|
import numpy as np |
|
import pytest |
|
|
|
import pandas as pd |
|
from pandas import ( |
|
Categorical, |
|
DataFrame, |
|
DatetimeIndex, |
|
Index, |
|
Interval, |
|
IntervalIndex, |
|
Series, |
|
TimedeltaIndex, |
|
Timestamp, |
|
cut, |
|
date_range, |
|
interval_range, |
|
isna, |
|
qcut, |
|
timedelta_range, |
|
to_datetime, |
|
) |
|
import pandas._testing as tm |
|
from pandas.api.types import CategoricalDtype |
|
import pandas.core.reshape.tile as tmod |
|
|
|
|
|
def test_simple(): |
|
data = np.ones(5, dtype="int64") |
|
result = cut(data, 4, labels=False) |
|
|
|
expected = np.array([1, 1, 1, 1, 1]) |
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False) |
|
|
|
|
|
@pytest.mark.parametrize("func", [list, np.array]) |
|
def test_bins(func): |
|
data = func([0.2, 1.4, 2.5, 6.2, 9.7, 2.1]) |
|
result, bins = cut(data, 3, retbins=True) |
|
|
|
intervals = IntervalIndex.from_breaks(bins.round(3)) |
|
intervals = intervals.take([0, 0, 0, 1, 2, 0]) |
|
expected = Categorical(intervals, ordered=True) |
|
|
|
tm.assert_categorical_equal(result, expected) |
|
tm.assert_almost_equal(bins, np.array([0.1905, 3.36666667, 6.53333333, 9.7])) |
|
|
|
|
|
def test_right(): |
|
data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575]) |
|
result, bins = cut(data, 4, right=True, retbins=True) |
|
|
|
intervals = IntervalIndex.from_breaks(bins.round(3)) |
|
expected = Categorical(intervals, ordered=True) |
|
expected = expected.take([0, 0, 0, 2, 3, 0, 0]) |
|
|
|
tm.assert_categorical_equal(result, expected) |
|
tm.assert_almost_equal(bins, np.array([0.1905, 2.575, 4.95, 7.325, 9.7])) |
|
|
|
|
|
def test_no_right(): |
|
data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575]) |
|
result, bins = cut(data, 4, right=False, retbins=True) |
|
|
|
intervals = IntervalIndex.from_breaks(bins.round(3), closed="left") |
|
intervals = intervals.take([0, 0, 0, 2, 3, 0, 1]) |
|
expected = Categorical(intervals, ordered=True) |
|
|
|
tm.assert_categorical_equal(result, expected) |
|
tm.assert_almost_equal(bins, np.array([0.2, 2.575, 4.95, 7.325, 9.7095])) |
|
|
|
|
|
def test_bins_from_interval_index(): |
|
c = cut(range(5), 3) |
|
expected = c |
|
result = cut(range(5), bins=expected.categories) |
|
tm.assert_categorical_equal(result, expected) |
|
|
|
expected = Categorical.from_codes( |
|
np.append(c.codes, -1), categories=c.categories, ordered=True |
|
) |
|
result = cut(range(6), bins=expected.categories) |
|
tm.assert_categorical_equal(result, expected) |
|
|
|
|
|
def test_bins_from_interval_index_doc_example(): |
|
|
|
ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60]) |
|
c = cut(ages, bins=[0, 18, 35, 70]) |
|
expected = IntervalIndex.from_tuples([(0, 18), (18, 35), (35, 70)]) |
|
tm.assert_index_equal(c.categories, expected) |
|
|
|
result = cut([25, 20, 50], bins=c.categories) |
|
tm.assert_index_equal(result.categories, expected) |
|
tm.assert_numpy_array_equal(result.codes, np.array([1, 1, 2], dtype="int8")) |
|
|
|
|
|
def test_bins_not_overlapping_from_interval_index(): |
|
|
|
msg = "Overlapping IntervalIndex is not accepted" |
|
ii = IntervalIndex.from_tuples([(0, 10), (2, 12), (4, 14)]) |
|
|
|
with pytest.raises(ValueError, match=msg): |
|
cut([5, 6], bins=ii) |
|
|
|
|
|
