|
import numpy as np |
|
import pytest |
|
|
|
from pandas.compat import IS64 |
|
|
|
from pandas import ( |
|
DataFrame, |
|
Index, |
|
MultiIndex, |
|
Series, |
|
date_range, |
|
) |
|
import pandas._testing as tm |
|
from pandas.core.algorithms import safe_sort |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 0]), |
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 1]), |
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", "C"]), |
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1.0, 0]), |
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0.0, 1]), |
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", 1]), |
|
DataFrame([[2.0, 4.0], [1.0, 2.0], [5.0, 2.0], [8.0, 1.0]], columns=[1, 0.0]), |
|
DataFrame([[2, 4.0], [1, 2.0], [5, 2.0], [8, 1.0]], columns=[0, 1.0]), |
|
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1.0]], columns=[1.0, "X"]), |
|
] |
|
) |
|
def pairwise_frames(request): |
|
"""Pairwise frames test_pairwise""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture |
|
def pairwise_target_frame(): |
|
"""Pairwise target frame for test_pairwise""" |
|
return DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0, 1]) |
|
|
|
|
|
@pytest.fixture |
|
def pairwise_other_frame(): |
|
"""Pairwise other frame for test_pairwise""" |
|
return DataFrame( |
|
[[None, 1, 1], [None, 1, 2], [None, 3, 2], [None, 8, 1]], |
|
columns=["Y", "Z", "X"], |
|
) |
|
|
|
|
|
def test_rolling_cov(series): |
|
A = series |
|
B = A + np.random.default_rng(2).standard_normal(len(A)) |
|
|
|
result = A.rolling(window=50, min_periods=25).cov(B) |
|
tm.assert_almost_equal(result.iloc[-1], np.cov(A[-50:], B[-50:])[0, 1]) |
|
|
|
|
|
def test_rolling_corr(series): |
|
A = series |
|
B = A + np.random.default_rng(2).standard_normal(len(A)) |
|
|
|
result = A.rolling(window=50, min_periods=25).corr(B) |
|
tm.assert_almost_equal(result.iloc[-1], np.corrcoef(A[-50:], B[-50:])[0, 1]) |
|
|
|
|
|
def test_rolling_corr_bias_correction(): |
|
|
|
a = Series( |
|
np.arange(20, dtype=np.float64), index=date_range("2020-01-01", periods=20) |
|
) |
|
b = a.copy() |
|
a[:5] = np.nan |
|
b[:10] = np.nan |
|
|
|
result = a.rolling(window=len(a), min_periods=1).corr(b) |
|
tm.assert_almost_equal(result.iloc[-1], a.corr(b)) |
|
|
|
|
|
@pytest.mark.parametrize("func", ["cov", "corr"]) |
|
def test_rolling_pairwise_cov_corr(func, frame): |
|
result = getattr(frame.rolling(window=10, min_periods=5), func)() |
|
result = result.loc[(slice(None), 1), 5] |
|
result.index = result.index.droplevel(1) |
|
expected = getattr(frame[1].rolling(window=10, min_periods=5), func)(frame[5]) |
|
tm.assert_series_equal(result, expected, check_names=False) |
|
|
|
|
|
@pytest.mark.parametrize("method", ["corr", "cov"]) |
|
def test_flex_binary_frame(method, frame): |
|
series = frame[1] |
|
|
|
res = getattr(series.rolling(window=10), method)(frame) |
|
res2 = getattr(frame.rolling(window=10), method)(series) |
|
exp = frame.apply(lambda x: getattr(series.rolling(window=10), method)(x)) |
|
|
|
tm.assert_frame_equal(res, exp) |
|
tm.assert_frame_equal(res2, exp) |
|
|
|
frame2 = frame.copy() |
|
frame2 = DataFrame( |
|
np.random.default_rng(2).standard_normal(frame2.shape), |
|
index=frame2.index, |
|
columns=frame2.columns, |
|
) |
|
|
|
res3 = getattr(frame.rolling(window=10), method)(frame2) |
|
exp = DataFrame( |
|
{k: getattr(frame[k].rolling(window=10), method)(frame2[k]) for k in frame} |
|
) |
|
tm.assert_frame_equal(res3, exp) |
|
|
