1, 0], columns=["a"]) |
|
result = df["a"].rolling(3, center=True, min_periods=1).max() |
|
expected = Series([1.0, 2.0, 2.0, 2.0, 1.0], name="a") |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_rolling_count_with_min_periods(frame_or_series): |
|
|
|
result = frame_or_series(range(5)).rolling(3, min_periods=3).count() |
|
expected = frame_or_series([np.nan, np.nan, 3.0, 3.0, 3.0]) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
def test_rolling_count_default_min_periods_with_null_values(frame_or_series): |
|
|
|
values = [1, 2, 3, np.nan, 4, 5, 6] |
|
expected_counts = [1.0, 2.0, 3.0, 2.0, 2.0, 2.0, 3.0] |
|
|
|
|
|
result = frame_or_series(values).rolling(3, min_periods=0).count() |
|
expected = frame_or_series(expected_counts) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"df,expected,window,min_periods", |
|
[ |
|
( |
|
DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}), |
|
[ |
|
({"A": [1], "B": [4]}, [0]), |
|
({"A": [1, 2], "B": [4, 5]}, [0, 1]), |
|
({"A": [1, 2, 3], "B": [4, 5, 6]}, [0, 1, 2]), |
|
], |
|
3, |
|
None, |
|
), |
|
( |
|
DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}), |
|
[ |
|
({"A": [1], "B": [4]}, [0]), |
|
({"A": [1, 2], "B": [4, 5]}, [0, 1]), |
|
({"A": [2, 3], "B": [5, 6]}, [1, 2]), |
|
], |
|
2, |
|
1, |
|
), |
|
( |
|
DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}), |
|
[ |
|
({"A": [1], "B": [4]}, [0]), |
|
({"A": [1, 2], "B": [4, 5]}, [0, 1]), |
|
({"A": [2, 3], "B": [5, 6]}, [1, 2]), |
|
], |
|
2, |
|
2, |
|
), |
|
( |
|
DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}), |
|
[ |
|
({"A": [1], "B": [4]}, [0]), |
|
({"A": [2], "B": [5]}, [1]), |
|
({"A": [3], "B": [6]}, [2]), |
|
], |
|
1, |
|
1, |
|
), |
|
( |
|
DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}), |
|
[ |
|
({"A": [1], "B": [4]}, [0]), |
|
({"A": [2], "B": [5]}, [1]), |
|
({"A": [3], "B": [6]}, [2]), |
|
], |
|
1, |
|
0, |
|
), |
|
(DataFrame({"A": [1], "B": [4]}), [], 2, None), |
|
(DataFrame({"A": [1], "B": [4]}), [], 2, 1), |
|
(DataFrame(), [({}, [])], 2, None), |
|
( |
|
DataFrame({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}), |
|
[ |
|
({"A": [1.0], "B": [np.nan]}, [0]), |
|
({"A": [1, np.nan], "B": [np.nan, 5]}, [0, 1]), |
|
({"A": [1, np.nan, 3], "B": [np.nan, 5, 6]}, [0, 1, 2]), |
|
], |
|
3, |
|
2, |
|
), |
|
], |
|
) |
|
def test_iter_rolling_dataframe(df, expected, window, min_periods): |
|
|
|
expected = [DataFrame(values, index=index) for (values, index) in expected] |
|
|
|
for expected, actual in zip(expected, df.rolling(window, min_periods=min_periods)): |
|
tm.assert_frame_equal(actual, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"expected,window", |
|
[ |
|
( |
|
[ |
|
({"A": [1], "B": [4]}, [0]), |
|
({"A": [1, 2], "B": [4, 5]}, [0, 1]), |
|
({"A": [2, 3], "B": [5, 6]}, [1, 2]), |
|
], |
|
"2D", |
|
), |
|
( |
|
[ |
|
({"A": [1], "B": [4]}, [0]), |
|
({"A": [1, 2], "B": [4, 5]}, [0, 1]), |
|
({"A": [1, 2, 3], "B": [4, 5, 6]}, [0, 1, 2]), |
|
], |
|
"3D", |
|
), |
|
( |
|
[ |
|
({"A": [1], "B": [4]}, [0]), |
|
({"A": [2], "B": [5]}, [1]), |
|
({"A": [3], "B": [6]}, [2]), |
|
], |
|
"1D", |
|
), |
|
], |
|
) |
|
def test_iter_rolling_on_dataframe(expected, window): |
|
|
|
df = DataFrame( |
|
{ |
|
"A": [1, 2, 3, 4, 5], |
|
"B": [4, 5, 6, 7, 8], |
|
"C": date_range(start="2016-01-01", periods=5, freq="D"), |
|
} |
|
) |
|
|
|
expected = [ |
|
DataFrame(values, index=df.loc[index, "C"]) for (values, index) in expected |
|
] |
|
for expected, actual in zip(expected, df.rolling(window, on="C")): |
|
tm.assert_frame_equal(actual, expected) |
|
|
|
|
|
def test_iter_rolling_on_dataframe_unordered(): |
|
|
|
df = DataFrame({"a": ["x", "y", "x"], "b": [0, 1, 2]}) |
|
results = list(df.groupby("a").rolling(2)) |
|
expecteds = [df.iloc[idx, [1]] for idx in [[0], [0, 2], [1]]] |
|
for result, expected in zip(results, expecteds): |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"ser,expected,window, min_periods", |
|
[ |
|
( |
|
Series([1, 2, 3]), |
|
[([1], [0]), ([1, 2], [0, 1]), ([1, 2, 3], [0, 1, 2])], |
|
3, |
|
None, |
|
), |
|
( |
|
Series([1, 2, 3]), |
|
[([1], [0]), ([1, 2], [0, 1]), ([1, 2, 3], [0, 1, 2])], |
|
3, |
|
1, |
|
), |
|
( |
|
Series([1, 2, 3]), |
|
[([1], [0]), ([1, 2], [0, 1]), ([2, 3], [1, 2])], |
|
2, |
|
1, |
|
), |
|
( |
|