def test_bins_not_monotonic(): |
|
msg = "bins must increase monotonically" |
|
data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1] |
|
|
|
with pytest.raises(ValueError, match=msg): |
|
cut(data, [0.1, 1.5, 1, 10]) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"x, bins, expected", |
|
[ |
|
( |
|
date_range("2017-12-31", periods=3), |
|
[Timestamp.min, Timestamp("2018-01-01"), Timestamp.max], |
|
IntervalIndex.from_tuples( |
|
[ |
|
(Timestamp.min, Timestamp("2018-01-01")), |
|
(Timestamp("2018-01-01"), Timestamp.max), |
|
] |
|
), |
|
), |
|
( |
|
[-1, 0, 1], |
|
np.array( |
|
[np.iinfo(np.int64).min, 0, np.iinfo(np.int64).max], dtype="int64" |
|
), |
|
IntervalIndex.from_tuples( |
|
[(np.iinfo(np.int64).min, 0), (0, np.iinfo(np.int64).max)] |
|
), |
|
), |
|
( |
|
[ |
|
np.timedelta64(-1, "ns"), |
|
np.timedelta64(0, "ns"), |
|
np.timedelta64(1, "ns"), |
|
], |
|
np.array( |
|
[ |
|
np.timedelta64(-np.iinfo(np.int64).max, "ns"), |
|
np.timedelta64(0, "ns"), |
|
np.timedelta64(np.iinfo(np.int64).max, "ns"), |
|
] |
|
), |
|
IntervalIndex.from_tuples( |
|
[ |
|
( |
|
np.timedelta64(-np.iinfo(np.int64).max, "ns"), |
|
np.timedelta64(0, "ns"), |
|
), |
|
( |
|
np.timedelta64(0, "ns"), |
|
np.timedelta64(np.iinfo(np.int64).max, "ns"), |
|
), |
|
] |
|
), |
|
), |
|
], |
|
) |
|
def test_bins_monotonic_not_overflowing(x, bins, expected): |
|
|
|
result = cut(x, bins) |
|
tm.assert_index_equal(result.categories, expected) |
|
|
|
|
|
def test_wrong_num_labels(): |
|
msg = "Bin labels must be one fewer than the number of bin edges" |
|
data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1] |
|
|
|
with pytest.raises(ValueError, match=msg): |
|
cut(data, [0, 1, 10], labels=["foo", "bar", "baz"]) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"x,bins,msg", |
|
[ |
|
([], 2, "Cannot cut empty array"), |
|
([1, 2, 3], 0.5, "`bins` should be a positive integer"), |
|
], |
|
) |
|
def test_cut_corner(x, bins, msg): |
|
with pytest.raises(ValueError, match=msg): |
|
cut(x, bins) |
|
|
|
|
|
@pytest.mark.parametrize("arg", [2, np.eye(2), DataFrame(np.eye(2))]) |
|
@pytest.mark.parametrize("cut_func", [cut, qcut]) |
|
def test_cut_not_1d_arg(arg, cut_func): |
|
msg = "Input array must be 1 dimensional" |
|
with pytest.raises(ValueError, match=msg): |
|
cut_func(arg, 2) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"data", |
|
[ |
|
[0, 1, 2, 3, 4, np.inf], |
|
[-np.inf, 0, 1, 2, 3, 4], |
|
[-np.inf, 0, 1, 2, 3, 4, np.inf], |
|
], |
|
) |
|
def test_int_bins_with_inf(data): |
|
|
|
msg = "cannot specify integer `bins` when input data contains infinity" |
|
with pytest.raises(ValueError, match=msg): |
|
cut(data, bins=3) |
|
|
|
|
|
def test_cut_out_of_range_more(): |
|
|
|
name = "x" |
|
|
|
ser = Series([0, -1, 0, 1, -3], name=name) |
|
ind = cut(ser, [0, 1], labels=False) |
|
|
|
exp = Series([np.nan, np.nan, np.nan, 0, np.nan], name=name) |
|
tm.assert_series_equal(ind, exp) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"right,breaks,closed", |
|
[ |
|
(True, [-1e-3, 0.25, 0.5, 0.75, 1], "right"), |
|
(False, [0, 0.25, 0.5, 0.75, 1 + 1e-3], "left"), |
|
], |
|
) |
|
def test_labels(right, breaks, closed): |
|
arr = np.tile(np.arange(0, 1.01, 0.1), 4) |
|
|
|
