|
from functools import partial |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
import pandas.util._test_decorators as td |
|
|
|
from pandas.core.dtypes.common import is_integer_dtype |
|
|
|
import pandas as pd |
|
from pandas import ( |
|
Series, |
|
isna, |
|
) |
|
import pandas._testing as tm |
|
from pandas.core import nanops |
|
|
|
use_bn = nanops._USE_BOTTLENECK |
|
|
|
|
|
@pytest.fixture |
|
def disable_bottleneck(monkeypatch): |
|
with monkeypatch.context() as m: |
|
m.setattr(nanops, "_USE_BOTTLENECK", False) |
|
yield |
|
|
|
|
|
@pytest.fixture |
|
def arr_shape(): |
|
return 11, 7 |
|
|
|
|
|
@pytest.fixture |
|
def arr_float(arr_shape): |
|
return np.random.default_rng(2).standard_normal(arr_shape) |
|
|
|
|
|
@pytest.fixture |
|
def arr_complex(arr_float): |
|
return arr_float + arr_float * 1j |
|
|
|
|
|
@pytest.fixture |
|
def arr_int(arr_shape): |
|
return np.random.default_rng(2).integers(-10, 10, arr_shape) |
|
|
|
|
|
@pytest.fixture |
|
def arr_bool(arr_shape): |
|
return np.random.default_rng(2).integers(0, 2, arr_shape) == 0 |
|
|
|
|
|
@pytest.fixture |
|
def arr_str(arr_float): |
|
return np.abs(arr_float).astype("S") |
|
|
|
|
|
@pytest.fixture |
|
def arr_utf(arr_float): |
|
return np.abs(arr_float).astype("U") |
|
|
|
|
|
@pytest.fixture |
|
def arr_date(arr_shape): |
|
return np.random.default_rng(2).integers(0, 20000, arr_shape).astype("M8[ns]") |
|
|
|
|
|
@pytest.fixture |
|
def arr_tdelta(arr_shape): |
|
return np.random.default_rng(2).integers(0, 20000, arr_shape).astype("m8[ns]") |
|
|
|
|
|
@pytest.fixture |
|
def arr_nan(arr_shape): |
|
return np.tile(np.nan, arr_shape) |
|
|
|
|
|
@pytest.fixture |
|
def arr_float_nan(arr_float, arr_nan): |
|
return np.vstack([arr_float, arr_nan]) |
|
|
|
|
|
@pytest.fixture |
|
def arr_nan_float1(arr_nan, arr_float): |
|
return np.vstack([arr_nan, arr_float]) |
|
|
|
|
|
@pytest.fixture |
|
def arr_nan_nan(arr_nan): |
|
return np.vstack([arr_nan, arr_nan]) |
|
|
|
|
|
@pytest.fixture |
|
def arr_inf(arr_float): |
|
return arr_float * np.inf |
|
|
|
|
|
@pytest.fixture |
|
def arr_float_inf(arr_float, arr_inf): |
|
return np.vstack([arr_float, arr_inf]) |
|
|
|
|
|
@pytest.fixture |
|
def arr_nan_inf(arr_nan, arr_inf): |
|
return np.vstack([arr_nan, arr_inf]) |
|
|
|
|
|
@pytest.fixture |
|
def arr_float_nan_inf(arr_float, arr_nan, arr_inf): |
|
return np.vstack([arr_float, arr_nan, arr_inf]) |
|
|
|
|
|
@pytest.fixture |
|
def arr_nan_nan_inf(arr_nan, arr_inf): |
|
return np.vstack([arr_nan, arr_nan, arr_inf]) |
|
|
|
|
|
@pytest.fixture |
|
def arr_obj( |
|
arr_float, arr_int, arr_bool, arr_complex, arr_str, arr_utf, arr_date, arr_tdelta |
|
): |
|
return np.vstack( |
|
[ |
|
arr_float.astype("O"), |
|
arr_int.astype("O"), |
|
arr_bool.astype("O"), |
|
arr_complex.astype("O"), |
|
arr_str.astype("O"), |
|
arr_utf.astype("O"), |
|
arr_date.astype("O"), |
|
arr_tdelta.astype("O"), |
|
] |
|
) |
|
|
|
|
|
@pytest.fixture |
|
def arr_nan_nanj(arr_nan): |
|
with np.errstate(invalid="ignore"): |
|
return arr_nan + arr_nan * 1j |
|
|
|
|
|
@pytest.fixture |
|
def arr_complex_nan(arr_complex, arr_nan_nanj): |
|
with np.errstate(invalid="ignore"): |
|
return np.vstack([arr_complex, arr_nan_nanj]) |
|
|
|
|
|
@pytest.fixture |
|
def arr_nan_infj(arr_inf): |
|
with np.errstate(invalid="ignore"): |
|
return arr_inf * 1j |
|
|
|
|
|
@pytest.fixture |
|
def arr_complex_nan_infj(arr_complex, arr_nan_infj): |
|
with np.errstate(invalid="ignore"): |
|
return np.vstack([arr_complex, arr_nan_infj]) |
|
|
|
|
|
@pytest.fixture |
|
def arr_float_1d(arr_float): |
|
return arr_float[:, 0] |
|
|
|
|
|
@pytest.fixture |
|
def arr_nan_1d(arr_nan): |
|
return arr_nan[:, 0] |
|
|
|
|
|
@pytest.fixture |
|
def arr_float_nan_1d(arr_float_nan): |
|
return arr_float_nan[:, 0] |
|
|
|
|
|
@pytest.fixture |
|
def arr_float1_nan_1d(arr_float1_nan): |
|
return arr_float1_nan[:, 0] |
|
|
|
|
|
@pytest.fixture |
|
def arr_nan_float1_1d(arr_nan_float1): |
|
return arr_nan_float1[:, 0] |
|
|
|
|
|
class TestnanopsDataFrame: |
|
def setup_method(self): |
|
nanops._USE_BOTTLENECK = False |
|
|
|
arr_shape = (11, 7) |
|
|
|
self.arr_float = np.random.default_rng(2).standard_normal(arr_shape) |
|
self.arr_float1 = np.random.default_rng(2).standard_normal(arr_shape) |
|
self.arr_complex = self.arr_float + self.arr_float1 * 1j |
|
self.arr_int = np.random.default_rng(2).integers(-10, 10, arr_shape) |
|
self.arr_bool = np.random.default_rng(2).integers(0, 2, arr_shape) == 0 |
|
self.arr_str = np.abs(self.arr_float).astype("S") |
|
self.arr_utf = np.abs(self.arr_float).astype("U") |
|