Series([1, 2, 3]), |
|
[([1], [0]), ([1, 2], [0, 1]), ([2, 3], [1, 2])], |
|
2, |
|
2, |
|
), |
|
(Series([1, 2, 3]), [([1], [0]), ([2], [1]), ([3], [2])], 1, 0), |
|
(Series([1, 2, 3]), [([1], [0]), ([2], [1]), ([3], [2])], 1, 1), |
|
(Series([1, 2]), [([1], [0]), ([1, 2], [0, 1])], 2, 0), |
|
(Series([], dtype="int64"), [], 2, 1), |
|
], |
|
) |
|
def test_iter_rolling_series(ser, expected, window, min_periods): |
|
|
|
expected = [Series(values, index=index) for (values, index) in expected] |
|
|
|
for expected, actual in zip(expected, ser.rolling(window, min_periods=min_periods)): |
|
tm.assert_series_equal(actual, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"expected,expected_index,window", |
|
[ |
|
( |
|
[[0], [1], [2], [3], [4]], |
|
[ |
|
date_range("2020-01-01", periods=1, freq="D"), |
|
date_range("2020-01-02", periods=1, freq="D"), |
|
date_range("2020-01-03", periods=1, freq="D"), |
|
date_range("2020-01-04", periods=1, freq="D"), |
|
date_range("2020-01-05", periods=1, freq="D"), |
|
], |
|
"1D", |
|
), |
|
( |
|
[[0], [0, 1], [1, 2], [2, 3], [3, 4]], |
|
[ |
|
date_range("2020-01-01", periods=1, freq="D"), |
|
date_range("2020-01-01", periods=2, freq="D"), |
|
date_range("2020-01-02", periods=2, freq="D"), |
|
date_range("2020-01-03", periods=2, freq="D"), |
|
date_range("2020-01-04", periods=2, freq="D"), |
|
], |
|
"2D", |
|
), |
|
( |
|
[[0], [0, 1], [0, 1, 2], [1, 2, 3], [2, 3, 4]], |
|
[ |
|
date_range("2020-01-01", periods=1, freq="D"), |
|
date_range("2020-01-01", periods=2, freq="D"), |
|
date_range("2020-01-01", periods=3, freq="D"), |
|
date_range("2020-01-02", periods=3, freq="D"), |
|
date_range("2020-01-03", periods=3, freq="D"), |
|
], |
|
"3D", |
|
), |
|
], |
|
) |
|
def test_iter_rolling_datetime(expected, expected_index, window): |
|
|
|
ser = Series(range(5), index=date_range(start="2020-01-01", periods=5, freq="D")) |
|
|
|
expected = [ |
|
Series(values, index=idx) for (values, idx) in zip(expected, expected_index) |
|
] |
|
|
|
for expected, actual in zip(expected, ser.rolling(window)): |
|
tm.assert_series_equal(actual, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"grouping,_index", |
|
[ |
|
( |
|
{"level": 0}, |
|
MultiIndex.from_tuples( |
|
[(0, 0), (0, 0), (1, 1), (1, 1), (1, 1)], names=[None, None] |
|
), |
|
), |
|
( |
|
{"by": "X"}, |
|
MultiIndex.from_tuples( |
|
[(0, 0), (1, 0), (2, 1), (3, 1), (4, 1)], names=["X", None] |
|
), |
|
), |
|
], |
|
) |
|
def test_rolling_positional_argument(grouping, _index, raw): |
|
|
|
|
|
def scaled_sum(*args): |
|
if len(args) < 2: |
|
raise ValueError("The function needs two arguments") |
|
array, scale = args |
|
return array.sum() / scale |
|
|
|
df = DataFrame(data={"X": range(5)}, index=[0, 0, 1, 1, 1]) |
|
|
|
expected = DataFrame(data={"X": [0.0, 0.5, 1.0, 1.5, 2.0]}, index=_index) |
|
|
|
if "by" in grouping: |
|
expected = expected.drop(columns="X", errors="ignore") |
|
result = df.groupby(**grouping).rolling(1).apply(scaled_sum, raw=raw, args=(2,)) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("add", [0.0, 2.0]) |
|
def test_rolling_numerical_accuracy_kahan_mean(add, unit): |
|
|
|
dti = DatetimeIndex( |
|
[ |
|
Timestamp("19700101 09:00:00"), |
|
Timestamp("19700101 09:00:03"), |
|
Timestamp("19700101 09:00:06"), |
|
] |
|
).as_unit(unit) |
|
df = DataFrame( |
|
{"A": [3002399751580331.0 + add, -0.0, -0.0]}, |
|
index=dti, |
|
) |
|
result = ( |
|
df.resample("1s").ffill().rolling("3s", closed="left", min_periods=3).mean() |
|
) |
|
dates = date_range("19700101 09:00:00", periods=7, freq="s", unit=unit) |
|
expected = DataFrame( |
|
{ |
|
"A": [ |
|
np.nan, |
|
np.nan, |
|
np.nan, |
|
3002399751580330.5, |
|
2001599834386887.25, |
|
1000799917193443.625, |
|
0.0, |
|
] |
|
}, |
|
index=dates, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_rolling_numerical_accuracy_kahan_sum(): |
|
|
|
df = DataFrame([2.186, -1.647, 0.0, 0.0, 0.0, 0.0], columns=["x"]) |
|
result = df["x"].rolling(3).sum() |
|
expected = Series([np.nan, np.nan, 0.539, -1.647, 0.0, 0.0], name="x") |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_rolling_numerical_accuracy_jump(): |
|
|
|
index = date_range(start="2020-01-01", end="2020-01-02", freq="60s").append( |
|
DatetimeIndex(["2020-01-03"]) |
|
) |
|
data = np.random.default_rng(2).random(len(index)) |