result, bins = cut(arr, 4, retbins=True, right=right) |
|
ex_levels = IntervalIndex.from_breaks(breaks, closed=closed) |
|
tm.assert_index_equal(result.categories, ex_levels) |
|
|
|
|
|
def test_cut_pass_series_name_to_factor(): |
|
name = "foo" |
|
ser = Series(np.random.default_rng(2).standard_normal(100), name=name) |
|
|
|
factor = cut(ser, 4) |
|
assert factor.name == name |
|
|
|
|
|
def test_label_precision(): |
|
arr = np.arange(0, 0.73, 0.01) |
|
result = cut(arr, 4, precision=2) |
|
|
|
ex_levels = IntervalIndex.from_breaks([-0.00072, 0.18, 0.36, 0.54, 0.72]) |
|
tm.assert_index_equal(result.categories, ex_levels) |
|
|
|
|
|
@pytest.mark.parametrize("labels", [None, False]) |
|
def test_na_handling(labels): |
|
arr = np.arange(0, 0.75, 0.01) |
|
arr[::3] = np.nan |
|
|
|
result = cut(arr, 4, labels=labels) |
|
result = np.asarray(result) |
|
|
|
expected = np.where(isna(arr), np.nan, result) |
|
tm.assert_almost_equal(result, expected) |
|
|
|
|
|
def test_inf_handling(): |
|
data = np.arange(6) |
|
data_ser = Series(data, dtype="int64") |
|
|
|
bins = [-np.inf, 2, 4, np.inf] |
|
result = cut(data, bins) |
|
result_ser = cut(data_ser, bins) |
|
|
|
ex_uniques = IntervalIndex.from_breaks(bins) |
|
tm.assert_index_equal(result.categories, ex_uniques) |
|
|
|
assert result[5] == Interval(4, np.inf) |
|
assert result[0] == Interval(-np.inf, 2) |
|
assert result_ser[5] == Interval(4, np.inf) |
|
assert result_ser[0] == Interval(-np.inf, 2) |
|
|
|
|
|
def test_cut_out_of_bounds(): |
|
arr = np.random.default_rng(2).standard_normal(100) |
|
result = cut(arr, [-1, 0, 1]) |
|
|
|
mask = isna(result) |
|
ex_mask = (arr < -1) | (arr > 1) |
|
tm.assert_numpy_array_equal(mask, ex_mask) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"get_labels,get_expected", |
|
[ |
|
( |
|
lambda labels: labels, |
|
lambda labels: Categorical( |
|
["Medium"] + 4 * ["Small"] + ["Medium", "Large"], |
|
categories=labels, |
|
ordered=True, |
|
), |
|
), |
|
( |
|
lambda labels: Categorical.from_codes([0, 1, 2], labels), |
|
lambda labels: Categorical.from_codes([1] + 4 * [0] + [1, 2], labels), |
|
), |
|
], |
|
) |
|
def test_cut_pass_labels(get_labels, get_expected): |
|
bins = [0, 25, 50, 100] |
|
arr = [50, 5, 10, 15, 20, 30, 70] |
|
labels = ["Small", "Medium", "Large"] |
|
|
|
result = cut(arr, bins, labels=get_labels(labels)) |
|
tm.assert_categorical_equal(result, get_expected(labels)) |
|
|
|
|
|
def test_cut_pass_labels_compat(): |
|
|
|
arr = [50, 5, 10, 15, 20, 30, 70] |
|
labels = ["Good", "Medium", "Bad"] |
|
|
|
result = cut(arr, 3, labels=labels) |
|
exp = cut(arr, 3, labels=Categorical(labels, categories=labels, ordered=True)) |
|
tm.assert_categorical_equal(result, exp) |
|
|
|
|
|
@pytest.mark.parametrize("x", [np.arange(11.0), np.arange(11.0) / 1e10]) |
|
def test_round_frac_just_works(x): |
|
|
|
cut(x, 2) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"val,precision,expected", |
|
[ |
|
(-117.9998, 3, -118), |
|
(117.9998, 3, 118), |
|
(117.9998, 2, 118), |
|
(0.000123456, 2, 0.00012), |
|
], |
|
) |
|
def test_round_frac(val, precision, expected): |
|
|
|
result = tmod._round_frac(val, precision=precision) |
|
assert result == expected |
|
|
|
|
|
def test_cut_return_intervals(): |
|
ser = Series([0, 1, 2, 3, 4, 5, 6, 7, 8]) |
