|
import numpy as np |
|
import pytest |
|
|
|
from pandas.errors import NumbaUtilError |
|
import pandas.util._test_decorators as td |
|
|
|
from pandas import ( |
|
DataFrame, |
|
Series, |
|
option_context, |
|
to_datetime, |
|
) |
|
import pandas._testing as tm |
|
|
|
pytestmark = pytest.mark.single_cpu |
|
|
|
|
|
@pytest.fixture(params=["single", "table"]) |
|
def method(request): |
|
"""method keyword in rolling/expanding/ewm constructor""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
["sum", {}], |
|
["mean", {}], |
|
["median", {}], |
|
["max", {}], |
|
["min", {}], |
|
["var", {}], |
|
["var", {"ddof": 0}], |
|
["std", {}], |
|
["std", {"ddof": 0}], |
|
] |
|
) |
|
def arithmetic_numba_supported_operators(request): |
|
return request.param |
|
|
|
|
|
@td.skip_if_no("numba") |
|
@pytest.mark.filterwarnings("ignore") |
|
|
|
class TestEngine: |
|
@pytest.mark.parametrize("jit", [True, False]) |
|
def test_numba_vs_cython_apply(self, jit, nogil, parallel, nopython, center, step): |
|
def f(x, *args): |
|
arg_sum = 0 |
|
for arg in args: |
|
arg_sum += arg |
|
return np.mean(x) + arg_sum |
|
|
|
if jit: |
|
import numba |
|
|
|
f = numba.jit(f) |
|
|
|
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} |
|
args = (2,) |
|
|
|
s = Series(range(10)) |
|
result = s.rolling(2, center=center, step=step).apply( |
|
f, args=args, engine="numba", engine_kwargs=engine_kwargs, raw=True |
|
) |
|
expected = s.rolling(2, center=center, step=step).apply( |
|
f, engine="cython", args=args, raw=True |
|
) |
|
tm.assert_series_equal(result, expected) |
|
|
|
@pytest.mark.parametrize( |
|
"data", |
|
[ |
|
DataFrame(np.eye(5)), |
|
DataFrame( |
|
[ |
|
[5, 7, 7, 7, np.nan, np.inf, 4, 3, 3, 3], |
|
[5, 7, 7, 7, np.nan, np.inf, 7, 3, 3, 3], |
|
[np.nan, np.nan, 5, 6, 7, 5, 5, 5, 5, 5], |
|
] |
|
).T, |
|
Series(range(5), name="foo"), |
|
Series([20, 10, 10, np.inf, 1, 1, 2, 3]), |
|
Series([20, 10, 10, np.nan, 10, 1, 2, 3]), |
|
], |
|
) |
|
def test_numba_vs_cython_rolling_methods( |
|
self, |
|
data, |
|
nogil, |
|
parallel, |
|
nopython, |
|
arithmetic_numba_supported_operators, |
|
step, |
|
): |
|
method, kwargs = arithmetic_numba_supported_operators |
|
|
|
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} |
|
|
|
roll = data.rolling(3, step=step) |
|
result = getattr(roll, method)( |
|
engine="numba", engine_kwargs=engine_kwargs, **kwargs |
|
) |
|
expected = getattr(roll, method)(engine="cython", **kwargs) |
|
tm.assert_equal(result, expected) |
|
|
|
@pytest.mark.parametrize( |
|
"data", [DataFrame(np.eye(5)), Series(range(5), name="foo")] |
|
) |
|
def test_numba_vs_cython_expanding_methods( |
|
self, data, nogil, parallel, nopython, arithmetic_numba_supported_operators |
|
): |
|
method, kwargs = arithmetic_numba_supported_operators |
|
|
|
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} |
|
|
|
data = DataFrame(np.eye(5)) |
|
expand = data.expanding() |
|
result = getattr(expand, method)( |
|
engine="numba", engine_kwargs=engine_kwargs, **kwargs |
|
) |
|
expected = getattr(expand, method)(engine="cython", **kwargs) |
|
tm.assert_equal(result, expected) |
|
|
|
@pytest.mark.parametrize("jit", [True, False]) |
|
def test_cache_apply(self, jit, nogil, parallel, nopython, step): |
|
|
|
def func_1(x): |
|
return np.mean(x) + 4 |
|
|
|
def func_2(x): |
|
return np.std(x) * 5 |
|
|
|
if jit: |
|
import numba |
|
|
|
func_1 = numba.jit(func_1) |
|
func_2 = numba.jit(func_2) |
|
|
|