self.arr_date = ( |
|
np.random.default_rng(2).integers(0, 20000, arr_shape).astype("M8[ns]") |
|
) |
|
self.arr_tdelta = ( |
|
np.random.default_rng(2).integers(0, 20000, arr_shape).astype("m8[ns]") |
|
) |
|
|
|
self.arr_nan = np.tile(np.nan, arr_shape) |
|
self.arr_float_nan = np.vstack([self.arr_float, self.arr_nan]) |
|
self.arr_float1_nan = np.vstack([self.arr_float1, self.arr_nan]) |
|
self.arr_nan_float1 = np.vstack([self.arr_nan, self.arr_float1]) |
|
self.arr_nan_nan = np.vstack([self.arr_nan, self.arr_nan]) |
|
|
|
self.arr_inf = self.arr_float * np.inf |
|
self.arr_float_inf = np.vstack([self.arr_float, self.arr_inf]) |
|
|
|
self.arr_nan_inf = np.vstack([self.arr_nan, self.arr_inf]) |
|
self.arr_float_nan_inf = np.vstack([self.arr_float, self.arr_nan, self.arr_inf]) |
|
self.arr_nan_nan_inf = np.vstack([self.arr_nan, self.arr_nan, self.arr_inf]) |
|
self.arr_obj = np.vstack( |
|
[ |
|
self.arr_float.astype("O"), |
|
self.arr_int.astype("O"), |
|
self.arr_bool.astype("O"), |
|
self.arr_complex.astype("O"), |
|
self.arr_str.astype("O"), |
|
self.arr_utf.astype("O"), |
|
self.arr_date.astype("O"), |
|
self.arr_tdelta.astype("O"), |
|
] |
|
) |
|
|
|
with np.errstate(invalid="ignore"): |
|
self.arr_nan_nanj = self.arr_nan + self.arr_nan * 1j |
|
self.arr_complex_nan = np.vstack([self.arr_complex, self.arr_nan_nanj]) |
|
|
|
self.arr_nan_infj = self.arr_inf * 1j |
|
self.arr_complex_nan_infj = np.vstack([self.arr_complex, self.arr_nan_infj]) |
|
|
|
self.arr_float_2d = self.arr_float |
|
self.arr_float1_2d = self.arr_float1 |
|
|
|
self.arr_nan_2d = self.arr_nan |
|
self.arr_float_nan_2d = self.arr_float_nan |
|
self.arr_float1_nan_2d = self.arr_float1_nan |
|
self.arr_nan_float1_2d = self.arr_nan_float1 |
|
|
|
self.arr_float_1d = self.arr_float[:, 0] |
|
self.arr_float1_1d = self.arr_float1[:, 0] |
|
|
|
self.arr_nan_1d = self.arr_nan[:, 0] |
|
self.arr_float_nan_1d = self.arr_float_nan[:, 0] |
|
self.arr_float1_nan_1d = self.arr_float1_nan[:, 0] |
|
self.arr_nan_float1_1d = self.arr_nan_float1[:, 0] |
|
|
|
def teardown_method(self): |
|
nanops._USE_BOTTLENECK = use_bn |
|
|
|
def check_results(self, targ, res, axis, check_dtype=True): |
|
res = getattr(res, "asm8", res) |
|
|
|
if ( |
|
axis != 0 |
|
and hasattr(targ, "shape") |
|
and targ.ndim |
|
and targ.shape != res.shape |
|
): |
|
res = np.split(res, [targ.shape[0]], axis=0)[0] |
|
|
|
try: |
|
tm.assert_almost_equal(targ, res, check_dtype=check_dtype) |
|
except AssertionError: |
|
|
|
if hasattr(targ, "dtype") and targ.dtype == "m8[ns]": |
|
raise |
|
|
|
|
|
|
|
|
|
if not hasattr(res, "dtype") or res.dtype.kind not in ["c", "O"]: |
|
raise |
|
|
|
|
|
if res.dtype.kind == "O": |
|
if targ.dtype.kind != "O": |
|
res = res.astype(targ.dtype) |
|
else: |
|
cast_dtype = "c16" if hasattr(np, "complex128") else "f8" |
|
res = res.astype(cast_dtype) |
|
targ = targ.astype(cast_dtype) |
|
|
|
|
|
elif targ.dtype.kind == "O": |
|
raise |
|
tm.assert_almost_equal(np.real(targ), np.real(res), check_dtype=check_dtype) |
|
tm.assert_almost_equal(np.imag(targ), np.imag(res), check_dtype=check_dtype) |
|
|
|
def check_fun_data( |
|
self, |
|
testfunc, |
|
targfunc, |
|
testarval, |
|
targarval, |
|
skipna, |
|
check_dtype=True, |
|
empty_targfunc=None, |
|
**kwargs, |
|
): |
|
for axis in list(range(targarval.ndim)) + [None]: |
|
targartempval = targarval if skipna else testarval |
|
if skipna and empty_targfunc and isna(targartempval).all(): |
|
targ = empty_targfunc(targartempval, axis=axis, **kwargs) |
|
else: |
|
targ = targfunc(targartempval, axis=axis, **kwargs) |
|
|
|
if targartempval.dtype == object and ( |
|
targfunc is np.any or targfunc is np.all |
|
): |
|
|
|
if isinstance(targ, np.ndarray): |
|
targ = targ.astype(bool) |
|
else: |
|
targ = bool(targ) |
|
|
|
res = testfunc(testarval, axis=axis, skipna=skipna, **kwargs) |
|
|
|
if ( |
|
isinstance(targ, np.complex128) |
|
and isinstance(res, float) |
|
and np.isnan(targ) |
|
and np.isnan(res) |
|
): |
|
|
|
targ = res |
|
|
|
self.check_results(targ, res, axis, check_dtype=check_dtype) |
|
if skipna: |
|
res = testfunc(testarval, axis=axis, **kwargs) |
|
self.check_results(targ, res, axis, check_dtype=check_dtype) |
|
if axis is None: |
|
res = testfunc(testarval, skipna=skipna, **kwargs) |
|
self.check_results(targ, res, axis, check_dtype=check_dtype) |
|
if skipna and axis is None: |
|
res = testfunc(testarval, **kwargs) |
|
self.check_results(targ, res, axis, check_dtype=check_dtype) |
|
|
|
if testarval.ndim <= 1: |
|
return |
|
|
|
|
|
testarval2 = np.take(testarval, 0, axis=-1) |
|
targarval2 = np.take(targarval, 0, axis=-1) |