|
result = cut(ser, 3) |
|
|
|
exp_bins = np.linspace(0, 8, num=4).round(3) |
|
exp_bins[0] -= 0.008 |
|
|
|
expected = Series( |
|
IntervalIndex.from_breaks(exp_bins, closed="right").take( |
|
[0, 0, 0, 1, 1, 1, 2, 2, 2] |
|
) |
|
).astype(CategoricalDtype(ordered=True)) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_series_ret_bins(): |
|
|
|
ser = Series(np.arange(4)) |
|
result, bins = cut(ser, 2, retbins=True) |
|
|
|
expected = Series( |
|
IntervalIndex.from_breaks([-0.003, 1.5, 3], closed="right").repeat(2) |
|
).astype(CategoricalDtype(ordered=True)) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"kwargs,msg", |
|
[ |
|
({"duplicates": "drop"}, None), |
|
({}, "Bin edges must be unique"), |
|
({"duplicates": "raise"}, "Bin edges must be unique"), |
|
({"duplicates": "foo"}, "invalid value for 'duplicates' parameter"), |
|
], |
|
) |
|
def test_cut_duplicates_bin(kwargs, msg): |
|
|
|
bins = [0, 2, 4, 6, 10, 10] |
|
values = Series(np.array([1, 3, 5, 7, 9]), index=["a", "b", "c", "d", "e"]) |
|
|
|
if msg is not None: |
|
with pytest.raises(ValueError, match=msg): |
|
cut(values, bins, **kwargs) |
|
else: |
|
result = cut(values, bins, **kwargs) |
|
expected = cut(values, pd.unique(np.asarray(bins))) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("data", [9.0, -9.0, 0.0]) |
|
@pytest.mark.parametrize("length", [1, 2]) |
|
def test_single_bin(data, length): |
|
|
|
ser = Series([data] * length) |
|
result = cut(ser, 1, labels=False) |
|
|
|
expected = Series([0] * length, dtype=np.intp) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"array_1_writeable,array_2_writeable", [(True, True), (True, False), (False, False)] |
|
) |
|
def test_cut_read_only(array_1_writeable, array_2_writeable): |
|
|
|
array_1 = np.arange(0, 100, 10) |
|
array_1.flags.writeable = array_1_writeable |
|
|
|
array_2 = np.arange(0, 100, 10) |
|
array_2.flags.writeable = array_2_writeable |
|
|
|
hundred_elements = np.arange(100) |
|
tm.assert_categorical_equal( |
|
cut(hundred_elements, array_1), cut(hundred_elements, array_2) |
|
) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"conv", |
|
[ |
|
lambda v: Timestamp(v), |
|
lambda v: to_datetime(v), |
|
lambda v: np.datetime64(v), |
|
lambda v: Timestamp(v).to_pydatetime(), |
|
], |
|
) |
|
def test_datetime_bin(conv): |
|
data = [np.datetime64("2012-12-13"), np.datetime64("2012-12-15")] |
|
bin_data = ["2012-12-12", "2012-12-14", "2012-12-16"] |
|
|
|
expected = Series( |
|
IntervalIndex( |
|
[ |
|
Interval(Timestamp(bin_data[0]), Timestamp(bin_data[1])), |
|
Interval(Timestamp(bin_data[1]), Timestamp(bin_data[2])), |
|
] |
|
) |
|
).astype(CategoricalDtype(ordered=True)) |
|
|
|
bins = [conv(v) for v in bin_data] |
|
result = Series(cut(data, bins=bins)) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("box", [Series, Index, np.array, list]) |
|
def test_datetime_cut(unit, box): |
|
|
|
|
|
|
|
data = to_datetime(["2013-01-01", "2013-01-02", "2013-01-03"]).astype(f"M8[{unit}]") |
|
data = box(data) |
|
result, _ = cut(data, 3, retbins=True) |
|
|
|
if box is list: |
|
|
|
unit = "ns" |
|
|
|
if unit == "s": |
|
|
|
|
|
left = DatetimeIndex( |
|
["2012-12-31 23:57:08", "2013-01-01 16:00:00", "2013-01-02 08:00:00"], |
|