|
|
|
@pytest.mark.parametrize("window", range(7)) |
|
def test_rolling_corr_with_zero_variance(window): |
|
|
|
s = Series(np.zeros(20)) |
|
other = Series(np.arange(20)) |
|
|
|
assert s.rolling(window=window).corr(other=other).isna().all() |
|
|
|
|
|
def test_corr_sanity(): |
|
|
|
df = DataFrame( |
|
np.array( |
|
[ |
|
[0.87024726, 0.18505595], |
|
[0.64355431, 0.3091617], |
|
[0.92372966, 0.50552513], |
|
[0.00203756, 0.04520709], |
|
[0.84780328, 0.33394331], |
|
[0.78369152, 0.63919667], |
|
] |
|
) |
|
) |
|
|
|
res = df[0].rolling(5, center=True).corr(df[1]) |
|
assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) |
|
|
|
df = DataFrame(np.random.default_rng(2).random((30, 2))) |
|
res = df[0].rolling(5, center=True).corr(df[1]) |
|
assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) |
|
|
|
|
|
def test_rolling_cov_diff_length(): |
|
|
|
s1 = Series([1, 2, 3], index=[0, 1, 2]) |
|
s2 = Series([1, 3], index=[0, 2]) |
|
result = s1.rolling(window=3, min_periods=2).cov(s2) |
|
expected = Series([None, None, 2.0]) |
|
tm.assert_series_equal(result, expected) |
|
|
|
s2a = Series([1, None, 3], index=[0, 1, 2]) |
|
result = s1.rolling(window=3, min_periods=2).cov(s2a) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_rolling_corr_diff_length(): |
|
|
|
s1 = Series([1, 2, 3], index=[0, 1, 2]) |
|
s2 = Series([1, 3], index=[0, 2]) |
|
result = s1.rolling(window=3, min_periods=2).corr(s2) |
|
expected = Series([None, None, 1.0]) |
|
tm.assert_series_equal(result, expected) |
|
|
|
s2a = Series([1, None, 3], index=[0, 1, 2]) |
|
result = s1.rolling(window=3, min_periods=2).corr(s2a) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"f", |
|
[ |
|
lambda x: (x.rolling(window=10, min_periods=5).cov(x, pairwise=True)), |
|
lambda x: (x.rolling(window=10, min_periods=5).corr(x, pairwise=True)), |
|
], |
|
) |
|
def test_rolling_functions_window_non_shrinkage_binary(f): |
|
|
|
df = DataFrame( |
|
[[1, 5], [3, 2], [3, 9], [-1, 0]], |
|
columns=Index(["A", "B"], name="foo"), |
|
index=Index(range(4), name="bar"), |
|
) |
|
df_expected = DataFrame( |
|
columns=Index(["A", "B"], name="foo"), |
|
index=MultiIndex.from_product([df.index, df.columns], names=["bar", "foo"]), |
|
dtype="float64", |
|
) |
|
df_result = f(df) |
|
tm.assert_frame_equal(df_result, df_expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"f", |
|
[ |
|
lambda x: (x.rolling(window=10, min_periods=5).cov(x, pairwise=True)), |
|
lambda x: (x.rolling(window=10, min_periods=5).corr(x, pairwise=True)), |
|
], |
|
) |
|
def test_moment_functions_zero_length_pairwise(f): |
|
df1 = DataFrame() |
|
df2 = DataFrame(columns=Index(["a"], name="foo"), index=Index([], name="bar")) |
|
df2["a"] = df2["a"].astype("float64") |
|
|
|
df1_expected = DataFrame(index=MultiIndex.from_product([df1.index, df1.columns])) |
|
df2_expected = DataFrame( |
|
index=MultiIndex.from_product([df2.index, df2.columns], names=["bar", "foo"]), |
|
columns=Index(["a"], name="foo"), |
|
dtype="float64", |
|
) |
|
|
|
df1_result = f(df1) |
|
tm.assert_frame_equal(df1_result, df1_expected) |
|
|
|
df2_result = f(df2) |
|
tm.assert_frame_equal(df2_result, df2_expected) |
|
|
|
|
|
class TestPairwise: |
|
|
|
@pytest.mark.parametrize("f", [lambda x: x.cov(), lambda x: x.corr()]) |
|
def test_no_flex(self, pairwise_frames, pairwise_target_frame, f): |
|
|
|
|
|
result = f(pairwise_frames) |
|
tm.assert_index_equal(result.index, pairwise_frames.columns) |
|