|
|
|
df = DataFrame({"data": data}, index=index) |
|
result = df.rolling("60s").mean() |
|
tm.assert_frame_equal(result, df[["data"]]) |
|
|
|
|
|
def test_rolling_numerical_accuracy_small_values(): |
|
|
|
s = Series( |
|
data=[0.00012456, 0.0003, -0.0, -0.0], |
|
index=date_range("1999-02-03", "1999-02-06"), |
|
) |
|
result = s.rolling(1).mean() |
|
tm.assert_series_equal(result, s) |
|
|
|
|
|
def test_rolling_numerical_too_large_numbers(): |
|
|
|
dates = date_range("2015-01-01", periods=10, freq="D") |
|
ds = Series(data=range(10), index=dates, dtype=np.float64) |
|
ds.iloc[2] = -9e33 |
|
result = ds.rolling(5).mean() |
|
expected = Series( |
|
[ |
|
np.nan, |
|
np.nan, |
|
np.nan, |
|
np.nan, |
|
-1.8e33, |
|
-1.8e33, |
|
-1.8e33, |
|
5.0, |
|
6.0, |
|
7.0, |
|
], |
|
index=dates, |
|
) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
("func", "value"), |
|
[("sum", 2.0), ("max", 1.0), ("min", 1.0), ("mean", 1.0), ("median", 1.0)], |
|
) |
|
def test_rolling_mixed_dtypes_axis_1(func, value): |
|
|
|
df = DataFrame(1, index=[1, 2], columns=["a", "b", "c"]) |
|
df["c"] = 1.0 |
|
msg = "Support for axis=1 in DataFrame.rolling is deprecated" |
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
roll = df.rolling(window=2, min_periods=1, axis=1) |
|
result = getattr(roll, func)() |
|
expected = DataFrame( |
|
{"a": [1.0, 1.0], "b": [value, value], "c": [value, value]}, |
|
index=[1, 2], |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_rolling_axis_one_with_nan(): |
|
|
|
df = DataFrame( |
|
[ |
|
[0, 1, 2, 4, np.nan, np.nan, np.nan], |
|
[0, 1, 2, np.nan, np.nan, np.nan, np.nan], |
|
[0, 2, 2, np.nan, 2, np.nan, 1], |
|
] |
|
) |
|
msg = "Support for axis=1 in DataFrame.rolling is deprecated" |
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
result = df.rolling(window=7, min_periods=1, axis="columns").sum() |
|
expected = DataFrame( |
|
[ |
|
[0.0, 1.0, 3.0, 7.0, 7.0, 7.0, 7.0], |
|
[0.0, 1.0, 3.0, 3.0, 3.0, 3.0, 3.0], |
|
[0.0, 2.0, 4.0, 4.0, 6.0, 6.0, 7.0], |
|
] |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"value", |
|
["test", to_datetime("2019-12-31"), to_timedelta("1 days 06:05:01.00003")], |
|
) |
|
def test_rolling_axis_1_non_numeric_dtypes(value): |
|
|
|
df = DataFrame({"a": [1, 2]}) |
|
df["b"] = value |
|
msg = "Support for axis=1 in DataFrame.rolling is deprecated" |
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
result = df.rolling(window=2, min_periods=1, axis=1).sum() |
|
expected = DataFrame({"a": [1.0, 2.0]}) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_rolling_on_df_transposed(): |
|
|
|
df = DataFrame({"A": [1, None], "B": [4, 5], "C": [7, 8]}) |
|
expected = DataFrame({"A": [1.0, np.nan], "B": [5.0, 5.0], "C": [11.0, 13.0]}) |
|
msg = "Support for axis=1 in DataFrame.rolling is deprecated" |
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
result = df.rolling(min_periods=1, window=2, axis=1).sum() |
|
tm.assert_frame_equal(result, expected) |
|
|
|
result = df.T.rolling(min_periods=1, window=2).sum().T |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
("index", "window"), |
|
[ |
|
( |
|
period_range(start="2020-01-01 08:00", end="2020-01-01 08:08", freq="min"), |
|
"2min", |
|
), |
|
( |
|
period_range( |
|
start="2020-01-01 08:00", end="2020-01-01 12:00", freq="30min" |
|
), |
|
"1h", |
|
), |
|
], |
|
) |
|
@pytest.mark.parametrize( |
|
("func", "values"), |
|
[ |
|
("min", [np.nan, 0, 0, 1, 2, 3, 4, 5, 6]), |
|
("max", [np.nan, 0, 1, 2, 3, 4, 5, 6, 7]), |
|
("sum", [np.nan, 0, 1, 3, 5, 7, 9, 11, 13]), |
|
], |
|
) |
|
def test_rolling_period_index(index, window, func, values): |
|
|
|
ds = Series([0, 1, 2, 3, 4, 5, 6, 7, 8], index=index) |
|
result = getattr(ds.rolling(window, closed="left"), func)() |
|
expected = Series(values, index=index) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_rolling_sem(frame_or_series): |
|
|
|
obj = frame_or_series([0, 1, 2]) |
|
result = obj.rolling(2, min_periods=1).sem() |
|
if isinstance(result, DataFrame): |
|
result = Series(result[0].values) |
|
expected = Series([np.nan] + [0.7071067811865476] * 2) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.xfail( |
|
is_platform_arm() or is_platform_power(), |
|
reason="GH 38921", |
|
) |
|
@pytest.mark.parametrize( |
|
("func", "third_value", "values"), |
|
[ |
|