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} |
|
|
|
roll = Series(range(10)).rolling(2, step=step) |
|
result = roll.apply( |
|
func_1, engine="numba", engine_kwargs=engine_kwargs, raw=True |
|
) |
|
expected = roll.apply(func_1, engine="cython", raw=True) |
|
tm.assert_series_equal(result, expected) |
|
|
|
result = roll.apply( |
|
func_2, engine="numba", engine_kwargs=engine_kwargs, raw=True |
|
) |
|
expected = roll.apply(func_2, engine="cython", raw=True) |
|
tm.assert_series_equal(result, expected) |
|
|
|
result = roll.apply( |
|
func_1, engine="numba", engine_kwargs=engine_kwargs, raw=True |
|
) |
|
expected = roll.apply(func_1, engine="cython", raw=True) |
|
tm.assert_series_equal(result, expected) |
|
|
|
@pytest.mark.parametrize( |
|
"window,window_kwargs", |
|
[ |
|
["rolling", {"window": 3, "min_periods": 0}], |
|
["expanding", {}], |
|
], |
|
) |
|
def test_dont_cache_args( |
|
self, window, window_kwargs, nogil, parallel, nopython, method |
|
): |
|
|
|
|
|
def add(values, x): |
|
return np.sum(values) + x |
|
|
|
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel} |
|
df = DataFrame({"value": [0, 0, 0]}) |
|
result = getattr(df, window)(method=method, **window_kwargs).apply( |
|
add, raw=True, engine="numba", engine_kwargs=engine_kwargs, args=(1,) |
|
) |
|
expected = DataFrame({"value": [1.0, 1.0, 1.0]}) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
result = getattr(df, window)(method=method, **window_kwargs).apply( |
|
add, raw=True, engine="numba", engine_kwargs=engine_kwargs, args=(2,) |
|
) |
|
expected = DataFrame({"value": [2.0, 2.0, 2.0]}) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
def test_dont_cache_engine_kwargs(self): |
|
|
|
|
|
nogil = False |
|
parallel = True |
|
nopython = True |
|
|
|
def func(x): |
|
return nogil + parallel + nopython |
|
|
|
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel} |
|
df = DataFrame({"value": [0, 0, 0]}) |
|
result = df.rolling(1).apply( |
|
func, raw=True, engine="numba", engine_kwargs=engine_kwargs |
|
) |
|
expected = DataFrame({"value": [2.0, 2.0, 2.0]}) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
parallel = False |
|
engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel} |
|
result = df.rolling(1).apply( |
|
func, raw=True, engine="numba", engine_kwargs=engine_kwargs |
|
) |
|
expected = DataFrame({"value": [1.0, 1.0, 1.0]}) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@td.skip_if_no("numba") |
|
class TestEWM: |
|
@pytest.mark.parametrize( |
|
"grouper", [lambda x: x, lambda x: x.groupby("A")], ids=["None", "groupby"] |
|
) |
|
@pytest.mark.parametrize("method", ["mean", "sum"]) |
|
def test_invalid_engine(self, grouper, method): |
|
df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)}) |
|
with pytest.raises(ValueError, match="engine must be either"): |
|
getattr(grouper(df).ewm(com=1.0), method)(engine="foo") |
|
|
|
@pytest.mark.parametrize( |
|
"grouper", [lambda x: x, lambda x: x.groupby("A")], ids=["None", "groupby"] |
|
) |
|
@pytest.mark.parametrize("method", ["mean", "sum"]) |
|
def test_invalid_engine_kwargs(self, grouper, method): |
|
df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)}) |
|
with pytest.raises(ValueError, match="cython engine does not"): |
|
getattr(grouper(df).ewm(com=1.0), method)( |
|
engine="cython", engine_kwargs={"nopython": True} |
|
) |
|
|
|
@pytest.mark.parametrize("grouper", ["None", "groupby"]) |
|
@pytest.mark.parametrize("method", ["mean", "sum"]) |
|