tm.assert_index_equal(result.columns, pairwise_frames.columns) |
|
expected = f(pairwise_target_frame) |
|
|
|
|
|
result = result.dropna().values |
|
expected = expected.dropna().values |
|
|
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False) |
|
|
|
@pytest.mark.parametrize( |
|
"f", |
|
[ |
|
lambda x: x.expanding().cov(pairwise=True), |
|
lambda x: x.expanding().corr(pairwise=True), |
|
lambda x: x.rolling(window=3).cov(pairwise=True), |
|
lambda x: x.rolling(window=3).corr(pairwise=True), |
|
lambda x: x.ewm(com=3).cov(pairwise=True), |
|
lambda x: x.ewm(com=3).corr(pairwise=True), |
|
], |
|
) |
|
def test_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f): |
|
|
|
|
|
|
|
result = f(pairwise_frames) |
|
tm.assert_index_equal( |
|
result.index.levels[0], pairwise_frames.index, check_names=False |
|
) |
|
tm.assert_index_equal( |
|
safe_sort(result.index.levels[1]), |
|
safe_sort(pairwise_frames.columns.unique()), |
|
) |
|
tm.assert_index_equal(result.columns, pairwise_frames.columns) |
|
expected = f(pairwise_target_frame) |
|
|
|
|
|
result = result.dropna().values |
|
expected = expected.dropna().values |
|
|
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False) |
|
|
|
@pytest.mark.parametrize( |
|
"f", |
|
[ |
|
lambda x: x.expanding().cov(pairwise=False), |
|
lambda x: x.expanding().corr(pairwise=False), |
|
lambda x: x.rolling(window=3).cov(pairwise=False), |
|
lambda x: x.rolling(window=3).corr(pairwise=False), |
|
lambda x: x.ewm(com=3).cov(pairwise=False), |
|
lambda x: x.ewm(com=3).corr(pairwise=False), |
|
], |
|
) |
|
def test_no_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f): |
|
|
|
result = f(pairwise_frames) |
|
tm.assert_index_equal(result.index, pairwise_frames.index) |
|
tm.assert_index_equal(result.columns, pairwise_frames.columns) |
|
expected = f(pairwise_target_frame) |
|
|
|
|
|
result = result.dropna().values |
|
expected = expected.dropna().values |
|
|
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False) |
|
|
|
@pytest.mark.parametrize( |
|
"f", |
|
[ |
|
lambda x, y: x.expanding().cov(y, pairwise=True), |
|
lambda x, y: x.expanding().corr(y, pairwise=True), |
|
lambda x, y: x.rolling(window=3).cov(y, pairwise=True), |
|
|
|
pytest.param( |
|
lambda x, y: x.rolling(window=3).corr(y, pairwise=True), |
|
marks=pytest.mark.xfail( |
|
not IS64, reason="Precision issues on 32 bit", strict=False |
|
), |
|
), |
|
lambda x, y: x.ewm(com=3).cov(y, pairwise=True), |
|
lambda x, y: x.ewm(com=3).corr(y, pairwise=True), |
|
], |
|
) |
|
def test_pairwise_with_other( |
|
self, pairwise_frames, pairwise_target_frame, pairwise_other_frame, f |
|
): |
|
|
|
result = f(pairwise_frames, pairwise_other_frame) |
|
tm.assert_index_equal( |
|
result.index.levels[0], pairwise_frames.index, check_names=False |
|
) |
|
tm.assert_index_equal( |
|
safe_sort(result.index.levels[1]), |
|
safe_sort(pairwise_other_frame.columns.unique()), |
|
) |
|
expected = f(pairwise_target_frame, pairwise_other_frame) |
|
|
|
|
|
result = result.dropna().values |
|
expected = expected.dropna().values |
|
|
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False) |
|
|
|
@pytest.mark.filterwarnings("ignore:RuntimeWarning") |
|
@pytest.mark.parametrize( |
|
"f", |
|
[ |
|
lambda x, y: x.expanding().cov(y, pairwise=False), |
|
lambda x, y: x.expanding().corr(y, pairwise=False), |
|
lambda x, y: x.rolling(window=3).cov(y, pairwise=False), |
|
lambda x, y: x.rolling(window=3).corr(y, pairwise=False), |
|
