|
from datetime import datetime |
|
import re |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from pandas.core.dtypes.dtypes import ArrowDtype |
|
|
|
from pandas import ( |
|
DataFrame, |
|
Index, |
|
MultiIndex, |
|
Series, |
|
_testing as tm, |
|
) |
|
|
|
|
|
def test_extract_expand_kwarg_wrong_type_raises(any_string_dtype): |
|
|
|
values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) |
|
with pytest.raises(ValueError, match="expand must be True or False"): |
|
values.str.extract(".*(BAD[_]+).*(BAD)", expand=None) |
|
|
|
|
|
def test_extract_expand_kwarg(any_string_dtype): |
|
s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) |
|
expected = DataFrame(["BAD__", np.nan, np.nan], dtype=any_string_dtype) |
|
|
|
result = s.str.extract(".*(BAD[_]+).*") |
|
tm.assert_frame_equal(result, expected) |
|
|
|
result = s.str.extract(".*(BAD[_]+).*", expand=True) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
expected = DataFrame( |
|
[["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype |
|
) |
|
result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=False) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_extract_expand_False_mixed_object(): |
|
ser = Series( |
|
["aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0] |
|
) |
|
|
|
|
|
result = ser.str.extract(".*(BAD[_]+).*(BAD)", expand=False) |
|
er = [np.nan, np.nan] |
|
expected = DataFrame( |
|
[["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er], dtype=object |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = ser.str.extract(".*(BAD[_]+).*BAD", expand=False) |
|
expected = Series( |
|
["BAD_", np.nan, "BAD_", np.nan, np.nan, np.nan, None, np.nan, np.nan], |
|
dtype=object, |
|
) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_extract_expand_index_raises(): |
|
|
|
|
|
|
|
idx = Index(["A1", "A2", "A3", "A4", "B5"]) |
|
msg = "only one regex group is supported with Index" |
|
with pytest.raises(ValueError, match=msg): |
|
idx.str.extract("([AB])([123])", expand=False) |
|
|
|
|
|
def test_extract_expand_no_capture_groups_raises(index_or_series, any_string_dtype): |
|
s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype) |
|
msg = "pattern contains no capture groups" |
|
|
|
|
|
with pytest.raises(ValueError, match=msg): |
|
s_or_idx.str.extract("[ABC][123]", expand=False) |
|
|
|
|
|
with pytest.raises(ValueError, match=msg): |
|
s_or_idx.str.extract("(?:[AB]).*", expand=False) |
|
|
|
|
|
def test_extract_expand_single_capture_group(index_or_series, any_string_dtype): |
|
|
|
s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype) |
|
result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=False) |
|
|
|
expected = index_or_series(["A", "A"], name="uno", dtype=any_string_dtype) |
|
if index_or_series == Series: |
|
tm.assert_series_equal(result, expected) |
|
else: |
|
tm.assert_index_equal(result, expected) |
|
|
|
|
|
def test_extract_expand_capture_groups(any_string_dtype): |
|
s = Series(["A1", "B2", "C3"], dtype=any_string_dtype) |
|
|
|
result = s.str.extract("(_)", expand=False) |
|
expected = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
result = s.str.extract("(_)(_)", expand=False) |
|
expected = DataFrame( |
|
[[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extract("([AB])[123]", expand=False) |
|
expected = Series(["A", "B", np.nan], dtype=any_string_dtype) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
result = s.str.extract("([AB])([123])", expand=False) |
|
expected = DataFrame( |
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extract("(?P<letter>[AB])", expand=False) |
|
expected = Series(["A", "B", np.nan], name="letter", dtype=any_string_dtype) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=False) |
|
expected = DataFrame( |
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]], |
|
columns=["letter", "number"], |
|
dtype=any_string_dtype, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extract("([AB])(?P<number>[123])", expand=False) |
|
expected = DataFrame( |
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]], |
|
columns=[0, "number"], |
|
dtype=any_string_dtype, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extract("([AB])(?:[123])", expand=False) |
|
expected = Series(["A", "B", np.nan], dtype=any_string_dtype) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