dtype=f"M8[{unit}]", |
|
) |
|
else: |
|
left = DatetimeIndex( |
|
[ |
|
"2012-12-31 23:57:07.200000", |
|
"2013-01-01 16:00:00", |
|
"2013-01-02 08:00:00", |
|
], |
|
dtype=f"M8[{unit}]", |
|
) |
|
right = DatetimeIndex( |
|
["2013-01-01 16:00:00", "2013-01-02 08:00:00", "2013-01-03 00:00:00"], |
|
dtype=f"M8[{unit}]", |
|
) |
|
|
|
exp_intervals = IntervalIndex.from_arrays(left, right) |
|
expected = Series(exp_intervals).astype(CategoricalDtype(ordered=True)) |
|
tm.assert_series_equal(Series(result), expected) |
|
|
|
|
|
@pytest.mark.parametrize("box", [list, np.array, Index, Series]) |
|
def test_datetime_tz_cut_mismatched_tzawareness(box): |
|
|
|
bins = box( |
|
[ |
|
Timestamp("2013-01-01 04:57:07.200000"), |
|
Timestamp("2013-01-01 21:00:00"), |
|
Timestamp("2013-01-02 13:00:00"), |
|
Timestamp("2013-01-03 05:00:00"), |
|
] |
|
) |
|
ser = Series(date_range("20130101", periods=3, tz="US/Eastern")) |
|
|
|
msg = "Cannot use timezone-naive bins with timezone-aware values" |
|
with pytest.raises(ValueError, match=msg): |
|
cut(ser, bins) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"bins", |
|
[ |
|
3, |
|
[ |
|
Timestamp("2013-01-01 04:57:07.200000", tz="UTC").tz_convert("US/Eastern"), |
|
Timestamp("2013-01-01 21:00:00", tz="UTC").tz_convert("US/Eastern"), |
|
Timestamp("2013-01-02 13:00:00", tz="UTC").tz_convert("US/Eastern"), |
|
Timestamp("2013-01-03 05:00:00", tz="UTC").tz_convert("US/Eastern"), |
|
], |
|
], |
|
) |
|
@pytest.mark.parametrize("box", [list, np.array, Index, Series]) |
|
def test_datetime_tz_cut(bins, box): |
|
|
|
tz = "US/Eastern" |
|
ser = Series(date_range("20130101", periods=3, tz=tz)) |
|
|
|
if not isinstance(bins, int): |
|
bins = box(bins) |
|
|
|
result = cut(ser, bins) |
|
expected = Series( |
|
IntervalIndex( |
|
[ |
|
Interval( |
|
Timestamp("2012-12-31 23:57:07.200000", tz=tz), |
|
Timestamp("2013-01-01 16:00:00", tz=tz), |
|
), |
|
Interval( |
|
Timestamp("2013-01-01 16:00:00", tz=tz), |
|
Timestamp("2013-01-02 08:00:00", tz=tz), |
|
), |
|
Interval( |
|
Timestamp("2013-01-02 08:00:00", tz=tz), |
|
Timestamp("2013-01-03 00:00:00", tz=tz), |
|
), |
|
] |
|
) |
|
).astype(CategoricalDtype(ordered=True)) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_datetime_nan_error(): |
|
msg = "bins must be of datetime64 dtype" |
|
|
|
with pytest.raises(ValueError, match=msg): |
|
cut(date_range("20130101", periods=3), bins=[0, 2, 4]) |
|
|
|
|
|
def test_datetime_nan_mask(): |
|
result = cut( |
|
date_range("20130102", periods=5), bins=date_range("20130101", periods=2) |
|
) |
|
|
|
mask = result.categories.isna() |
|
tm.assert_numpy_array_equal(mask, np.array([False])) |
|
|
|
mask = result.isna() |
|
tm.assert_numpy_array_equal(mask, np.array([False, True, True, True, True])) |
|
|
|
|
|
@pytest.mark.parametrize("tz", [None, "UTC", "US/Pacific"]) |
|
def test_datetime_cut_roundtrip(tz, unit): |
|
|
|
ser = Series(date_range("20180101", periods=3, tz=tz, unit=unit)) |
|
result, result_bins = cut(ser, 2, retbins=True) |
|
|
|
expected = cut(ser, result_bins) |
|
tm.assert_series_equal(result, expected) |
|
|
|
if unit == "s": |
|
|
|
|
|
|
|
|
|
|
|
expected_bins = DatetimeIndex( |
|
["2017-12-31 23:57:08", "2018-01-02 00:00:00", "2018-01-03 00:00:00"], |
|