def test_cython_vs_numba( |
|
self, grouper, method, nogil, parallel, nopython, ignore_na, adjust |
|
): |
|
df = DataFrame({"B": range(4)}) |
|
if grouper == "None": |
|
grouper = lambda x: x |
|
else: |
|
df["A"] = ["a", "b", "a", "b"] |
|
grouper = lambda x: x.groupby("A") |
|
if method == "sum": |
|
adjust = True |
|
ewm = grouper(df).ewm(com=1.0, adjust=adjust, ignore_na=ignore_na) |
|
|
|
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} |
|
result = getattr(ewm, method)(engine="numba", engine_kwargs=engine_kwargs) |
|
expected = getattr(ewm, method)(engine="cython") |
|
|
|
tm.assert_frame_equal(result, expected) |
|
|
|
@pytest.mark.parametrize("grouper", ["None", "groupby"]) |
|
def test_cython_vs_numba_times(self, grouper, nogil, parallel, nopython, ignore_na): |
|
|
|
|
|
df = DataFrame({"B": [0, 0, 1, 1, 2, 2]}) |
|
if grouper == "None": |
|
grouper = lambda x: x |
|
else: |
|
grouper = lambda x: x.groupby("A") |
|
df["A"] = ["a", "b", "a", "b", "b", "a"] |
|
|
|
halflife = "23 days" |
|
times = to_datetime( |
|
[ |
|
"2020-01-01", |
|
"2020-01-01", |
|
"2020-01-02", |
|
"2020-01-10", |
|
"2020-02-23", |
|
"2020-01-03", |
|
] |
|
) |
|
ewm = grouper(df).ewm( |
|
halflife=halflife, adjust=True, ignore_na=ignore_na, times=times |
|
) |
|
|
|
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} |
|
|
|
result = ewm.mean(engine="numba", engine_kwargs=engine_kwargs) |
|
expected = ewm.mean(engine="cython") |
|
|
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@td.skip_if_no("numba") |
|
def test_use_global_config(): |
|
def f(x): |
|
return np.mean(x) + 2 |
|
|
|
s = Series(range(10)) |
|
with option_context("compute.use_numba", True): |
|
result = s.rolling(2).apply(f, engine=None, raw=True) |
|
expected = s.rolling(2).apply(f, engine="numba", raw=True) |
|
tm.assert_series_equal(expected, result) |
|
|
|
|
|
@td.skip_if_no("numba") |
|
def test_invalid_kwargs_nopython(): |
|
with pytest.raises(NumbaUtilError, match="numba does not support kwargs with"): |
|
Series(range(1)).rolling(1).apply( |
|
lambda x: x, kwargs={"a": 1}, engine="numba", raw=True |
|
) |
|
|
|
|
|
@td.skip_if_no("numba") |
|
@pytest.mark.slow |
|
@pytest.mark.filterwarnings("ignore") |
|
|
|
class TestTableMethod: |
|
def test_table_series_valueerror(self): |
|
def f(x): |
|
return np.sum(x, axis=0) + 1 |
|
|
|
with pytest.raises( |
|
ValueError, match="method='table' not applicable for Series objects." |
|
): |
|
Series(range(1)).rolling(1, method="table").apply( |
|
f, engine="numba", raw=True |
|
) |
|
|
|
def test_table_method_rolling_methods( |
|
self, |
|
axis, |
|
nogil, |
|
parallel, |
|
nopython, |
|
arithmetic_numba_supported_operators, |
|
step, |
|
): |
|
method, kwargs = arithmetic_numba_supported_operators |
|
|
|
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} |
|
|
|
df = DataFrame(np.eye(3)) |
|
roll_table = df.rolling(2, method="table", axis=axis, min_periods=0, step=step) |
|
if method in ("var", "std"): |
|
with pytest.raises(NotImplementedError, match=f"{method} not supported"): |
|
getattr(roll_table, method)( |
|
engine_kwargs=engine_kwargs, engine="numba", **kwargs |
|
) |
|
else: |
|
roll_single = df.rolling( |
|
2, method="single", axis=axis, min_periods=0, step=step |
|
) |
|
result = getattr(roll_table, method)( |
|
engine_kwargs=engine_kwargs, engine="numba", **kwargs |
|
) |
|
expected = getattr(roll_single, method)( |
|
engine_kwargs=engine_kwargs, engine="numba", **kwargs |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