s = Series(["A11", "B22", "C33"], dtype=any_string_dtype) |
|
result = s.str.extract("([AB])([123])(?:[123])", expand=False) |
|
expected = DataFrame( |
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
s = Series(["A1", "B2", "3"], dtype=any_string_dtype) |
|
result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=False) |
|
expected = DataFrame( |
|
[["A", "1"], ["B", "2"], [np.nan, "3"]], |
|
columns=["letter", "number"], |
|
dtype=any_string_dtype, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
s = Series(["A1", "B2", "C"], dtype=any_string_dtype) |
|
result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=False) |
|
expected = DataFrame( |
|
[["A", "1"], ["B", "2"], ["C", np.nan]], |
|
columns=["letter", "number"], |
|
dtype=any_string_dtype, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_extract_expand_capture_groups_index(index, any_string_dtype): |
|
|
|
|
|
data = ["A1", "B2", "C"] |
|
|
|
if len(index) == 0: |
|
pytest.skip("Test requires len(index) > 0") |
|
while len(index) < len(data): |
|
index = index.repeat(2) |
|
|
|
index = index[: len(data)] |
|
ser = Series(data, index=index, dtype=any_string_dtype) |
|
|
|
result = ser.str.extract(r"(\d)", expand=False) |
|
expected = Series(["1", "2", np.nan], index=index, dtype=any_string_dtype) |
|
tm.assert_series_equal(result, expected) |
|
|
|
result = ser.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=False) |
|
expected = DataFrame( |
|
[["A", "1"], ["B", "2"], ["C", np.nan]], |
|
columns=["letter", "number"], |
|
index=index, |
|
dtype=any_string_dtype, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_extract_single_series_name_is_preserved(any_string_dtype): |
|
s = Series(["a3", "b3", "c2"], name="bob", dtype=any_string_dtype) |
|
result = s.str.extract(r"(?P<sue>[a-z])", expand=False) |
|
expected = Series(["a", "b", "c"], name="sue", dtype=any_string_dtype) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_extract_expand_True(any_string_dtype): |
|
|
|
s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) |
|
|
|
result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=True) |
|
expected = DataFrame( |
|
[["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_extract_expand_True_mixed_object(): |
|
er = [np.nan, np.nan] |
|
mixed = Series( |
|
[ |
|
"aBAD_BAD", |
|
np.nan, |
|
"BAD_b_BAD", |
|
True, |
|
datetime.today(), |
|
"foo", |
|
None, |
|
1, |
|
2.0, |
|
] |
|
) |
|
|
|
result = mixed.str.extract(".*(BAD[_]+).*(BAD)", expand=True) |
|
expected = DataFrame( |
|
[["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er], dtype=object |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_extract_expand_True_single_capture_group_raises( |
|
index_or_series, any_string_dtype |
|
): |
|
|
|
|
|
s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype) |
|
msg = "pattern contains no capture groups" |
|
with pytest.raises(ValueError, match=msg): |
|
s_or_idx.str.extract("[ABC][123]", expand=True) |
|
|
|
|
|
with pytest.raises(ValueError, match=msg): |
|
s_or_idx.str.extract("(?:[AB]).*", expand=True) |
|
|
|
|
|
def test_extract_expand_True_single_capture_group(index_or_series, any_string_dtype): |
|
|
|
s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype) |
|
result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=True) |
|
expected = DataFrame({"uno": ["A", "A"]}, dtype=any_string_dtype) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("name", [None, "series_name"]) |
|
def test_extract_series(name, any_string_dtype): |
|
|
|
s = Series(["A1", "B2", "C3"], name=name, dtype=any_string_dtype) |
|
|
|
|
|
result = s.str.extract("(_)", expand=True) |
|
expected = DataFrame([np.nan, np.nan, np.nan], dtype=any_string_dtype) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extract("(_)(_)", expand=True) |
|
expected = DataFrame( |
|
[[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extract("([AB])[123]", expand=True) |
|
expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extract("([AB])([123])", expand=True) |
|
expected = DataFrame( |
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extract("(?P<letter>[AB])", expand=True) |
|
expected = DataFrame({"letter": ["A", "B", np.nan]}, dtype=any_string_dtype) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=True) |
|
expected = DataFrame( |