("var", 1, [5e33, 0, 0.5, 0.5, 2, 0]), |
|
("std", 1, [7.071068e16, 0, 0.7071068, 0.7071068, 1.414214, 0]), |
|
("var", 2, [5e33, 0.5, 0, 0.5, 2, 0]), |
|
("std", 2, [7.071068e16, 0.7071068, 0, 0.7071068, 1.414214, 0]), |
|
], |
|
) |
|
def test_rolling_var_numerical_issues(func, third_value, values): |
|
|
|
ds = Series([99999999999999999, 1, third_value, 2, 3, 1, 1]) |
|
result = getattr(ds.rolling(2), func)() |
|
expected = Series([np.nan] + values) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
tm.assert_series_equal(result == 0, expected == 0) |
|
|
|
|
|
def test_timeoffset_as_window_parameter_for_corr(unit): |
|
|
|
dti = DatetimeIndex( |
|
[ |
|
Timestamp("20130101 09:00:00"), |
|
Timestamp("20130102 09:00:02"), |
|
Timestamp("20130103 09:00:03"), |
|
Timestamp("20130105 09:00:05"), |
|
Timestamp("20130106 09:00:06"), |
|
] |
|
).as_unit(unit) |
|
mi = MultiIndex.from_product([dti, ["B", "A"]]) |
|
|
|
exp = DataFrame( |
|
{ |
|
"B": [ |
|
np.nan, |
|
np.nan, |
|
0.9999999999999998, |
|
-1.0, |
|
1.0, |
|
-0.3273268353539892, |
|
0.9999999999999998, |
|
1.0, |
|
0.9999999999999998, |
|
1.0, |
|
], |
|
"A": [ |
|
np.nan, |
|
np.nan, |
|
-1.0, |
|
1.0000000000000002, |
|
-0.3273268353539892, |
|
0.9999999999999966, |
|
1.0, |
|
1.0000000000000002, |
|
1.0, |
|
1.0000000000000002, |
|
], |
|
}, |
|
index=mi, |
|
) |
|
|
|
df = DataFrame( |
|
{"B": [0, 1, 2, 4, 3], "A": [7, 4, 6, 9, 3]}, |
|
index=dti, |
|
) |
|
|
|
res = df.rolling(window="3d").corr() |
|
|
|
tm.assert_frame_equal(exp, res) |
|
|
|
|
|
@pytest.mark.parametrize("method", ["var", "sum", "mean", "skew", "kurt", "min", "max"]) |
|
def test_rolling_decreasing_indices(method): |
|
""" |
|
Make sure that decreasing indices give the same results as increasing indices. |
|
|
|
GH 36933 |
|
""" |
|
df = DataFrame({"values": np.arange(-15, 10) ** 2}) |
|
df_reverse = DataFrame({"values": df["values"][::-1]}, index=df.index[::-1]) |
|
|
|
increasing = getattr(df.rolling(window=5), method)() |
|
decreasing = getattr(df_reverse.rolling(window=5), method)() |
|
|
|
assert np.abs(decreasing.values[::-1][:-4] - increasing.values[4:]).max() < 1e-12 |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"window,closed,expected", |
|
[ |
|
("2s", "right", [1.0, 3.0, 5.0, 3.0]), |
|
("2s", "left", [0.0, 1.0, 3.0, 5.0]), |
|
("2s", "both", [1.0, 3.0, 6.0, 5.0]), |
|
("2s", "neither", [0.0, 1.0, 2.0, 3.0]), |
|
("3s", "right", [1.0, 3.0, 6.0, 5.0]), |
|
("3s", "left", [1.0, 3.0, 6.0, 5.0]), |
|
("3s", "both", [1.0, 3.0, 6.0, 5.0]), |
|
("3s", "neither", [1.0, 3.0, 6.0, 5.0]), |
|
], |
|
) |
|
def test_rolling_decreasing_indices_centered(window, closed, expected, frame_or_series): |
|
""" |
|
Ensure that a symmetrical inverted index return same result as non-inverted. |
|
""" |
|
|
|
|
|
index = date_range("2020", periods=4, freq="1s") |
|
df_inc = frame_or_series(range(4), index=index) |
|
df_dec = frame_or_series(range(4), index=index[::-1]) |
|
|
|
expected_inc = frame_or_series(expected, index=index) |
|
expected_dec = frame_or_series(expected, index=index[::-1]) |
|
|
|
result_inc = df_inc.rolling(window, closed=closed, center=True).sum() |
|
result_dec = df_dec.rolling(window, closed=closed, center=True).sum() |
|
|
|
tm.assert_equal(result_inc, expected_inc) |
|
tm.assert_equal(result_dec, expected_dec) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"window,expected", |
|
[ |
|
("1ns", [1.0, 1.0, 1.0, 1.0]), |
|
("3ns", [2.0, 3.0, 3.0, 2.0]), |
|
], |
|
) |
|
def test_rolling_center_nanosecond_resolution( |
|
window, closed, expected, frame_or_series |
|
): |
|
index = date_range("2020", periods=4, freq="1ns") |
|
df = frame_or_series([1, 1, 1, 1], index=index, dtype=float) |
|
expected = frame_or_series(expected, index=index, dtype=float) |
|
result = df.rolling(window, closed=closed, center=True).sum() |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"method,expected", |
|
[ |
|
( |
|
"var", |
|
[ |
|
float("nan"), |
|
43.0, |
|
float("nan"), |
|
136.333333, |
|
43.5, |
|
94.966667, |
|
182.0, |
|
318.0, |
|
], |
|
), |
|
( |
|
"mean", |
|
[float("nan"), 7.5, float("nan"), 21.5, 6.0, 9.166667, 13.0, 17.5], |
|
), |
|
( |
|
"sum", |
|
[float("nan"), 30.0, float("nan"), 86.0, 30.0, 55.0, 91.0, 140.0], |
|
), |
|
( |
|
"skew", |
|
[ |
|
float("nan"), |
|
0.709296, |
|
float("nan"), |
