|
from datetime import datetime |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from pandas._libs import iNaT |
|
|
|
import pandas._testing as tm |
|
import pandas.core.algorithms as algos |
|
|
|
|
|
@pytest.fixture( |
|
params=[ |
|
(np.int8, np.int16(127), np.int8), |
|
(np.int8, np.int16(128), np.int16), |
|
(np.int32, 1, np.int32), |
|
(np.int32, 2.0, np.float64), |
|
(np.int32, 3.0 + 4.0j, np.complex128), |
|
(np.int32, True, np.object_), |
|
(np.int32, "", np.object_), |
|
(np.float64, 1, np.float64), |
|
(np.float64, 2.0, np.float64), |
|
(np.float64, 3.0 + 4.0j, np.complex128), |
|
(np.float64, True, np.object_), |
|
(np.float64, "", np.object_), |
|
(np.complex128, 1, np.complex128), |
|
(np.complex128, 2.0, np.complex128), |
|
(np.complex128, 3.0 + 4.0j, np.complex128), |
|
(np.complex128, True, np.object_), |
|
(np.complex128, "", np.object_), |
|
(np.bool_, 1, np.object_), |
|
(np.bool_, 2.0, np.object_), |
|
(np.bool_, 3.0 + 4.0j, np.object_), |
|
(np.bool_, True, np.bool_), |
|
(np.bool_, "", np.object_), |
|
] |
|
) |
|
def dtype_fill_out_dtype(request): |
|
return request.param |
|
|
|
|
|
class TestTake: |
|
def test_1d_fill_nonna(self, dtype_fill_out_dtype): |
|
dtype, fill_value, out_dtype = dtype_fill_out_dtype |
|
data = np.random.default_rng(2).integers(0, 2, 4).astype(dtype) |
|
indexer = [2, 1, 0, -1] |
|
|
|
result = algos.take_nd(data, indexer, fill_value=fill_value) |
|
assert (result[[0, 1, 2]] == data[[2, 1, 0]]).all() |
|
assert result[3] == fill_value |
|
assert result.dtype == out_dtype |
|
|
|
indexer = [2, 1, 0, 1] |
|
|
|
result = algos.take_nd(data, indexer, fill_value=fill_value) |
|
assert (result[[0, 1, 2, 3]] == data[indexer]).all() |
|
assert result.dtype == dtype |
|
|
|
def test_2d_fill_nonna(self, dtype_fill_out_dtype): |
|
dtype, fill_value, out_dtype = dtype_fill_out_dtype |
|
data = np.random.default_rng(2).integers(0, 2, (5, 3)).astype(dtype) |
|
indexer = [2, 1, 0, -1] |
|
|
|
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) |
|
assert (result[[0, 1, 2], :] == data[[2, 1, 0], :]).all() |
|
assert (result[3, :] == fill_value).all() |
|
assert result.dtype == out_dtype |
|
|
|
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) |
|
assert (result[:, [0, 1, 2]] == data[:, [2, 1, 0]]).all() |
|
assert (result[:, 3] == fill_value).all() |
|
assert result.dtype == out_dtype |
|
|
|
indexer = [2, 1, 0, 1] |
|
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) |
|
assert (result[[0, 1, 2, 3], :] == data[indexer, :]).all() |
|
assert result.dtype == dtype |
|
|
|
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) |
|
assert (result[:, [0, 1, 2, 3]] == data[:, indexer]).all() |
|
assert result.dtype == dtype |
|
|
|
def test_3d_fill_nonna(self, dtype_fill_out_dtype): |
|
dtype, fill_value, out_dtype = dtype_fill_out_dtype |
|
|
|
data = np.random.default_rng(2).integers(0, 2, (5, 4, 3)).astype(dtype) |
|
indexer = [2, 1, 0, -1] |
|
|
|
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) |
|
assert (result[[0, 1, 2], :, :] == data[[2, 1, 0], :, :]).all() |
|
assert (result[3, :, :] == fill_value).all() |
|
assert result.dtype == out_dtype |
|
|
|
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) |
|
assert (result[:, [0, 1, 2], :] == data[:, [2, 1, 0], :]).all() |
|
assert (result[:, 3, :] == fill_value).all() |
|
assert result.dtype == out_dtype |
|
|
|
result = algos.take_nd(data, indexer, axis=2, fill_value=fill_value) |
|