|
self.check_fun_data( |
|
testfunc, |
|
targfunc, |
|
testarval2, |
|
targarval2, |
|
skipna=skipna, |
|
check_dtype=check_dtype, |
|
empty_targfunc=empty_targfunc, |
|
**kwargs, |
|
) |
|
|
|
def check_fun( |
|
self, testfunc, targfunc, testar, skipna, empty_targfunc=None, **kwargs |
|
): |
|
targar = testar |
|
if testar.endswith("_nan") and hasattr(self, testar[:-4]): |
|
targar = testar[:-4] |
|
|
|
testarval = getattr(self, testar) |
|
targarval = getattr(self, targar) |
|
self.check_fun_data( |
|
testfunc, |
|
targfunc, |
|
testarval, |
|
targarval, |
|
skipna=skipna, |
|
empty_targfunc=empty_targfunc, |
|
**kwargs, |
|
) |
|
|
|
def check_funs( |
|
self, |
|
testfunc, |
|
targfunc, |
|
skipna, |
|
allow_complex=True, |
|
allow_all_nan=True, |
|
allow_date=True, |
|
allow_tdelta=True, |
|
allow_obj=True, |
|
**kwargs, |
|
): |
|
self.check_fun(testfunc, targfunc, "arr_float", skipna, **kwargs) |
|
self.check_fun(testfunc, targfunc, "arr_float_nan", skipna, **kwargs) |
|
self.check_fun(testfunc, targfunc, "arr_int", skipna, **kwargs) |
|
self.check_fun(testfunc, targfunc, "arr_bool", skipna, **kwargs) |
|
objs = [ |
|
self.arr_float.astype("O"), |
|
self.arr_int.astype("O"), |
|
self.arr_bool.astype("O"), |
|
] |
|
|
|
if allow_all_nan: |
|
self.check_fun(testfunc, targfunc, "arr_nan", skipna, **kwargs) |
|
|
|
if allow_complex: |
|
self.check_fun(testfunc, targfunc, "arr_complex", skipna, **kwargs) |
|
self.check_fun(testfunc, targfunc, "arr_complex_nan", skipna, **kwargs) |
|
if allow_all_nan: |
|
self.check_fun(testfunc, targfunc, "arr_nan_nanj", skipna, **kwargs) |
|
objs += [self.arr_complex.astype("O")] |
|
|
|
if allow_date: |
|
targfunc(self.arr_date) |
|
self.check_fun(testfunc, targfunc, "arr_date", skipna, **kwargs) |
|
objs += [self.arr_date.astype("O")] |
|
|
|
if allow_tdelta: |
|
try: |
|
targfunc(self.arr_tdelta) |
|
except TypeError: |
|
pass |
|
else: |
|
self.check_fun(testfunc, targfunc, "arr_tdelta", skipna, **kwargs) |
|
objs += [self.arr_tdelta.astype("O")] |
|
|
|
if allow_obj: |
|
self.arr_obj = np.vstack(objs) |
|
|
|
|
|
|
|
if allow_obj == "convert": |
|
targfunc = partial( |
|
self._badobj_wrap, func=targfunc, allow_complex=allow_complex |
|
) |
|
self.check_fun(testfunc, targfunc, "arr_obj", skipna, **kwargs) |
|
|
|
def _badobj_wrap(self, value, func, allow_complex=True, **kwargs): |
|
if value.dtype.kind == "O": |
|
if allow_complex: |
|
value = value.astype("c16") |
|
else: |
|
value = value.astype("f8") |
|
return func(value, **kwargs) |
|
|
|
@pytest.mark.parametrize( |
|
"nan_op,np_op", [(nanops.nanany, np.any), (nanops.nanall, np.all)] |
|
) |
|
def test_nan_funcs(self, nan_op, np_op, skipna): |
|
self.check_funs(nan_op, np_op, skipna, allow_all_nan=False, allow_date=False) |
|
|
|
def test_nansum(self, skipna): |
|
self.check_funs( |
|
nanops.nansum, |
|
np.sum, |
|
skipna, |
|
allow_date=False, |
|
check_dtype=False, |
|
empty_targfunc=np.nansum, |
|
) |
|
|
|
def test_nanmean(self, skipna): |
|
self.check_funs( |
|
nanops.nanmean, np.mean, skipna, allow_obj=False, allow_date=False |
|
) |
|
|
|
@pytest.mark.filterwarnings("ignore::RuntimeWarning") |
|
def test_nanmedian(self, skipna): |
|
self.check_funs( |
|
nanops.nanmedian, |
|
np.median, |
|
skipna, |
|
allow_complex=False, |
|
allow_date=False, |
|
allow_obj="convert", |
|
) |
|
|
|
@pytest.mark.parametrize("ddof", range(3)) |
|
def test_nanvar(self, ddof, skipna): |
|
self.check_funs( |
|
nanops.nanvar, |
|
np.var, |
|
skipna, |
|
allow_complex=False, |
|
allow_date=False, |
|
allow_obj="convert", |
|
ddof=ddof, |
|
) |
|
|
|
@pytest.mark.parametrize("ddof", range(3)) |
|
def test_nanstd(self, ddof, skipna): |
|
self.check_funs( |
|
nanops.nanstd, |
|
np.std, |
|
skipna, |
|
allow_complex=False, |
|
allow_date=False, |
|
allow_obj="convert", |
|
ddof=ddof, |
|
) |
|
|
|
@pytest.mark.parametrize("ddof", range(3)) |
|
def test_nansem(self, ddof, skipna): |
|
sp_stats = pytest.importorskip("scipy.stats") |
|
|
|
with np.errstate(invalid="ignore"): |
|
self.check_funs( |
|
nanops.nansem, |
|
sp_stats.sem, |
|
skipna, |
|
allow_complex=False, |
|
allow_date=False, |
|
allow_tdelta=False, |
|
allow_obj="convert", |
|
ddof=ddof, |
|
) |
|
|
|
@pytest.mark.filterwarnings("ignore::RuntimeWarning") |
|
@pytest.mark.parametrize( |
|
"nan_op,np_op", [(nanops.nanmin, np.min), (nanops.nanmax, np.max)] |
|
) |
|
def test_nanops_with_warnings(self, nan_op, np_op, skipna): |
|
self.check_funs(nan_op, np_op, skipna, allow_obj=False) |
|
|
|
def _argminmax_wrap(self, value, axis=None, func=None): |
|
res = func(value, axis) |
|