|
0.407073, |
|
0.984656, |
|
0.919184, |
|
0.874674, |
|
0.842418, |
|
], |
|
), |
|
( |
|
"kurt", |
|
[ |
|
float("nan"), |
|
-0.5916711736073559, |
|
float("nan"), |
|
-1.0028993131317954, |
|
-0.06103844629409494, |
|
-0.254143227116194, |
|
-0.37362637362637585, |
|
-0.45439658241367054, |
|
], |
|
), |
|
], |
|
) |
|
def test_rolling_non_monotonic(method, expected): |
|
""" |
|
Make sure the (rare) branch of non-monotonic indices is covered by a test. |
|
|
|
output from 1.1.3 is assumed to be the expected output. Output of sum/mean has |
|
manually been verified. |
|
|
|
GH 36933. |
|
""" |
|
|
|
use_expanding = [True, False, True, False, True, True, True, True] |
|
df = DataFrame({"values": np.arange(len(use_expanding)) ** 2}) |
|
|
|
class CustomIndexer(BaseIndexer): |
|
def get_window_bounds(self, num_values, min_periods, center, closed, step): |
|
start = np.empty(num_values, dtype=np.int64) |
|
end = np.empty(num_values, dtype=np.int64) |
|
for i in range(num_values): |
|
if self.use_expanding[i]: |
|
start[i] = 0 |
|
end[i] = i + 1 |
|
else: |
|
start[i] = i |
|
end[i] = i + self.window_size |
|
return start, end |
|
|
|
indexer = CustomIndexer(window_size=4, use_expanding=use_expanding) |
|
|
|
result = getattr(df.rolling(indexer), method)() |
|
expected = DataFrame({"values": expected}) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
("index", "window"), |
|
[ |
|
([0, 1, 2, 3, 4], 2), |
|
(date_range("2001-01-01", freq="D", periods=5), "2D"), |
|
], |
|
) |
|
def test_rolling_corr_timedelta_index(index, window): |
|
|
|
x = Series([1, 2, 3, 4, 5], index=index) |
|
y = x.copy() |
|
x.iloc[0:2] = 0.0 |
|
result = x.rolling(window).corr(y) |
|
expected = Series([np.nan, np.nan, 1, 1, 1], index=index) |
|
tm.assert_almost_equal(result, expected) |
|
|
|
|
|
def test_groupby_rolling_nan_included(): |
|
|
|
data = {"group": ["g1", np.nan, "g1", "g2", np.nan], "B": [0, 1, 2, 3, 4]} |
|
df = DataFrame(data) |
|
result = df.groupby("group", dropna=False).rolling(1, min_periods=1).mean() |
|
expected = DataFrame( |
|
{"B": [0.0, 2.0, 3.0, 1.0, 4.0]}, |
|
|
|
|
|
|
|
|
|
|
|
|
|
index=MultiIndex( |
|
[["g1", "g2", np.nan], [0, 1, 2, 3, 4]], |
|
[[0, 0, 1, 2, 2], [0, 2, 3, 1, 4]], |
|
names=["group", None], |
|
), |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("method", ["skew", "kurt"]) |
|
def test_rolling_skew_kurt_numerical_stability(method): |
|
|
|
ser = Series(np.random.default_rng(2).random(10)) |
|
ser_copy = ser.copy() |
|
expected = getattr(ser.rolling(3), method)() |
|
tm.assert_series_equal(ser, ser_copy) |
|
ser = ser + 50000 |
|
result = getattr(ser.rolling(3), method)() |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
("method", "values"), |
|
[ |
|
("skew", [2.0, 0.854563, 0.0, 1.999984]), |
|
("kurt", [4.0, -1.289256, -1.2, 3.999946]), |
|
], |
|
) |
|
def test_rolling_skew_kurt_large_value_range(method, values): |
|
|
|
s = Series([3000000, 1, 1, 2, 3, 4, 999]) |
|
result = getattr(s.rolling(4), method)() |
|
expected = Series([np.nan] * 3 + values) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_invalid_method(): |
|
with pytest.raises(ValueError, match="method must be 'table' or 'single"): |
|
Series(range(1)).rolling(1, method="foo") |
|
|
|
|
|
@pytest.mark.parametrize("window", [1, "1d"]) |
|
def test_rolling_descending_date_order_with_offset(window, frame_or_series): |
|
|
|
idx = date_range(start="2020-01-01", end="2020-01-03", freq="1d") |
|
obj = frame_or_series(range(1, 4), index=idx) |
|
result = obj.rolling("1d", closed="left").sum() |
|
expected = frame_or_series([np.nan, 1, 2], index=idx) |
|
tm.assert_equal(result, expected) |
|
|
|
result = obj.iloc[::-1].rolling("1d", closed="left").sum() |
|
idx = date_range(start="2020-01-03", end="2020-01-01", freq="-1d") |
|
expected = frame_or_series([np.nan, 3, 2], index=idx) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
def test_rolling_var_floating_artifact_precision(): |
|
|
|
s = Series([7, 5, 5, 5]) |
|
result = s.rolling(3).var() |
|
expected = Series([np.nan, np.nan, 4 / 3, 0]) |
|
tm.assert_series_equal(result, expected, atol=1.0e-15, rtol=1.0e-15) |
|
|
|
|
|
tm.assert_series_equal(result == 0, expected == 0) |
|
|
|
|
|
def test_rolling_std_small_values(): |
|
|
|
s = Series( |
|
[ |
|
0.00000054, |
|
0.00000053, |
|