dtype=f"M8[{unit}]", |
|
) |
|
else: |
|
expected_bins = DatetimeIndex( |
|
[ |
|
"2017-12-31 23:57:07.200000", |
|
"2018-01-02 00:00:00", |
|
"2018-01-03 00:00:00", |
|
], |
|
dtype=f"M8[{unit}]", |
|
) |
|
expected_bins = expected_bins.tz_localize(tz) |
|
tm.assert_index_equal(result_bins, expected_bins) |
|
|
|
|
|
def test_timedelta_cut_roundtrip(): |
|
|
|
ser = Series(timedelta_range("1day", periods=3)) |
|
result, result_bins = cut(ser, 2, retbins=True) |
|
|
|
expected = cut(ser, result_bins) |
|
tm.assert_series_equal(result, expected) |
|
|
|
expected_bins = TimedeltaIndex( |
|
["0 days 23:57:07.200000", "2 days 00:00:00", "3 days 00:00:00"] |
|
) |
|
tm.assert_index_equal(result_bins, expected_bins) |
|
|
|
|
|
@pytest.mark.parametrize("bins", [6, 7]) |
|
@pytest.mark.parametrize( |
|
"box, compare", |
|
[ |
|
(Series, tm.assert_series_equal), |
|
(np.array, tm.assert_categorical_equal), |
|
(list, tm.assert_equal), |
|
], |
|
) |
|
def test_cut_bool_coercion_to_int(bins, box, compare): |
|
|
|
data_expected = box([0, 1, 1, 0, 1] * 10) |
|
data_result = box([False, True, True, False, True] * 10) |
|
expected = cut(data_expected, bins, duplicates="drop") |
|
result = cut(data_result, bins, duplicates="drop") |
|
compare(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("labels", ["foo", 1, True]) |
|
def test_cut_incorrect_labels(labels): |
|
|
|
values = range(5) |
|
msg = "Bin labels must either be False, None or passed in as a list-like argument" |
|
with pytest.raises(ValueError, match=msg): |
|
cut(values, 4, labels=labels) |
|
|
|
|
|
@pytest.mark.parametrize("bins", [3, [0, 5, 15]]) |
|
@pytest.mark.parametrize("right", [True, False]) |
|
@pytest.mark.parametrize("include_lowest", [True, False]) |
|
def test_cut_nullable_integer(bins, right, include_lowest): |
|
a = np.random.default_rng(2).integers(0, 10, size=50).astype(float) |
|
a[::2] = np.nan |
|
result = cut( |
|
pd.array(a, dtype="Int64"), bins, right=right, include_lowest=include_lowest |
|
) |
|
expected = cut(a, bins, right=right, include_lowest=include_lowest) |
|
tm.assert_categorical_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"data, bins, labels, expected_codes, expected_labels", |
|
[ |
|
([15, 17, 19], [14, 16, 18, 20], ["A", "B", "A"], [0, 1, 0], ["A", "B"]), |
|
([1, 3, 5], [0, 2, 4, 6, 8], [2, 0, 1, 2], [2, 0, 1], [0, 1, 2]), |
|
], |
|
) |
|
def test_cut_non_unique_labels(data, bins, labels, expected_codes, expected_labels): |
|
|
|
result = cut(data, bins=bins, labels=labels, ordered=False) |
|
expected = Categorical.from_codes( |
|
expected_codes, categories=expected_labels, ordered=False |
|
) |
|
tm.assert_categorical_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"data, bins, labels, expected_codes, expected_labels", |
|
[ |
|
([15, 17, 19], [14, 16, 18, 20], ["C", "B", "A"], [0, 1, 2], ["C", "B", "A"]), |
|
([1, 3, 5], [0, 2, 4, 6, 8], [3, 0, 1, 2], [0, 1, 2], [3, 0, 1, 2]), |
|
], |
|
) |
|
def test_cut_unordered_labels(data, bins, labels, expected_codes, expected_labels): |
|
|
|
result = cut(data, bins=bins, labels=labels, ordered=False) |
|
expected = Categorical.from_codes( |
|
expected_codes, categories=expected_labels, ordered=False |
|
) |
|
tm.assert_categorical_equal(result, expected) |