nans = np.min(value, axis) |
|
nullnan = isna(nans) |
|
if res.ndim: |
|
res[nullnan] = -1 |
|
elif ( |
|
hasattr(nullnan, "all") |
|
and nullnan.all() |
|
or not hasattr(nullnan, "all") |
|
and nullnan |
|
): |
|
res = -1 |
|
return res |
|
|
|
@pytest.mark.filterwarnings("ignore::RuntimeWarning") |
|
def test_nanargmax(self, skipna): |
|
func = partial(self._argminmax_wrap, func=np.argmax) |
|
self.check_funs(nanops.nanargmax, func, skipna, allow_obj=False) |
|
|
|
@pytest.mark.filterwarnings("ignore::RuntimeWarning") |
|
def test_nanargmin(self, skipna): |
|
func = partial(self._argminmax_wrap, func=np.argmin) |
|
self.check_funs(nanops.nanargmin, func, skipna, allow_obj=False) |
|
|
|
def _skew_kurt_wrap(self, values, axis=None, func=None): |
|
if not isinstance(values.dtype.type, np.floating): |
|
values = values.astype("f8") |
|
result = func(values, axis=axis, bias=False) |
|
|
|
if isinstance(result, np.ndarray): |
|
result[np.max(values, axis=axis) == np.min(values, axis=axis)] = 0 |
|
return result |
|
elif np.max(values) == np.min(values): |
|
return 0.0 |
|
return result |
|
|
|
def test_nanskew(self, skipna): |
|
sp_stats = pytest.importorskip("scipy.stats") |
|
|
|
func = partial(self._skew_kurt_wrap, func=sp_stats.skew) |
|
with np.errstate(invalid="ignore"): |
|
self.check_funs( |
|
nanops.nanskew, |
|
func, |
|
skipna, |
|
allow_complex=False, |
|
allow_date=False, |
|
allow_tdelta=False, |
|
) |
|
|
|
def test_nankurt(self, skipna): |
|
sp_stats = pytest.importorskip("scipy.stats") |
|
|
|
func1 = partial(sp_stats.kurtosis, fisher=True) |
|
func = partial(self._skew_kurt_wrap, func=func1) |
|
with np.errstate(invalid="ignore"): |
|
self.check_funs( |
|
nanops.nankurt, |
|
func, |
|
skipna, |
|
allow_complex=False, |
|
allow_date=False, |
|
allow_tdelta=False, |
|
) |
|
|
|
def test_nanprod(self, skipna): |
|
self.check_funs( |
|
nanops.nanprod, |
|
np.prod, |
|
skipna, |
|
allow_date=False, |
|
allow_tdelta=False, |
|
empty_targfunc=np.nanprod, |
|
) |
|
|
|
def check_nancorr_nancov_2d(self, checkfun, targ0, targ1, **kwargs): |
|
res00 = checkfun(self.arr_float_2d, self.arr_float1_2d, **kwargs) |
|
res01 = checkfun( |
|
self.arr_float_2d, |
|
self.arr_float1_2d, |
|
min_periods=len(self.arr_float_2d) - 1, |
|
**kwargs, |
|
) |
|
tm.assert_almost_equal(targ0, res00) |
|
tm.assert_almost_equal(targ0, res01) |
|
|
|
res10 = checkfun(self.arr_float_nan_2d, self.arr_float1_nan_2d, **kwargs) |
|
res11 = checkfun( |
|
self.arr_float_nan_2d, |
|
self.arr_float1_nan_2d, |
|
min_periods=len(self.arr_float_2d) - 1, |
|
**kwargs, |
|
) |
|
tm.assert_almost_equal(targ1, res10) |
|
tm.assert_almost_equal(targ1, res11) |
|
|
|
targ2 = np.nan |
|
res20 = checkfun(self.arr_nan_2d, self.arr_float1_2d, **kwargs) |
|
res21 = checkfun(self.arr_float_2d, self.arr_nan_2d, **kwargs) |
|
res22 = checkfun(self.arr_nan_2d, self.arr_nan_2d, **kwargs) |
|
res23 = checkfun(self.arr_float_nan_2d, self.arr_nan_float1_2d, **kwargs) |
|
res24 = checkfun( |
|
self.arr_float_nan_2d, |
|
self.arr_nan_float1_2d, |
|
min_periods=len(self.arr_float_2d) - 1, |
|
**kwargs, |
|
) |
|
res25 = checkfun( |
|
self.arr_float_2d, |
|
self.arr_float1_2d, |
|
min_periods=len(self.arr_float_2d) + 1, |
|
**kwargs, |
|
) |
|
tm.assert_almost_equal(targ2, res20) |
|
tm.assert_almost_equal(targ2, res21) |
|
tm.assert_almost_equal(targ2, res22) |
|
tm.assert_almost_equal(targ2, res23) |
|
tm.assert_almost_equal(targ2, res24) |
|
tm.assert_almost_equal(targ2, res25) |
|
|
|
def check_nancorr_nancov_1d(self, checkfun, targ0, targ1, **kwargs): |
|
res00 = checkfun(self.arr_float_1d, self.arr_float1_1d, **kwargs) |
|
res01 = checkfun( |
|
self.arr_float_1d, |
|
self.arr_float1_1d, |
|
min_periods=len(self.arr_float_1d) - 1, |
|
**kwargs, |
|
) |
|
tm.assert_almost_equal(targ0, res00) |
|
tm.assert_almost_equal(targ0, res01) |
|
|
|
res10 = checkfun(self.arr_float_nan_1d, self.arr_float1_nan_1d, **kwargs) |
|
res11 = checkfun( |
|
self.arr_float_nan_1d, |
|
self.arr_float1_nan_1d, |
|
min_periods=len(self.arr_float_1d) - 1, |
|
**kwargs, |
|
) |
|
tm.assert_almost_equal(targ1, res10) |
|
tm.assert_almost_equal(targ1, res11) |
|
|
|
targ2 = np.nan |
|
res20 = checkfun(self.arr_nan_1d, self.arr_float1_1d, **kwargs) |
|
res21 = checkfun(self.arr_float_1d, self.arr_nan_1d, **kwargs) |
|
res22 = checkfun(self.arr_nan_1d, self.arr_nan_1d, **kwargs) |
|
res23 = checkfun(self.arr_float_nan_1d, self.arr_nan_float1_1d, **kwargs) |
|
res24 = checkfun( |
|
self.arr_float_nan_1d, |
|
self.arr_nan_float1_1d, |
|
min_periods=len(self.arr_float_1d) - 1, |
|
**kwargs, |
|
) |
|
res25 = checkfun( |