0.00000054, |
|
] |
|
) |
|
result = s.rolling(2).std() |
|
expected = Series([np.nan, 7.071068e-9, 7.071068e-9]) |
|
tm.assert_series_equal(result, expected, atol=1.0e-15, rtol=1.0e-15) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"start, exp_values", |
|
[ |
|
(1, [0.03, 0.0155, 0.0155, 0.011, 0.01025]), |
|
(2, [0.001, 0.001, 0.0015, 0.00366666]), |
|
], |
|
) |
|
def test_rolling_mean_all_nan_window_floating_artifacts(start, exp_values): |
|
|
|
df = DataFrame( |
|
[ |
|
0.03, |
|
0.03, |
|
0.001, |
|
np.nan, |
|
0.002, |
|
0.008, |
|
np.nan, |
|
np.nan, |
|
np.nan, |
|
np.nan, |
|
np.nan, |
|
np.nan, |
|
0.005, |
|
0.2, |
|
] |
|
) |
|
|
|
values = exp_values + [ |
|
0.00366666, |
|
0.005, |
|
0.005, |
|
0.008, |
|
np.nan, |
|
np.nan, |
|
0.005, |
|
0.102500, |
|
] |
|
expected = DataFrame( |
|
values, |
|
index=list(range(start, len(values) + start)), |
|
) |
|
result = df.iloc[start:].rolling(5, min_periods=0).mean() |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_rolling_sum_all_nan_window_floating_artifacts(): |
|
|
|
df = DataFrame([0.002, 0.008, 0.005, np.nan, np.nan, np.nan]) |
|
result = df.rolling(3, min_periods=0).sum() |
|
expected = DataFrame([0.002, 0.010, 0.015, 0.013, 0.005, 0.0]) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_rolling_zero_window(): |
|
|
|
s = Series(range(1)) |
|
result = s.rolling(0).min() |
|
expected = Series([np.nan]) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_rolling_float_dtype(float_numpy_dtype): |
|
|
|
df = DataFrame({"A": range(5), "B": range(10, 15)}, dtype=float_numpy_dtype) |
|
expected = DataFrame( |
|
{"A": [np.nan] * 5, "B": range(10, 20, 2)}, |
|
dtype=float_numpy_dtype, |
|
) |
|
msg = "Support for axis=1 in DataFrame.rolling is deprecated" |
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
result = df.rolling(2, axis=1).sum() |
|
tm.assert_frame_equal(result, expected, check_dtype=False) |
|
|
|
|
|
def test_rolling_numeric_dtypes(): |
|
|
|
df = DataFrame(np.arange(40).reshape(4, 10), columns=list("abcdefghij")).astype( |
|
{ |
|
"a": "float16", |
|
"b": "float32", |
|
"c": "float64", |
|
"d": "int8", |
|
"e": "int16", |
|
"f": "int32", |
|
"g": "uint8", |
|
"h": "uint16", |
|
"i": "uint32", |
|
"j": "uint64", |
|
} |
|
) |
|
msg = "Support for axis=1 in DataFrame.rolling is deprecated" |
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
result = df.rolling(window=2, min_periods=1, axis=1).min() |
|
expected = DataFrame( |
|
{ |
|
"a": range(0, 40, 10), |
|
"b": range(0, 40, 10), |
|
"c": range(1, 40, 10), |
|
"d": range(2, 40, 10), |
|
"e": range(3, 40, 10), |
|
"f": range(4, 40, 10), |
|
"g": range(5, 40, 10), |
|
"h": range(6, 40, 10), |
|
"i": range(7, 40, 10), |
|
"j": range(8, 40, 10), |
|
}, |
|
dtype="float64", |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("window", [1, 3, 10, 20]) |
|
@pytest.mark.parametrize("method", ["min", "max", "average"]) |
|
@pytest.mark.parametrize("pct", [True, False]) |
|
@pytest.mark.parametrize("ascending", [True, False]) |
|
@pytest.mark.parametrize("test_data", ["default", "duplicates", "nans"]) |
|
def test_rank(window, method, pct, ascending, test_data): |
|
length = 20 |
|
if test_data == "default": |
|
ser = Series(data=np.random.default_rng(2).random(length)) |
|
elif test_data == "duplicates": |
|
ser = Series(data=np.random.default_rng(2).choice(3, length)) |
|
elif test_data == "nans": |
|
ser = Series( |
|
data=np.random.default_rng(2).choice( |
|
[1.0, 0.25, 0.75, np.nan, np.inf, -np.inf], length |
|
) |
|
) |
|
|
|
expected = ser.rolling(window).apply( |
|
lambda x: x.rank(method=method, pct=pct, ascending=ascending).iloc[-1] |
|
) |
|
result = ser.rolling(window).rank(method=method, pct=pct, ascending=ascending) |
|
|
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_rolling_quantile_np_percentile(): |
|
|
|
|
|
row = 10 |
|
col = 5 |
|
idx = date_range("20100101", periods=row, freq="B") |
|
df = DataFrame( |
|
np.random.default_rng(2).random(row * col).reshape((row, -1)), index=idx |
|
) |
|
|
|
df_quantile = df.quantile([0.25, 0.5, 0.75], axis=0) |
|
np_percentile = np.percentile(df, [25, 50, 75], axis=0) |
|
|
|
tm.assert_almost_equal(df_quantile.values, np.array(np_percentile)) |
|
|
|
|
|
@pytest.mark.parametrize("quantile", [0.0, 0.1, 0.45, 0.5, 1]) |
|
@pytest.mark.parametrize( |