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]], |
|
columns=["letter", "number"], |
|
dtype=any_string_dtype, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extract("([AB])(?P<number>[123])", expand=True) |
|
expected = DataFrame( |
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]], |
|
columns=[0, "number"], |
|
dtype=any_string_dtype, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extract("([AB])(?:[123])", expand=True) |
|
expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_extract_optional_groups(any_string_dtype): |
|
|
|
s = Series(["A11", "B22", "C33"], dtype=any_string_dtype) |
|
result = s.str.extract("([AB])([123])(?:[123])", expand=True) |
|
expected = DataFrame( |
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
s = Series(["A1", "B2", "3"], dtype=any_string_dtype) |
|
result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=True) |
|
expected = DataFrame( |
|
[["A", "1"], ["B", "2"], [np.nan, "3"]], |
|
columns=["letter", "number"], |
|
dtype=any_string_dtype, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
s = Series(["A1", "B2", "C"], dtype=any_string_dtype) |
|
result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=True) |
|
expected = DataFrame( |
|
[["A", "1"], ["B", "2"], ["C", np.nan]], |
|
columns=["letter", "number"], |
|
dtype=any_string_dtype, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_extract_dataframe_capture_groups_index(index, any_string_dtype): |
|
|
|
|
|
|
|
data = ["A1", "B2", "C"] |
|
|
|
if len(index) < len(data): |
|
pytest.skip(f"Index needs more than {len(data)} values") |
|
|
|
index = index[: len(data)] |
|
s = Series(data, index=index, dtype=any_string_dtype) |
|
|
|
result = s.str.extract(r"(\d)", expand=True) |
|
expected = DataFrame(["1", "2", np.nan], index=index, dtype=any_string_dtype) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
result = s.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=True) |
|
expected = DataFrame( |
|
[["A", "1"], ["B", "2"], ["C", np.nan]], |
|
columns=["letter", "number"], |
|
index=index, |
|
dtype=any_string_dtype, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_extract_single_group_returns_frame(any_string_dtype): |
|
|
|
|
|
|
|
s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype) |
|
result = s.str.extract(r"(?P<letter>[a-z])", expand=True) |
|
expected = DataFrame({"letter": ["a", "b", "c"]}, dtype=any_string_dtype) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_extractall(any_string_dtype): |
|
data = [ |
|
"[email protected]", |
|
"[email protected]", |
|
"[email protected]", |
|
"[email protected] some text [email protected]", |
|
"[email protected] some text [email protected] and [email protected]", |
|
np.nan, |
|
"", |
|
] |
|
expected_tuples = [ |
|
("dave", "google", "com"), |
|
("tdhock5", "gmail", "com"), |
|
("maudelaperriere", "gmail", "com"), |
|
("rob", "gmail", "com"), |
|
("steve", "gmail", "com"), |
|
("a", "b", "com"), |
|
("c", "d", "com"), |
|
("e", "f", "com"), |
|
] |
|
pat = r""" |
|
(?P<user>[a-z0-9]+) |
|
@ |
|
(?P<domain>[a-z]+) |
|
\. |
|
(?P<tld>[a-z]{2,4}) |
|
""" |
|
expected_columns = ["user", "domain", "tld"] |
|
s = Series(data, dtype=any_string_dtype) |
|
|
|
|
|
expected_index = MultiIndex.from_tuples( |
|
[(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2)], |
|
names=(None, "match"), |
|
) |
|
expected = DataFrame( |
|
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype |
|
) |
|
result = s.str.extractall(pat, flags=re.VERBOSE) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
|
|
mi = MultiIndex.from_tuples( |
|
[ |
|
("single", "Dave"), |
|
("single", "Toby"), |
|
("single", "Maude"), |
|
("multiple", "robAndSteve"), |
|
("multiple", "abcdef"), |
|
("none", "missing"), |
|
("none", "empty"), |
|
] |
|
) |
|
s = Series(data, index=mi, dtype=any_string_dtype) |
|
expected_index = MultiIndex.from_tuples( |
|
[ |
|
("single", "Dave", 0), |
|
("single", "Toby", 0), |
|
("single", "Maude", 0), |
|
("multiple", "robAndSteve", 0), |
|
("multiple", "robAndSteve", 1), |
|
("multiple", "abcdef", 0), |
|
("multiple", "abcdef", 1), |
|
("multiple", "abcdef", 2), |
|
], |
|
names=(None, None, "match"), |
|
) |
|
expected = DataFrame( |
|
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype |
|
) |
|