|
self.arr_float_1d, |
|
self.arr_float1_1d, |
|
min_periods=len(self.arr_float_1d) + 1, |
|
**kwargs, |
|
) |
|
tm.assert_almost_equal(targ2, res20) |
|
tm.assert_almost_equal(targ2, res21) |
|
tm.assert_almost_equal(targ2, res22) |
|
tm.assert_almost_equal(targ2, res23) |
|
tm.assert_almost_equal(targ2, res24) |
|
tm.assert_almost_equal(targ2, res25) |
|
|
|
def test_nancorr(self): |
|
targ0 = np.corrcoef(self.arr_float_2d, self.arr_float1_2d)[0, 1] |
|
targ1 = np.corrcoef(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0, 1] |
|
self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1) |
|
targ0 = np.corrcoef(self.arr_float_1d, self.arr_float1_1d)[0, 1] |
|
targ1 = np.corrcoef(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0, 1] |
|
self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method="pearson") |
|
|
|
def test_nancorr_pearson(self): |
|
targ0 = np.corrcoef(self.arr_float_2d, self.arr_float1_2d)[0, 1] |
|
targ1 = np.corrcoef(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0, 1] |
|
self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1, method="pearson") |
|
targ0 = np.corrcoef(self.arr_float_1d, self.arr_float1_1d)[0, 1] |
|
targ1 = np.corrcoef(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0, 1] |
|
self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method="pearson") |
|
|
|
def test_nancorr_kendall(self): |
|
sp_stats = pytest.importorskip("scipy.stats") |
|
|
|
targ0 = sp_stats.kendalltau(self.arr_float_2d, self.arr_float1_2d)[0] |
|
targ1 = sp_stats.kendalltau(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0] |
|
self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1, method="kendall") |
|
targ0 = sp_stats.kendalltau(self.arr_float_1d, self.arr_float1_1d)[0] |
|
targ1 = sp_stats.kendalltau(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0] |
|
self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method="kendall") |
|
|
|
def test_nancorr_spearman(self): |
|
sp_stats = pytest.importorskip("scipy.stats") |
|
|
|
targ0 = sp_stats.spearmanr(self.arr_float_2d, self.arr_float1_2d)[0] |
|
targ1 = sp_stats.spearmanr(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0] |
|
self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1, method="spearman") |
|
targ0 = sp_stats.spearmanr(self.arr_float_1d, self.arr_float1_1d)[0] |
|
targ1 = sp_stats.spearmanr(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0] |
|
self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method="spearman") |
|
|
|
def test_invalid_method(self): |
|
pytest.importorskip("scipy") |
|
targ0 = np.corrcoef(self.arr_float_2d, self.arr_float1_2d)[0, 1] |
|
targ1 = np.corrcoef(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0, 1] |
|
msg = "Unknown method 'foo', expected one of 'kendall', 'spearman'" |
|
with pytest.raises(ValueError, match=msg): |
|
self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1, method="foo") |
|
|
|
def test_nancov(self): |
|
targ0 = np.cov(self.arr_float_2d, self.arr_float1_2d)[0, 1] |
|
targ1 = np.cov(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0, 1] |
|
self.check_nancorr_nancov_2d(nanops.nancov, targ0, targ1) |
|
targ0 = np.cov(self.arr_float_1d, self.arr_float1_1d)[0, 1] |
|
targ1 = np.cov(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0, 1] |
|
self.check_nancorr_nancov_1d(nanops.nancov, targ0, targ1) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"arr, correct", |
|
[ |
|
("arr_complex", False), |
|
("arr_int", False), |
|
("arr_bool", False), |
|
("arr_str", False), |
|
("arr_utf", False), |
|
("arr_complex", False), |
|
("arr_complex_nan", False), |
|
("arr_nan_nanj", False), |
|
("arr_nan_infj", True), |
|
("arr_complex_nan_infj", True), |
|
], |
|
) |
|
def test_has_infs_non_float(request, arr, correct, disable_bottleneck): |
|
val = request.getfixturevalue(arr) |
|
while getattr(val, "ndim", True): |
|
res0 = nanops._has_infs(val) |
|
if correct: |
|
assert res0 |
|
else: |
|
assert not res0 |
|
|
|
if not hasattr(val, "ndim"): |
|
break |
|
|
|
|
|
val = np.take(val, 0, axis=-1) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"arr, correct", |
|
[ |
|
("arr_float", False), |
|
("arr_nan", False), |
|
("arr_float_nan", False), |
|
("arr_nan_nan", False), |
|
("arr_float_inf", True), |
|
("arr_inf", True), |
|
("arr_nan_inf", True), |
|
("arr_float_nan_inf", True), |
|
("arr_nan_nan_inf", True), |
|
], |
|
) |
|
@pytest.mark.parametrize("astype", [None, "f4", "f2"]) |
|
def test_has_infs_floats(request, arr, correct, astype, disable_bottleneck): |
|
val = request.getfixturevalue(arr) |
|
if astype is not None: |
|