def test_table_method_rolling_apply(self, axis, nogil, parallel, nopython, step): |
|
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} |
|
|
|
def f(x): |
|
return np.sum(x, axis=0) + 1 |
|
|
|
df = DataFrame(np.eye(3)) |
|
result = df.rolling( |
|
2, method="table", axis=axis, min_periods=0, step=step |
|
).apply(f, raw=True, engine_kwargs=engine_kwargs, engine="numba") |
|
expected = df.rolling( |
|
2, method="single", axis=axis, min_periods=0, step=step |
|
).apply(f, raw=True, engine_kwargs=engine_kwargs, engine="numba") |
|
tm.assert_frame_equal(result, expected) |
|
|
|
def test_table_method_rolling_weighted_mean(self, step): |
|
def weighted_mean(x): |
|
arr = np.ones((1, x.shape[1])) |
|
arr[:, :2] = (x[:, :2] * x[:, 2]).sum(axis=0) / x[:, 2].sum() |
|
return arr |
|
|
|
df = DataFrame([[1, 2, 0.6], [2, 3, 0.4], [3, 4, 0.2], [4, 5, 0.7]]) |
|
result = df.rolling(2, method="table", min_periods=0, step=step).apply( |
|
weighted_mean, raw=True, engine="numba" |
|
) |
|
expected = DataFrame( |
|
[ |
|
[1.0, 2.0, 1.0], |
|
[1.8, 2.0, 1.0], |
|
[3.333333, 2.333333, 1.0], |
|
[1.555556, 7, 1.0], |
|
] |
|
)[::step] |
|
tm.assert_frame_equal(result, expected) |
|
|
|
def test_table_method_expanding_apply(self, axis, nogil, parallel, nopython): |
|
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} |
|
|
|
def f(x): |
|
return np.sum(x, axis=0) + 1 |
|
|
|
df = DataFrame(np.eye(3)) |
|
result = df.expanding(method="table", axis=axis).apply( |
|
f, raw=True, engine_kwargs=engine_kwargs, engine="numba" |
|
) |
|
expected = df.expanding(method="single", axis=axis).apply( |
|
f, raw=True, engine_kwargs=engine_kwargs, engine="numba" |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
def test_table_method_expanding_methods( |
|
self, axis, nogil, parallel, nopython, arithmetic_numba_supported_operators |
|
): |
|
method, kwargs = arithmetic_numba_supported_operators |
|
|
|
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} |
|
|
|
df = DataFrame(np.eye(3)) |
|
expand_table = df.expanding(method="table", axis=axis) |
|
if method in ("var", "std"): |
|
with pytest.raises(NotImplementedError, match=f"{method} not supported"): |
|
getattr(expand_table, method)( |
|
engine_kwargs=engine_kwargs, engine="numba", **kwargs |
|
) |
|
else: |
|
expand_single = df.expanding(method="single", axis=axis) |
|
result = getattr(expand_table, method)( |
|
engine_kwargs=engine_kwargs, engine="numba", **kwargs |
|
) |
|
expected = getattr(expand_single, method)( |
|
engine_kwargs=engine_kwargs, engine="numba", **kwargs |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
@pytest.mark.parametrize("data", [np.eye(3), np.ones((2, 3)), np.ones((3, 2))]) |
|
@pytest.mark.parametrize("method", ["mean", "sum"]) |
|
def test_table_method_ewm(self, data, method, axis, nogil, parallel, nopython): |
|
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython} |
|
|
|
df = DataFrame(data) |
|
|
|
result = getattr(df.ewm(com=1, method="table", axis=axis), method)( |
|
engine_kwargs=engine_kwargs, engine="numba" |
|
) |
|
expected = getattr(df.ewm(com=1, method="single", axis=axis), method)( |
|
engine_kwargs=engine_kwargs, engine="numba" |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@td.skip_if_no("numba") |
|
def test_npfunc_no_warnings(): |
|
df = DataFrame({"col1": [1, 2, 3, 4, 5]}) |
|
with tm.assert_produces_warning(False): |
|
df.col1.rolling(2).apply(np.prod, raw=True, engine="numba") |
|
|