assert (result[:, :, [0, 1, 2]] == data[:, :, [2, 1, 0]]).all() |
|
assert (result[:, :, 3] == fill_value).all() |
|
assert result.dtype == out_dtype |
|
|
|
indexer = [2, 1, 0, 1] |
|
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value) |
|
assert (result[[0, 1, 2, 3], :, :] == data[indexer, :, :]).all() |
|
assert result.dtype == dtype |
|
|
|
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value) |
|
assert (result[:, [0, 1, 2, 3], :] == data[:, indexer, :]).all() |
|
assert result.dtype == dtype |
|
|
|
result = algos.take_nd(data, indexer, axis=2, fill_value=fill_value) |
|
assert (result[:, :, [0, 1, 2, 3]] == data[:, :, indexer]).all() |
|
assert result.dtype == dtype |
|
|
|
def test_1d_other_dtypes(self): |
|
arr = np.random.default_rng(2).standard_normal(10).astype(np.float32) |
|
|
|
indexer = [1, 2, 3, -1] |
|
result = algos.take_nd(arr, indexer) |
|
expected = arr.take(indexer) |
|
expected[-1] = np.nan |
|
tm.assert_almost_equal(result, expected) |
|
|
|
def test_2d_other_dtypes(self): |
|
arr = np.random.default_rng(2).standard_normal((10, 5)).astype(np.float32) |
|
|
|
indexer = [1, 2, 3, -1] |
|
|
|
|
|
result = algos.take_nd(arr, indexer, axis=0) |
|
expected = arr.take(indexer, axis=0) |
|
expected[-1] = np.nan |
|
tm.assert_almost_equal(result, expected) |
|
|
|
|
|
result = algos.take_nd(arr, indexer, axis=1) |
|
expected = arr.take(indexer, axis=1) |
|
expected[:, -1] = np.nan |
|
tm.assert_almost_equal(result, expected) |
|
|
|
def test_1d_bool(self): |
|
arr = np.array([0, 1, 0], dtype=bool) |
|
|
|
result = algos.take_nd(arr, [0, 2, 2, 1]) |
|
expected = arr.take([0, 2, 2, 1]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = algos.take_nd(arr, [0, 2, -1]) |
|
assert result.dtype == np.object_ |
|
|
|
def test_2d_bool(self): |
|
arr = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 1]], dtype=bool) |
|
|
|
result = algos.take_nd(arr, [0, 2, 2, 1]) |
|
expected = arr.take([0, 2, 2, 1], axis=0) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = algos.take_nd(arr, [0, 2, 2, 1], axis=1) |
|
expected = arr.take([0, 2, 2, 1], axis=1) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = algos.take_nd(arr, [0, 2, -1]) |
|
assert result.dtype == np.object_ |
|
|
|
def test_2d_float32(self): |
|
arr = np.random.default_rng(2).standard_normal((4, 3)).astype(np.float32) |
|
indexer = [0, 2, -1, 1, -1] |
|
|
|
|
|
result = algos.take_nd(arr, indexer, axis=0) |
|
|
|
expected = arr.take(indexer, axis=0) |
|
expected[[2, 4], :] = np.nan |
|
tm.assert_almost_equal(result, expected) |
|
|
|
|
|
result = algos.take_nd(arr, indexer, axis=1) |
|
expected = arr.take(indexer, axis=1) |
|
expected[:, [2, 4]] = np.nan |
|
tm.assert_almost_equal(result, expected) |
|
|
|
def test_2d_datetime64(self): |
|
|
|
arr = ( |
|
np.random.default_rng(2).integers(11_045_376, 11_360_736, (5, 3)) |
|
* 100_000_000_000 |
|
) |
|
arr = arr.view(dtype="datetime64[ns]") |
|
indexer = [0, 2, -1, 1, -1] |
|
|
|
|
|
result = algos.take_nd(arr, indexer, axis=0) |
|
expected = arr.take(indexer, axis=0) |
|
expected.view(np.int64)[[2, 4], :] = iNaT |
|
tm.assert_almost_equal(result, expected) |
|
|
|
result = algos.take_nd(arr, indexer, axis=0, fill_value=datetime(2007, 1, 1)) |
|
expected = arr.take(indexer, axis=0) |
|
expected[[2, 4], :] = datetime(2007, 1, 1) |
|
tm.assert_almost_equal(result, expected) |
|
|
|
|
|
result = algos.take_nd(arr, indexer, axis=1) |
|
expected = arr.take(indexer, axis=1) |
|