val = val.astype(astype) |
|
while getattr(val, "ndim", True): |
|
res0 = nanops._has_infs(val) |
|
if correct: |
|
assert res0 |
|
else: |
|
assert not res0 |
|
|
|
if not hasattr(val, "ndim"): |
|
break |
|
|
|
|
|
val = np.take(val, 0, axis=-1) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"fixture", ["arr_float", "arr_complex", "arr_int", "arr_bool", "arr_str", "arr_utf"] |
|
) |
|
def test_bn_ok_dtype(fixture, request, disable_bottleneck): |
|
obj = request.getfixturevalue(fixture) |
|
assert nanops._bn_ok_dtype(obj.dtype, "test") |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"fixture", |
|
[ |
|
"arr_date", |
|
"arr_tdelta", |
|
"arr_obj", |
|
], |
|
) |
|
def test_bn_not_ok_dtype(fixture, request, disable_bottleneck): |
|
obj = request.getfixturevalue(fixture) |
|
assert not nanops._bn_ok_dtype(obj.dtype, "test") |
|
|
|
|
|
class TestEnsureNumeric: |
|
def test_numeric_values(self): |
|
|
|
assert nanops._ensure_numeric(1) == 1 |
|
|
|
|
|
assert nanops._ensure_numeric(1.1) == 1.1 |
|
|
|
|
|
assert nanops._ensure_numeric(1 + 2j) == 1 + 2j |
|
|
|
def test_ndarray(self): |
|
|
|
values = np.array([1, 2, 3]) |
|
assert np.allclose(nanops._ensure_numeric(values), values) |
|
|
|
|
|
o_values = values.astype(object) |
|
assert np.allclose(nanops._ensure_numeric(o_values), values) |
|
|
|
|
|
s_values = np.array(["1", "2", "3"], dtype=object) |
|
msg = r"Could not convert \['1' '2' '3'\] to numeric" |
|
with pytest.raises(TypeError, match=msg): |
|
nanops._ensure_numeric(s_values) |
|
|
|
|
|
s_values = np.array(["foo", "bar", "baz"], dtype=object) |
|
msg = r"Could not convert .* to numeric" |
|
with pytest.raises(TypeError, match=msg): |
|
nanops._ensure_numeric(s_values) |
|
|
|
def test_convertable_values(self): |
|
with pytest.raises(TypeError, match="Could not convert string '1' to numeric"): |
|
nanops._ensure_numeric("1") |
|
with pytest.raises( |
|
TypeError, match="Could not convert string '1.1' to numeric" |
|
): |
|
nanops._ensure_numeric("1.1") |
|
with pytest.raises( |
|
TypeError, match=r"Could not convert string '1\+1j' to numeric" |
|
): |
|
nanops._ensure_numeric("1+1j") |
|
|
|
def test_non_convertable_values(self): |
|
msg = "Could not convert string 'foo' to numeric" |
|
with pytest.raises(TypeError, match=msg): |
|
nanops._ensure_numeric("foo") |
|
|
|
|
|
msg = "argument must be a string or a number" |
|
with pytest.raises(TypeError, match=msg): |
|
nanops._ensure_numeric({}) |
|
with pytest.raises(TypeError, match=msg): |
|
nanops._ensure_numeric([]) |
|
|
|
|
|
class TestNanvarFixedValues: |
|
|
|
|
|
@pytest.fixture |
|
def variance(self): |
|
return 3.0 |
|
|
|
@pytest.fixture |
|
def samples(self, variance): |
|
return self.prng.normal(scale=variance**0.5, size=100000) |
|
|
|
def test_nanvar_all_finite(self, samples, variance): |
|
actual_variance = nanops.nanvar(samples) |
|
tm.assert_almost_equal(actual_variance, variance, rtol=1e-2) |
|
|
|
def test_nanvar_nans(self, samples, variance): |
|
samples_test = np.nan * np.ones(2 * samples.shape[0]) |
|
samples_test[::2] = samples |
|
|
|
actual_variance = nanops.nanvar(samples_test, skipna=True) |
|
tm.assert_almost_equal(actual_variance, variance, rtol=1e-2) |
|
|
|
actual_variance = nanops.nanvar(samples_test, skipna=False) |
|
tm.assert_almost_equal(actual_variance, np.nan, rtol=1e-2) |
|
|
|
def test_nanstd_nans(self, samples, variance): |
|
samples_test = np.nan * np.ones(2 * samples.shape[0]) |
|
samples_test[::2] = samples |
|
|
|
actual_std = nanops.nanstd(samples_test, skipna=True) |
|
tm.assert_almost_equal(actual_std, variance**0.5, rtol=1e-2) |
|
|
|
actual_std = nanops.nanvar(samples_test, skipna=False) |
|
tm.assert_almost_equal(actual_std, np.nan, rtol=1e-2) |
|
|
|
def test_nanvar_axis(self, samples, variance): |
|
|
|
samples_unif = self.prng.uniform(size=samples.shape[0]) |
|
samples = np.vstack([samples, samples_unif]) |
|
|
|
actual_variance = nanops.nanvar(samples, axis=1) |
|
tm.assert_almost_equal( |
|
actual_variance, np.array([variance, 1.0 / 12]), rtol=1e-2 |
|
) |
|
|
|
def test_nanvar_ddof(self): |
|
n = 5 |
|
samples = self.prng.uniform(size=(10000, n + 1)) |
|
samples[:, -1] = np.nan |
|
|
|
variance_0 = nanops.nanvar(samples, axis=1, skipna=True, ddof=0).mean() |
|
variance_1 = nanops.nanvar(samples, axis=1, skipna=True, ddof=1).mean() |
|
variance_2 = nanops.nanvar(samples, axis=1, skipna=True, ddof=2).mean() |
|
|
|
|
|
var = 1.0 / 12 |
|
tm.assert_almost_equal(variance_1, var, rtol=1e-2) |
|
|
|
|
|
tm.assert_almost_equal(variance_0, (n - 1.0) / n * var, rtol=1e-2) |
|
|
|
|
|