|
"interpolation", ["linear", "lower", "higher", "nearest", "midpoint"] |
|
) |
|
@pytest.mark.parametrize( |
|
"data", |
|
[ |
|
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], |
|
[8.0, 1.0, 3.0, 4.0, 5.0, 2.0, 6.0, 7.0], |
|
[0.0, np.nan, 0.2, np.nan, 0.4], |
|
[np.nan, np.nan, np.nan, np.nan], |
|
[np.nan, 0.1, np.nan, 0.3, 0.4, 0.5], |
|
[0.5], |
|
[np.nan, 0.7, 0.6], |
|
], |
|
) |
|
def test_rolling_quantile_interpolation_options(quantile, interpolation, data): |
|
|
|
|
|
s = Series(data) |
|
|
|
q1 = s.quantile(quantile, interpolation) |
|
q2 = s.expanding(min_periods=1).quantile(quantile, interpolation).iloc[-1] |
|
|
|
if np.isnan(q1): |
|
assert np.isnan(q2) |
|
else: |
|
if not IS64: |
|
|
|
assert np.allclose([q1], [q2], rtol=1e-07, atol=0) |
|
else: |
|
assert q1 == q2 |
|
|
|
|
|
def test_invalid_quantile_value(): |
|
data = np.arange(5) |
|
s = Series(data) |
|
|
|
msg = "Interpolation 'invalid' is not supported" |
|
with pytest.raises(ValueError, match=msg): |
|
s.rolling(len(data), min_periods=1).quantile(0.5, interpolation="invalid") |
|
|
|
|
|
def test_rolling_quantile_param(): |
|
ser = Series([0.0, 0.1, 0.5, 0.9, 1.0]) |
|
msg = "quantile value -0.1 not in \\[0, 1\\]" |
|
with pytest.raises(ValueError, match=msg): |
|
ser.rolling(3).quantile(-0.1) |
|
|
|
msg = "quantile value 10.0 not in \\[0, 1\\]" |
|
with pytest.raises(ValueError, match=msg): |
|
ser.rolling(3).quantile(10.0) |
|
|
|
msg = "must be real number, not str" |
|
with pytest.raises(TypeError, match=msg): |
|
ser.rolling(3).quantile("foo") |
|
|
|
|
|
def test_rolling_std_1obs(): |
|
vals = Series([1.0, 2.0, 3.0, 4.0, 5.0]) |
|
|
|
result = vals.rolling(1, min_periods=1).std() |
|
expected = Series([np.nan] * 5) |
|
tm.assert_series_equal(result, expected) |
|
|
|
result = vals.rolling(1, min_periods=1).std(ddof=0) |
|
expected = Series([0.0] * 5) |
|
tm.assert_series_equal(result, expected) |
|
|
|
result = Series([np.nan, np.nan, 3, 4, 5]).rolling(3, min_periods=2).std() |
|
assert np.isnan(result[2]) |
|
|
|
|
|
def test_rolling_std_neg_sqrt(): |
|
|
|
|
|
|
|
|
|
a = Series( |
|
[ |
|
0.0011448196318903589, |
|
0.00028718669878572767, |
|
0.00028718669878572767, |
|
0.00028718669878572767, |
|
0.00028718669878572767, |
|
] |
|
) |
|
b = a.rolling(window=3).std() |
|
assert np.isfinite(b[2:]).all() |
|
|
|
b = a.ewm(span=3).std() |
|
assert np.isfinite(b[2:]).all() |
|
|
|
|
|
def test_step_not_integer_raises(): |
|
with pytest.raises(ValueError, match="step must be an integer"): |
|
DataFrame(range(2)).rolling(1, step="foo") |
|
|
|
|
|
def test_step_not_positive_raises(): |
|
with pytest.raises(ValueError, match="step must be >= 0"): |
|
DataFrame(range(2)).rolling(1, step=-1) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
["values", "window", "min_periods", "expected"], |
|
[ |
|
[ |
|
[20, 10, 10, np.inf, 1, 1, 2, 3], |
|
3, |
|
1, |
|
[np.nan, 50, 100 / 3, 0, 40.5, 0, 1 / 3, 1], |
|
], |
|
[ |
|
[20, 10, 10, np.nan, 10, 1, 2, 3], |
|
3, |
|
1, |
|
[np.nan, 50, 100 / 3, 0, 0, 40.5, 73 / 3, 1], |
|
], |
|
[ |
|
[np.nan, 5, 6, 7, 5, 5, 5], |
|
3, |
|
3, |
|
[np.nan] * 3 + [1, 1, 4 / 3, 0], |
|
], |
|
[ |
|
[5, 7, 7, 7, np.nan, np.inf, 4, 3, 3, 3], |
|
3, |
|
3, |
|
[np.nan] * 2 + [4 / 3, 0] + [np.nan] * 4 + [1 / 3, 0], |
|
], |
|
[ |
|
[5, 7, 7, 7, np.nan, np.inf, 7, 3, 3, 3], |
|
3, |
|
3, |
|
[np.nan] * 2 + [4 / 3, 0] + [np.nan] * 4 + [16 / 3, 0], |
|
], |
|
[ |
|
[5, 7] * 4, |
|
3, |
|
3, |
|
[np.nan] * 2 + [4 / 3] * 6, |
|
], |
|
[ |
|
[5, 7, 5, np.nan, 7, 5, 7], |
|
3, |
|
2, |
|
[np.nan, 2, 4 / 3] + [2] * 3 + [4 / 3], |
|
], |
|
], |
|
) |
|
def test_rolling_var_same_value_count_logic(values, window, min_periods, expected): |
|
|
|
|
|
expected = Series(expected) |
|
sr = Series(values) |
|
|
|
|
|
|
|
result_var = sr.rolling(window, min_periods=min_periods).var() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tm.assert_series_equal(result_var, expected) |
|
|
|
tm.assert_series_equal(expected == 0, result_var == 0) |
|
|
|
|
|
result_std = sr.rolling(window, min_periods=min_periods).std() |
|
tm.assert_series_equal(result_std, np.sqrt(expected)) |
|
tm.assert_series_equal(expected == 0, result_std == 0) |
|
|
|
|
|
def test_rolling_mean_sum_floating_artifacts(): |
|
|
|
|
|
sr = Series([1 / 3, 4, 0, 0, 0, 0, 0]) |
|