expected.view(np.int64)[:, [2, 4]] = iNaT |
|
tm.assert_almost_equal(result, expected) |
|
|
|
result = algos.take_nd(arr, indexer, axis=1, fill_value=datetime(2007, 1, 1)) |
|
expected = arr.take(indexer, axis=1) |
|
expected[:, [2, 4]] = datetime(2007, 1, 1) |
|
tm.assert_almost_equal(result, expected) |
|
|
|
def test_take_axis_0(self): |
|
arr = np.arange(12).reshape(4, 3) |
|
result = algos.take(arr, [0, -1]) |
|
expected = np.array([[0, 1, 2], [9, 10, 11]]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
result = algos.take(arr, [0, -1], allow_fill=True, fill_value=0) |
|
expected = np.array([[0, 1, 2], [0, 0, 0]]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
def test_take_axis_1(self): |
|
arr = np.arange(12).reshape(4, 3) |
|
result = algos.take(arr, [0, -1], axis=1) |
|
expected = np.array([[0, 2], [3, 5], [6, 8], [9, 11]]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
result = algos.take(arr, [0, -1], axis=1, allow_fill=True, fill_value=0) |
|
expected = np.array([[0, 0], [3, 0], [6, 0], [9, 0]]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
with pytest.raises(IndexError, match="indices are out-of-bounds"): |
|
algos.take(arr, [0, 3], axis=1, allow_fill=True, fill_value=0) |
|
|
|
def test_take_non_hashable_fill_value(self): |
|
arr = np.array([1, 2, 3]) |
|
indexer = np.array([1, -1]) |
|
with pytest.raises(ValueError, match="fill_value must be a scalar"): |
|
algos.take(arr, indexer, allow_fill=True, fill_value=[1]) |
|
|
|
|
|
arr = np.array([1, 2, 3], dtype=object) |
|
result = algos.take(arr, indexer, allow_fill=True, fill_value=[1]) |
|
expected = np.array([2, [1]], dtype=object) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
class TestExtensionTake: |
|
|
|
|
|
def test_bounds_check_large(self): |
|
arr = np.array([1, 2]) |
|
|
|
msg = "indices are out-of-bounds" |
|
with pytest.raises(IndexError, match=msg): |
|
algos.take(arr, [2, 3], allow_fill=True) |
|
|
|
msg = "index 2 is out of bounds for( axis 0 with)? size 2" |
|
with pytest.raises(IndexError, match=msg): |
|
algos.take(arr, [2, 3], allow_fill=False) |
|
|
|
def test_bounds_check_small(self): |
|
arr = np.array([1, 2, 3], dtype=np.int64) |
|
indexer = [0, -1, -2] |
|
|
|
msg = r"'indices' contains values less than allowed \(-2 < -1\)" |
|
with pytest.raises(ValueError, match=msg): |
|
algos.take(arr, indexer, allow_fill=True) |
|
|
|
result = algos.take(arr, indexer) |
|
expected = np.array([1, 3, 2], dtype=np.int64) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
@pytest.mark.parametrize("allow_fill", [True, False]) |
|
def test_take_empty(self, allow_fill): |
|
arr = np.array([], dtype=np.int64) |
|
|
|
result = algos.take(arr, [], allow_fill=allow_fill) |
|
tm.assert_numpy_array_equal(arr, result) |
|
|
|
msg = "|".join( |
|
[ |
|
"cannot do a non-empty take from an empty axes.", |
|
"indices are out-of-bounds", |
|
] |
|
) |
|
with pytest.raises(IndexError, match=msg): |
|
algos.take(arr, [0], allow_fill=allow_fill) |
|
|
|
def test_take_na_empty(self): |
|
result = algos.take(np.array([]), [-1, -1], allow_fill=True, fill_value=0.0) |
|
expected = np.array([0.0, 0.0]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
def test_take_coerces_list(self): |
|
arr = [1, 2, 3] |
|
msg = "take accepting non-standard inputs is deprecated" |
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
result = algos.take(arr, [0, 0]) |
|
expected = np.array([1, 1]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|