tm.assert_almost_equal(variance_2, (n - 1.0) / (n - 2.0) * var, rtol=1e-2) |
|
|
|
@pytest.mark.parametrize("axis", range(2)) |
|
@pytest.mark.parametrize("ddof", range(3)) |
|
def test_ground_truth(self, axis, ddof): |
|
|
|
samples = np.empty((4, 4)) |
|
samples[:3, :3] = np.array( |
|
[ |
|
[0.97303362, 0.21869576, 0.55560287], |
|
[0.72980153, 0.03109364, 0.99155171], |
|
[0.09317602, 0.60078248, 0.15871292], |
|
] |
|
) |
|
samples[3] = samples[:, 3] = np.nan |
|
|
|
|
|
variance = np.array( |
|
[ |
|
[ |
|
[0.13762259, 0.05619224, 0.11568816], |
|
[0.20643388, 0.08428837, 0.17353224], |
|
[0.41286776, 0.16857673, 0.34706449], |
|
], |
|
[ |
|
[0.09519783, 0.16435395, 0.05082054], |
|
[0.14279674, 0.24653093, 0.07623082], |
|
[0.28559348, 0.49306186, 0.15246163], |
|
], |
|
] |
|
) |
|
|
|
|
|
var = nanops.nanvar(samples, skipna=True, axis=axis, ddof=ddof) |
|
tm.assert_almost_equal(var[:3], variance[axis, ddof]) |
|
assert np.isnan(var[3]) |
|
|
|
|
|
std = nanops.nanstd(samples, skipna=True, axis=axis, ddof=ddof) |
|
tm.assert_almost_equal(std[:3], variance[axis, ddof] ** 0.5) |
|
assert np.isnan(std[3]) |
|
|
|
@pytest.mark.parametrize("ddof", range(3)) |
|
def test_nanstd_roundoff(self, ddof): |
|
|
|
|
|
data = Series(766897346 * np.ones(10)) |
|
result = data.std(ddof=ddof) |
|
assert result == 0.0 |
|
|
|
@property |
|
def prng(self): |
|
return np.random.default_rng(2) |
|
|
|
|
|
class TestNanskewFixedValues: |
|
|
|
|
|
@pytest.fixture |
|
def samples(self): |
|
return np.sin(np.linspace(0, 1, 200)) |
|
|
|
@pytest.fixture |
|
def actual_skew(self): |
|
return -0.1875895205961754 |
|
|
|
@pytest.mark.parametrize("val", [3075.2, 3075.3, 3075.5]) |
|
def test_constant_series(self, val): |
|
|
|
data = val * np.ones(300) |
|
skew = nanops.nanskew(data) |
|
assert skew == 0.0 |
|
|
|
def test_all_finite(self): |
|
alpha, beta = 0.3, 0.1 |
|
left_tailed = self.prng.beta(alpha, beta, size=100) |
|
assert nanops.nanskew(left_tailed) < 0 |
|
|
|
alpha, beta = 0.1, 0.3 |
|
right_tailed = self.prng.beta(alpha, beta, size=100) |
|
assert nanops.nanskew(right_tailed) > 0 |
|
|
|
def test_ground_truth(self, samples, actual_skew): |
|
skew = nanops.nanskew(samples) |
|
tm.assert_almost_equal(skew, actual_skew) |
|
|
|
def test_axis(self, samples, actual_skew): |
|
samples = np.vstack([samples, np.nan * np.ones(len(samples))]) |
|
skew = nanops.nanskew(samples, axis=1) |
|
tm.assert_almost_equal(skew, np.array([actual_skew, np.nan])) |
|
|
|
def test_nans(self, samples): |
|
samples = np.hstack([samples, np.nan]) |
|
skew = nanops.nanskew(samples, skipna=False) |
|
assert np.isnan(skew) |
|
|
|
def test_nans_skipna(self, samples, actual_skew): |
|
samples = np.hstack([samples, np.nan]) |
|
skew = nanops.nanskew(samples, skipna=True) |
|
tm.assert_almost_equal(skew, actual_skew) |
|
|
|
@property |
|
def prng(self): |
|
return np.random.default_rng(2) |
|
|
|
|
|
class TestNankurtFixedValues: |
|
|
|
|
|
@pytest.fixture |
|
def samples(self): |
|
return np.sin(np.linspace(0, 1, 200)) |
|
|
|
@pytest.fixture |
|
def actual_kurt(self): |
|
return -1.2058303433799713 |
|
|
|
@pytest.mark.parametrize("val", [3075.2, 3075.3, 3075.5]) |
|
def test_constant_series(self, val): |
|
|
|
data = val * np.ones(300) |
|
kurt = nanops.nankurt(data) |
|
assert kurt == 0.0 |
|
|
|
def test_all_finite(self): |
|
alpha, beta = 0.3, 0.1 |
|
left_tailed = self.prng.beta(alpha, beta, size=100) |
|
assert nanops.nankurt(left_tailed) < 2 |
|
|
|
alpha, beta = 0.1, 0.3 |
|
right_tailed = self.prng.beta(alpha, beta, size=100) |
|
assert nanops.nankurt(right_tailed) < 0 |
|
|
|
def test_ground_truth(self, samples, actual_kurt): |
|
kurt = nanops.nankurt(samples) |
|
tm.assert_almost_equal(kurt, actual_kurt) |
|
|
|
def test_axis(self, samples, actual_kurt): |
|
samples = np.vstack([samples, np.nan * np.ones(len(samples))]) |
|
kurt = nanops.nankurt(samples, axis=1) |
|
tm.assert_almost_equal(kurt, np.array([actual_kurt, np.nan])) |
|
|
|
def test_nans(self, samples): |
|
samples = np.hstack([samples, np.nan]) |
|
kurt = nanops.nankurt(samples, skipna=False) |
|
assert np.isnan(kurt) |
|
|
|
def test_nans_skipna(self, samples, actual_kurt): |
|
samples = np.hstack([samples, np.nan]) |
|
kurt = nanops.nankurt(samples, skipna=True) |
|
tm.assert_almost_equal(kurt, actual_kurt) |
|
|
|
@property |
|
def prng(self): |
|
return np.random.default_rng(2) |
|
|
|
|
|
class TestDatetime64NaNOps: |
|
@pytest.fixture(params=["s", "ms", "us", "ns"]) |
|
def unit(self, request): |
|
return request.param |
|
|
|
|
|
|
|
def test_nanmean(self, unit): |
|
dti = pd.date_range("2016-01-01", periods=3).as_unit(unit) |