lambda x, y: x.ewm(com=3).cov(y, pairwise=False), |
|
lambda x, y: x.ewm(com=3).corr(y, pairwise=False), |
|
], |
|
) |
|
def test_no_pairwise_with_other(self, pairwise_frames, pairwise_other_frame, f): |
|
|
|
result = ( |
|
f(pairwise_frames, pairwise_other_frame) |
|
if pairwise_frames.columns.is_unique |
|
else None |
|
) |
|
if result is not None: |
|
|
|
expected_index = pairwise_frames.index.union(pairwise_other_frame.index) |
|
expected_columns = pairwise_frames.columns.union( |
|
pairwise_other_frame.columns |
|
) |
|
tm.assert_index_equal(result.index, expected_index) |
|
tm.assert_index_equal(result.columns, expected_columns) |
|
else: |
|
with pytest.raises(ValueError, match="'arg1' columns are not unique"): |
|
f(pairwise_frames, pairwise_other_frame) |
|
with pytest.raises(ValueError, match="'arg2' columns are not unique"): |
|
f(pairwise_other_frame, pairwise_frames) |
|
|
|
@pytest.mark.parametrize( |
|
"f", |
|
[ |
|
lambda x, y: x.expanding().cov(y), |
|
lambda x, y: x.expanding().corr(y), |
|
lambda x, y: x.rolling(window=3).cov(y), |
|
lambda x, y: x.rolling(window=3).corr(y), |
|
lambda x, y: x.ewm(com=3).cov(y), |
|
lambda x, y: x.ewm(com=3).corr(y), |
|
], |
|
) |
|
def test_pairwise_with_series(self, pairwise_frames, pairwise_target_frame, f): |
|
|
|
result = f(pairwise_frames, Series([1, 1, 3, 8])) |
|
tm.assert_index_equal(result.index, pairwise_frames.index) |
|
tm.assert_index_equal(result.columns, pairwise_frames.columns) |
|
expected = f(pairwise_target_frame, Series([1, 1, 3, 8])) |
|
|
|
|
|
result = result.dropna().values |
|
expected = expected.dropna().values |
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False) |
|
|
|
result = f(Series([1, 1, 3, 8]), pairwise_frames) |
|
tm.assert_index_equal(result.index, pairwise_frames.index) |
|
tm.assert_index_equal(result.columns, pairwise_frames.columns) |
|
expected = f(Series([1, 1, 3, 8]), pairwise_target_frame) |
|
|
|
|
|
result = result.dropna().values |
|
expected = expected.dropna().values |
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False) |
|
|
|
def test_corr_freq_memory_error(self): |
|
|
|
s = Series(range(5), index=date_range("2020", periods=5)) |
|
result = s.rolling("12h").corr(s) |
|
expected = Series([np.nan] * 5, index=date_range("2020", periods=5)) |
|
tm.assert_series_equal(result, expected) |
|
|
|
def test_cov_mulittindex(self): |
|
|
|
|
|
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")]) |
|
index = range(3) |
|
df = DataFrame(np.arange(24).reshape(3, 8), index=index, columns=columns) |
|
|
|
result = df.ewm(alpha=0.1).cov() |
|
|
|
index = MultiIndex.from_product([range(3), list("ab"), list("xy"), list("AB")]) |
|
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")]) |
|
expected = DataFrame( |
|
np.vstack( |
|
( |
|
np.full((8, 8), np.nan), |
|
np.full((8, 8), 32.000000), |
|
np.full((8, 8), 63.881919), |
|
) |
|
), |
|
index=index, |
|
columns=columns, |
|
) |
|
|
|
tm.assert_frame_equal(result, expected) |
|
|
|
def test_multindex_columns_pairwise_func(self): |
|
|
|
columns = MultiIndex.from_arrays([["M", "N"], ["P", "Q"]], names=["a", "b"]) |
|
df = DataFrame(np.ones((5, 2)), columns=columns) |
|
result = df.rolling(3).corr() |
|
expected = DataFrame( |
|
np.nan, |
|
index=MultiIndex.from_arrays( |
|
[ |
|
np.repeat(np.arange(5, dtype=np.int64), 2), |
|
["M", "N"] * 5, |
|
["P", "Q"] * 5, |
|
], |
|
names=[None, "a", "b"], |
|
), |
|
columns=columns, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|