r = sr.rolling(3) |
|
result = r.mean() |
|
assert (result[-3:] == 0).all() |
|
result = r.sum() |
|
assert (result[-3:] == 0).all() |
|
|
|
|
|
def test_rolling_skew_kurt_floating_artifacts(): |
|
|
|
|
|
sr = Series([1 / 3, 4, 0, 0, 0, 0, 0]) |
|
r = sr.rolling(4) |
|
result = r.skew() |
|
assert (result[-2:] == 0).all() |
|
result = r.kurt() |
|
assert (result[-2:] == -3).all() |
|
|
|
|
|
def test_numeric_only_frame(arithmetic_win_operators, numeric_only): |
|
|
|
kernel = arithmetic_win_operators |
|
df = DataFrame({"a": [1], "b": 2, "c": 3}) |
|
df["c"] = df["c"].astype(object) |
|
rolling = df.rolling(2, min_periods=1) |
|
op = getattr(rolling, kernel) |
|
result = op(numeric_only=numeric_only) |
|
|
|
columns = ["a", "b"] if numeric_only else ["a", "b", "c"] |
|
expected = df[columns].agg([kernel]).reset_index(drop=True).astype(float) |
|
assert list(expected.columns) == columns |
|
|
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("kernel", ["corr", "cov"]) |
|
@pytest.mark.parametrize("use_arg", [True, False]) |
|
def test_numeric_only_corr_cov_frame(kernel, numeric_only, use_arg): |
|
|
|
df = DataFrame({"a": [1, 2, 3], "b": 2, "c": 3}) |
|
df["c"] = df["c"].astype(object) |
|
arg = (df,) if use_arg else () |
|
rolling = df.rolling(2, min_periods=1) |
|
op = getattr(rolling, kernel) |
|
result = op(*arg, numeric_only=numeric_only) |
|
|
|
|
|
columns = ["a", "b"] if numeric_only else ["a", "b", "c"] |
|
df2 = df[columns].astype(float) |
|
arg2 = (df2,) if use_arg else () |
|
rolling2 = df2.rolling(2, min_periods=1) |
|
op2 = getattr(rolling2, kernel) |
|
expected = op2(*arg2, numeric_only=numeric_only) |
|
|
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("dtype", [int, object]) |
|
def test_numeric_only_series(arithmetic_win_operators, numeric_only, dtype): |
|
|
|
kernel = arithmetic_win_operators |
|
ser = Series([1], dtype=dtype) |
|
rolling = ser.rolling(2, min_periods=1) |
|
op = getattr(rolling, kernel) |
|
if numeric_only and dtype is object: |
|
msg = f"Rolling.{kernel} does not implement numeric_only" |
|
with pytest.raises(NotImplementedError, match=msg): |
|
op(numeric_only=numeric_only) |
|
else: |
|
result = op(numeric_only=numeric_only) |
|
expected = ser.agg([kernel]).reset_index(drop=True).astype(float) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("kernel", ["corr", "cov"]) |
|
@pytest.mark.parametrize("use_arg", [True, False]) |
|
@pytest.mark.parametrize("dtype", [int, object]) |
|
def test_numeric_only_corr_cov_series(kernel, use_arg, numeric_only, dtype): |
|
|
|
ser = Series([1, 2, 3], dtype=dtype) |
|
arg = (ser,) if use_arg else () |
|
rolling = ser.rolling(2, min_periods=1) |
|
op = getattr(rolling, kernel) |
|
if numeric_only and dtype is object: |
|
msg = f"Rolling.{kernel} does not implement numeric_only" |
|
with pytest.raises(NotImplementedError, match=msg): |
|
op(*arg, numeric_only=numeric_only) |
|
else: |
|
result = op(*arg, numeric_only=numeric_only) |
|
|
|
ser2 = ser.astype(float) |
|
arg2 = (ser2,) if use_arg else () |
|
rolling2 = ser2.rolling(2, min_periods=1) |
|
op2 = getattr(rolling2, kernel) |
|
expected = op2(*arg2, numeric_only=numeric_only) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) |
|
@pytest.mark.parametrize("tz", [None, "UTC", "Europe/Prague"]) |
|
def test_rolling_timedelta_window_non_nanoseconds(unit, tz): |
|
|
|
df_time = DataFrame( |
|
{"A": range(5)}, index=date_range("2013-01-01", freq="1s", periods=5, tz=tz) |
|
) |
|
sum_in_nanosecs = df_time.rolling("1s").sum() |
|
|
|
df_time.index = df_time.index.as_unit(unit) |
|
sum_in_microsecs = df_time.rolling("1s").sum() |
|
sum_in_microsecs.index = sum_in_microsecs.index.as_unit("ns") |
|
tm.assert_frame_equal(sum_in_nanosecs, sum_in_microsecs) |
|
|
|
|
|
ref_dates = date_range("2023-01-01", "2023-01-10", unit="ns", tz=tz) |
|
ref_series = Series(0, index=ref_dates) |
|
ref_series.iloc[0] = 1 |
|
ref_max_series = ref_series.rolling(Timedelta(days=4)).max() |
|
|
|
dates = date_range("2023-01-01", "2023-01-10", unit=unit, tz=tz) |
|
series = Series(0, index=dates) |
|
series.iloc[0] = 1 |
|
max_series = series.rolling(Timedelta(days=4)).max() |
|
|
|
ref_df = DataFrame(ref_max_series) |
|
df = DataFrame(max_series) |
|
df.index = df.index.as_unit("ns") |
|
|
|
tm.assert_frame_equal(ref_df, df) |
|
|