result = s.str.extractall(pat, flags=re.VERBOSE) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
s = Series(data, index=mi, dtype=any_string_dtype) |
|
s.index.names = ("matches", "description") |
|
expected_index.names = ("matches", "description", "match") |
|
expected = DataFrame( |
|
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype |
|
) |
|
result = s.str.extractall(pat, flags=re.VERBOSE) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"pat,expected_names", |
|
[ |
|
|
|
("(?P<letter>[AB])?(?P<number>[123])", ["letter", "number"]), |
|
|
|
("([AB])?(?P<number>[123])", [0, "number"]), |
|
], |
|
) |
|
def test_extractall_column_names(pat, expected_names, any_string_dtype): |
|
s = Series(["", "A1", "32"], dtype=any_string_dtype) |
|
|
|
result = s.str.extractall(pat) |
|
expected = DataFrame( |
|
[("A", "1"), (np.nan, "3"), (np.nan, "2")], |
|
index=MultiIndex.from_tuples([(1, 0), (2, 0), (2, 1)], names=(None, "match")), |
|
columns=expected_names, |
|
dtype=any_string_dtype, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_extractall_single_group(any_string_dtype): |
|
s = Series(["a3", "b3", "d4c2"], name="series_name", dtype=any_string_dtype) |
|
expected_index = MultiIndex.from_tuples( |
|
[(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match") |
|
) |
|
|
|
|
|
result = s.str.extractall(r"(?P<letter>[a-z])") |
|
expected = DataFrame( |
|
{"letter": ["a", "b", "d", "c"]}, index=expected_index, dtype=any_string_dtype |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extractall(r"([a-z])") |
|
expected = DataFrame( |
|
["a", "b", "d", "c"], index=expected_index, dtype=any_string_dtype |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_extractall_single_group_with_quantifier(any_string_dtype): |
|
|
|
|
|
|
|
s = Series(["ab3", "abc3", "d4cd2"], name="series_name", dtype=any_string_dtype) |
|
result = s.str.extractall(r"([a-z]+)") |
|
expected = DataFrame( |
|
["ab", "abc", "d", "cd"], |
|
index=MultiIndex.from_tuples( |
|
[(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match") |
|
), |
|
dtype=any_string_dtype, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"data, names", |
|
[ |
|
([], (None,)), |
|
([], ("i1",)), |
|
([], (None, "i2")), |
|
([], ("i1", "i2")), |
|
(["a3", "b3", "d4c2"], (None,)), |
|
(["a3", "b3", "d4c2"], ("i1", "i2")), |
|
(["a3", "b3", "d4c2"], (None, "i2")), |
|
(["a3", "b3", "d4c2"], ("i1", "i2")), |
|
], |
|
) |
|
def test_extractall_no_matches(data, names, any_string_dtype): |
|
|
|
n = len(data) |
|
if len(names) == 1: |
|
index = Index(range(n), name=names[0]) |
|
else: |
|
tuples = (tuple([i] * (n - 1)) for i in range(n)) |
|
index = MultiIndex.from_tuples(tuples, names=names) |
|
s = Series(data, name="series_name", index=index, dtype=any_string_dtype) |
|
expected_index = MultiIndex.from_tuples([], names=(names + ("match",))) |
|
|
|
|
|
result = s.str.extractall("(z)") |
|
expected = DataFrame(columns=[0], index=expected_index, dtype=any_string_dtype) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extractall("(z)(z)") |
|
expected = DataFrame(columns=[0, 1], index=expected_index, dtype=any_string_dtype) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extractall("(?P<first>z)") |
|
expected = DataFrame( |
|
columns=["first"], index=expected_index, dtype=any_string_dtype |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extractall("(?P<first>z)(?P<second>z)") |
|
expected = DataFrame( |
|
columns=["first", "second"], index=expected_index, dtype=any_string_dtype |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
result = s.str.extractall("(z)(?P<second>z)") |
|
expected = DataFrame( |
|
columns=[0, "second"], index=expected_index, dtype=any_string_dtype |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_extractall_stringindex(any_string_dtype): |
|
s = Series(["a1a2", "b1", "c1"], name="xxx", dtype=any_string_dtype) |
|
result = s.str.extractall(r"[ab](?P<digit>\d)") |
|
expected = DataFrame( |
|
{"digit": ["1", "2", "1"]}, |
|
index=MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, "match"]), |
|
dtype=any_string_dtype, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
|
|
if any_string_dtype == "object": |
|
for idx in [ |
|
Index(["a1a2", "b1", "c1"], dtype=object), |
|
Index(["a1a2", "b1", "c1"], name="xxx", dtype=object), |
|
]: |
|
result = idx.str.extractall(r"[ab](?P<digit>\d)") |