|
|
|
|
|
def test_cut_unordered_with_missing_labels_raises_error(): |
|
|
|
msg = "'labels' must be provided if 'ordered = False'" |
|
with pytest.raises(ValueError, match=msg): |
|
cut([0.5, 3], bins=[0, 1, 2], ordered=False) |
|
|
|
|
|
def test_cut_unordered_with_series_labels(): |
|
|
|
ser = Series([1, 2, 3, 4, 5]) |
|
bins = Series([0, 2, 4, 6]) |
|
labels = Series(["a", "b", "c"]) |
|
result = cut(ser, bins=bins, labels=labels, ordered=False) |
|
expected = Series(["a", "a", "b", "b", "c"], dtype="category") |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_cut_no_warnings(): |
|
df = DataFrame({"value": np.random.default_rng(2).integers(0, 100, 20)}) |
|
labels = [f"{i} - {i + 9}" for i in range(0, 100, 10)] |
|
with tm.assert_produces_warning(False): |
|
df["group"] = cut(df.value, range(0, 105, 10), right=False, labels=labels) |
|
|
|
|
|
def test_cut_with_duplicated_index_lowest_included(): |
|
|
|
expected = Series( |
|
[Interval(-0.001, 2, closed="right")] * 3 |
|
+ [Interval(2, 4, closed="right"), Interval(-0.001, 2, closed="right")], |
|
index=[0, 1, 2, 3, 0], |
|
dtype="category", |
|
).cat.as_ordered() |
|
|
|
ser = Series([0, 1, 2, 3, 0], index=[0, 1, 2, 3, 0]) |
|
result = cut(ser, bins=[0, 2, 4], include_lowest=True) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_cut_with_nonexact_categorical_indices(): |
|
|
|
|
|
ser = Series(range(100)) |
|
ser1 = cut(ser, 10).value_counts().head(5) |
|
ser2 = cut(ser, 10).value_counts().tail(5) |
|
result = DataFrame({"1": ser1, "2": ser2}) |
|
|
|
index = pd.CategoricalIndex( |
|
[ |
|
Interval(-0.099, 9.9, closed="right"), |
|
Interval(9.9, 19.8, closed="right"), |
|
Interval(19.8, 29.7, closed="right"), |
|
Interval(29.7, 39.6, closed="right"), |
|
Interval(39.6, 49.5, closed="right"), |
|
Interval(49.5, 59.4, closed="right"), |
|
Interval(59.4, 69.3, closed="right"), |
|
Interval(69.3, 79.2, closed="right"), |
|
Interval(79.2, 89.1, closed="right"), |
|
Interval(89.1, 99, closed="right"), |
|
], |
|
ordered=True, |
|
) |
|
|
|
expected = DataFrame( |
|
{"1": [10] * 5 + [np.nan] * 5, "2": [np.nan] * 5 + [10] * 5}, index=index |
|
) |
|
|
|
tm.assert_frame_equal(expected, result) |
|
|
|
|
|
def test_cut_with_timestamp_tuple_labels(): |
|
|
|
labels = [(Timestamp(10),), (Timestamp(20),), (Timestamp(30),)] |
|
result = cut([2, 4, 6], bins=[1, 3, 5, 7], labels=labels) |
|
|
|
expected = Categorical.from_codes([0, 1, 2], labels, ordered=True) |
|
tm.assert_categorical_equal(result, expected) |
|
|
|
|
|
def test_cut_bins_datetime_intervalindex(): |
|
|
|
bins = interval_range(Timestamp("2022-02-25"), Timestamp("2022-02-27"), freq="1D") |
|
|
|
result = cut(Series([Timestamp("2022-02-26")]).astype("M8[ns]"), bins=bins) |
|
expected = Categorical.from_codes([0], bins, ordered=True) |
|
tm.assert_categorical_equal(result.array, expected) |
|
|
|
|
|
def test_cut_with_nullable_int64(): |
|
|
|
series = Series([0, 1, 2, 3, 4, pd.NA, 6, 7], dtype="Int64") |
|
bins = [0, 2, 4, 6, 8] |
|
intervals = IntervalIndex.from_breaks(bins) |
|
|
|
expected = Series( |
|
Categorical.from_codes([-1, 0, 0, 1, 1, -1, 2, 3], intervals, ordered=True) |
|
) |
|
|
|
result = cut(series, bins=bins) |
|
|
|
tm.assert_series_equal(result, expected) |
|
|