|
expected = dti[1] |
|
|
|
for obj in [dti, dti._data]: |
|
result = nanops.nanmean(obj) |
|
assert result == expected |
|
|
|
dti2 = dti.insert(1, pd.NaT) |
|
|
|
for obj in [dti2, dti2._data]: |
|
result = nanops.nanmean(obj) |
|
assert result == expected |
|
|
|
@pytest.mark.parametrize("constructor", ["M8", "m8"]) |
|
def test_nanmean_skipna_false(self, constructor, unit): |
|
dtype = f"{constructor}[{unit}]" |
|
arr = np.arange(12).astype(np.int64).view(dtype).reshape(4, 3) |
|
|
|
arr[-1, -1] = "NaT" |
|
|
|
result = nanops.nanmean(arr, skipna=False) |
|
assert np.isnat(result) |
|
assert result.dtype == dtype |
|
|
|
result = nanops.nanmean(arr, axis=0, skipna=False) |
|
expected = np.array([4, 5, "NaT"], dtype=arr.dtype) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = nanops.nanmean(arr, axis=1, skipna=False) |
|
expected = np.array([arr[0, 1], arr[1, 1], arr[2, 1], arr[-1, -1]]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
def test_use_bottleneck(): |
|
if nanops._BOTTLENECK_INSTALLED: |
|
with pd.option_context("use_bottleneck", True): |
|
assert pd.get_option("use_bottleneck") |
|
|
|
with pd.option_context("use_bottleneck", False): |
|
assert not pd.get_option("use_bottleneck") |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"numpy_op, expected", |
|
[ |
|
(np.sum, 10), |
|
(np.nansum, 10), |
|
(np.mean, 2.5), |
|
(np.nanmean, 2.5), |
|
(np.median, 2.5), |
|
(np.nanmedian, 2.5), |
|
(np.min, 1), |
|
(np.max, 4), |
|
(np.nanmin, 1), |
|
(np.nanmax, 4), |
|
], |
|
) |
|
def test_numpy_ops(numpy_op, expected): |
|
|
|
result = numpy_op(Series([1, 2, 3, 4])) |
|
assert result == expected |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"operation", |
|
[ |
|
nanops.nanany, |
|
nanops.nanall, |
|
nanops.nansum, |
|
nanops.nanmean, |
|
nanops.nanmedian, |
|
nanops.nanstd, |
|
nanops.nanvar, |
|
nanops.nansem, |
|
nanops.nanargmax, |
|
nanops.nanargmin, |
|
nanops.nanmax, |
|
nanops.nanmin, |
|
nanops.nanskew, |
|
nanops.nankurt, |
|
nanops.nanprod, |
|
], |
|
) |
|
def test_nanops_independent_of_mask_param(operation): |
|
|
|
ser = Series([1, 2, np.nan, 3, np.nan, 4]) |
|
mask = ser.isna() |
|
median_expected = operation(ser._values) |
|
median_result = operation(ser._values, mask=mask) |
|
assert median_expected == median_result |
|
|
|
|
|
@pytest.mark.parametrize("min_count", [-1, 0]) |
|
def test_check_below_min_count_negative_or_zero_min_count(min_count): |
|
|
|
result = nanops.check_below_min_count((21, 37), None, min_count) |
|
expected_result = False |
|
assert result == expected_result |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"mask", [None, np.array([False, False, True]), np.array([True] + 9 * [False])] |
|
) |
|
@pytest.mark.parametrize("min_count, expected_result", [(1, False), (101, True)]) |
|
def test_check_below_min_count_positive_min_count(mask, min_count, expected_result): |
|
|
|
shape = (10, 10) |
|
result = nanops.check_below_min_count(shape, mask, min_count) |
|
assert result == expected_result |
|
|
|
|
|
@td.skip_if_windows |
|
@td.skip_if_32bit |
|
@pytest.mark.parametrize("min_count, expected_result", [(1, False), (2812191852, True)]) |
|
def test_check_below_min_count_large_shape(min_count, expected_result): |
|
|
|
shape = (2244367, 1253) |
|
result = nanops.check_below_min_count(shape, mask=None, min_count=min_count) |
|
assert result == expected_result |
|
|
|
|
|
@pytest.mark.parametrize("func", ["nanmean", "nansum"]) |
|
def test_check_bottleneck_disallow(any_real_numpy_dtype, func): |
|
|
|
assert not nanops._bn_ok_dtype(np.dtype(any_real_numpy_dtype).type, func) |
|
|
|
|
|
@pytest.mark.parametrize("val", [2**55, -(2**55), 20150515061816532]) |
|
def test_nanmean_overflow(disable_bottleneck, val): |
|
|
|
|
|
|
|
|
|
ser = Series(val, index=range(500), dtype=np.int64) |
|
result = ser.mean() |
|
np_result = ser.values.mean() |
|
assert result == val |
|
assert result == np_result |
|
assert result.dtype == np.float64 |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"dtype", |
|
[ |
|
np.int16, |
|
np.int32, |
|
np.int64, |
|
np.float32, |
|
np.float64, |
|
getattr(np, "float128", None), |
|
], |
|
) |
|
@pytest.mark.parametrize("method", ["mean", "std", "var", "skew", "kurt", "min", "max"]) |
|
def test_returned_dtype(disable_bottleneck, dtype, method): |
|
if dtype is None: |
|
pytest.skip("np.float128 not available") |
|
|
|
ser = Series(range(10), dtype=dtype) |
|
result = getattr(ser, method)() |
|
if is_integer_dtype(dtype) and method not in ["min", "max"]: |
|
assert result.dtype == np.float64 |
|
else: |
|
assert result.dtype == dtype |
|
|