|
tm.assert_frame_equal(result, expected) |
|
|
|
s = Series( |
|
["a1a2", "b1", "c1"], |
|
name="s_name", |
|
index=Index(["XX", "yy", "zz"], name="idx_name"), |
|
dtype=any_string_dtype, |
|
) |
|
result = s.str.extractall(r"[ab](?P<digit>\d)") |
|
expected = DataFrame( |
|
{"digit": ["1", "2", "1"]}, |
|
index=MultiIndex.from_tuples( |
|
[("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", "match"] |
|
), |
|
dtype=any_string_dtype, |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_extractall_no_capture_groups_raises(any_string_dtype): |
|
|
|
|
|
s = Series(["a3", "b3", "d4c2"], name="series_name", dtype=any_string_dtype) |
|
with pytest.raises(ValueError, match="no capture groups"): |
|
s.str.extractall(r"[a-z]") |
|
|
|
|
|
def test_extract_index_one_two_groups(): |
|
s = Series(["a3", "b3", "d4c2"], index=["A3", "B3", "D4"], name="series_name") |
|
r = s.index.str.extract(r"([A-Z])", expand=True) |
|
e = DataFrame(["A", "B", "D"]) |
|
tm.assert_frame_equal(r, e) |
|
|
|
|
|
|
|
|
|
r = s.index.str.extract(r"(?P<letter>[A-Z])(?P<digit>[0-9])", expand=True) |
|
e_list = [("A", "3"), ("B", "3"), ("D", "4")] |
|
e = DataFrame(e_list, columns=["letter", "digit"]) |
|
tm.assert_frame_equal(r, e) |
|
|
|
|
|
def test_extractall_same_as_extract(any_string_dtype): |
|
s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype) |
|
|
|
pattern_two_noname = r"([a-z])([0-9])" |
|
extract_two_noname = s.str.extract(pattern_two_noname, expand=True) |
|
has_multi_index = s.str.extractall(pattern_two_noname) |
|
no_multi_index = has_multi_index.xs(0, level="match") |
|
tm.assert_frame_equal(extract_two_noname, no_multi_index) |
|
|
|
pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])" |
|
extract_two_named = s.str.extract(pattern_two_named, expand=True) |
|
has_multi_index = s.str.extractall(pattern_two_named) |
|
no_multi_index = has_multi_index.xs(0, level="match") |
|
tm.assert_frame_equal(extract_two_named, no_multi_index) |
|
|
|
pattern_one_named = r"(?P<group_name>[a-z])" |
|
extract_one_named = s.str.extract(pattern_one_named, expand=True) |
|
has_multi_index = s.str.extractall(pattern_one_named) |
|
no_multi_index = has_multi_index.xs(0, level="match") |
|
tm.assert_frame_equal(extract_one_named, no_multi_index) |
|
|
|
pattern_one_noname = r"([a-z])" |
|
extract_one_noname = s.str.extract(pattern_one_noname, expand=True) |
|
has_multi_index = s.str.extractall(pattern_one_noname) |
|
no_multi_index = has_multi_index.xs(0, level="match") |
|
tm.assert_frame_equal(extract_one_noname, no_multi_index) |
|
|
|
|
|
def test_extractall_same_as_extract_subject_index(any_string_dtype): |
|
|
|
mi = MultiIndex.from_tuples( |
|
[("A", "first"), ("B", "second"), ("C", "third")], |
|
names=("capital", "ordinal"), |
|
) |
|
s = Series(["a3", "b3", "c2"], index=mi, name="series_name", dtype=any_string_dtype) |
|
|
|
pattern_two_noname = r"([a-z])([0-9])" |
|
extract_two_noname = s.str.extract(pattern_two_noname, expand=True) |
|
has_match_index = s.str.extractall(pattern_two_noname) |
|
no_match_index = has_match_index.xs(0, level="match") |
|
tm.assert_frame_equal(extract_two_noname, no_match_index) |
|
|
|
pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])" |
|
extract_two_named = s.str.extract(pattern_two_named, expand=True) |
|
has_match_index = s.str.extractall(pattern_two_named) |
|
no_match_index = has_match_index.xs(0, level="match") |
|
tm.assert_frame_equal(extract_two_named, no_match_index) |
|
|
|
pattern_one_named = r"(?P<group_name>[a-z])" |
|
extract_one_named = s.str.extract(pattern_one_named, expand=True) |
|
has_match_index = s.str.extractall(pattern_one_named) |
|
no_match_index = has_match_index.xs(0, level="match") |
|
tm.assert_frame_equal(extract_one_named, no_match_index) |
|
|
|
pattern_one_noname = r"([a-z])" |
|
extract_one_noname = s.str.extract(pattern_one_noname, expand=True) |
|
has_match_index = s.str.extractall(pattern_one_noname) |
|
no_match_index = has_match_index.xs(0, level="match") |
|
tm.assert_frame_equal(extract_one_noname, no_match_index) |
|
|
|
|
|
def test_extractall_preserves_dtype(): |
|
|
|
|
|
pa = pytest.importorskip("pyarrow") |
|
|
|
result = Series(["abc", "ab"], dtype=ArrowDtype(pa.string())).str.extractall("(ab)") |
|
assert result.dtypes[0] == "string[pyarrow]" |
|
|