|
from datetime import timedelta |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
import pandas.util._test_decorators as td |
|
|
|
import pandas as pd |
|
from pandas import ( |
|
DataFrame, |
|
Series, |
|
) |
|
import pandas._testing as tm |
|
from pandas.core.indexes.timedeltas import timedelta_range |
|
|
|
|
|
def test_asfreq_bug(): |
|
df = DataFrame(data=[1, 3], index=[timedelta(), timedelta(minutes=3)]) |
|
result = df.resample("1min").asfreq() |
|
expected = DataFrame( |
|
data=[1, np.nan, np.nan, 3], |
|
index=timedelta_range("0 day", periods=4, freq="1min"), |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_resample_with_nat(): |
|
|
|
index = pd.to_timedelta(["0s", pd.NaT, "2s"]) |
|
result = DataFrame({"value": [2, 3, 5]}, index).resample("1s").mean() |
|
expected = DataFrame( |
|
{"value": [2.5, np.nan, 5.0]}, |
|
index=timedelta_range("0 day", periods=3, freq="1s"), |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_resample_as_freq_with_subperiod(): |
|
|
|
index = timedelta_range("00:00:00", "00:10:00", freq="5min") |
|
df = DataFrame(data={"value": [1, 5, 10]}, index=index) |
|
result = df.resample("2min").asfreq() |
|
expected_data = {"value": [1, np.nan, np.nan, np.nan, np.nan, 10]} |
|
expected = DataFrame( |
|
data=expected_data, index=timedelta_range("00:00:00", "00:10:00", freq="2min") |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_resample_with_timedeltas(): |
|
expected = DataFrame({"A": np.arange(1480)}) |
|
expected = expected.groupby(expected.index // 30).sum() |
|
expected.index = timedelta_range("0 days", freq="30min", periods=50) |
|
|
|
df = DataFrame( |
|
{"A": np.arange(1480)}, index=pd.to_timedelta(np.arange(1480), unit="min") |
|
) |
|
result = df.resample("30min").sum() |
|
|
|
tm.assert_frame_equal(result, expected) |
|
|
|
s = df["A"] |
|
result = s.resample("30min").sum() |
|
tm.assert_series_equal(result, expected["A"]) |
|
|
|
|
|
def test_resample_single_period_timedelta(): |
|
s = Series(list(range(5)), index=timedelta_range("1 day", freq="s", periods=5)) |
|
result = s.resample("2s").sum() |
|
expected = Series([1, 5, 4], index=timedelta_range("1 day", freq="2s", periods=3)) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_resample_timedelta_idempotency(): |
|
|
|
index = timedelta_range("0", periods=9, freq="10ms") |
|
series = Series(range(9), index=index) |
|
result = series.resample("10ms").mean() |
|
expected = series.astype(float) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_resample_offset_with_timedeltaindex(): |
|
|
|
rng = timedelta_range(start="0s", periods=25, freq="s") |
|
ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) |
|
|
|
with_base = ts.resample("2s", offset="5s").mean() |
|
without_base = ts.resample("2s").mean() |
|
|
|
exp_without_base = timedelta_range(start="0s", end="25s", freq="2s") |
|
exp_with_base = timedelta_range(start="5s", end="29s", freq="2s") |
|
|
|
tm.assert_index_equal(without_base.index, exp_without_base) |
|
tm.assert_index_equal(with_base.index, exp_with_base) |
|
|
|
|
|
def test_resample_categorical_data_with_timedeltaindex(): |
|
|
|
df = DataFrame({"Group_obj": "A"}, index=pd.to_timedelta(list(range(20)), unit="s")) |
|
df["Group"] = df["Group_obj"].astype("category") |
|
result = df.resample("10s").agg(lambda x: (x.value_counts().index[0])) |
|
exp_tdi = pd.TimedeltaIndex(np.array([0, 10], dtype="m8[s]"), freq="10s").as_unit( |
|
"ns" |
|
) |
|
expected = DataFrame( |
|
{"Group_obj": ["A", "A"], "Group": ["A", "A"]}, |
|
index=exp_tdi, |
|
) |
|
expected = expected.reindex(["Group_obj", "Group"], axis=1) |
|
expected["Group"] = expected["Group_obj"].astype("category") |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_resample_timedelta_values(): |
|
|
|
|
|
|
|
|
|
times = timedelta_range("1 day", "6 day", freq="4D") |
|
df = DataFrame({"time": times}, index=times) |
|
|
|
times2 = timedelta_range("1 day", "6 day", freq="2D") |
|
exp = Series(times2, index=times2, name="time") |
|
exp.iloc[1] = pd.NaT |
|
|
|
res = df.resample("2D").first()["time"] |
|
tm.assert_series_equal(res, exp) |
|
res = df["time"].resample("2D").first() |
|
tm.assert_series_equal(res, exp) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"start, end, freq, resample_freq", |
|
[ |
|
("8h", "21h59min50s", "10s", "3h"), |
|
("3h", "22h", "1h", "5h"), |
|
("527D", "5006D", "3D", "10D"), |
|
("1D", "10D", "1D", "2D"), |
|
|
|
("8h", "21h59min50s", "10s", "2h"), |
|
("0h", "21h59min50s", "10s", "3h"), |
|
("10D", "85D", "D", "2D"), |
|
], |
|
) |
|
def test_resample_timedelta_edge_case(start, end, freq, resample_freq): |
|
|
|
|
|
idx = timedelta_range(start=start, end=end, freq=freq) |
|
s = Series(np.arange(len(idx)), index=idx) |
|
result = s.resample(resample_freq).min() |
|
expected_index = timedelta_range(freq=resample_freq, start=start, end=end) |
|
tm.assert_index_equal(result.index, expected_index) |
|
assert result.index.freq == expected_index.freq |
|
assert not np.isnan(result.iloc[-1]) |
|
|
|
|
|
@pytest.mark.parametrize("duplicates", [True, False]) |
|
def test_resample_with_timedelta_yields_no_empty_groups(duplicates): |
|
|
|
df = DataFrame( |
|
np.random.default_rng(2).normal(size=(10000, 4)), |
|
index=timedelta_range(start="0s", periods=10000, freq="3906250ns"), |
|
) |
|
if duplicates: |
|
|
|
df.columns = ["A", "B", "A", "C"] |
|
|
|
result = df.loc["1s":, :].resample("3s").apply(lambda x: len(x)) |
|
|
|
expected = DataFrame( |
|
[[768] * 4] * 12 + [[528] * 4], |
|
index=timedelta_range(start="1s", periods=13, freq="3s"), |
|
) |
|
expected.columns = df.columns |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) |
|
def test_resample_quantile_timedelta(unit): |
|
|
|
dtype = np.dtype(f"m8[{unit}]") |
|
df = DataFrame( |
|
{"value": pd.to_timedelta(np.arange(4), unit="s").astype(dtype)}, |
|
index=pd.date_range("20200101", periods=4, tz="UTC"), |
|
) |
|
result = df.resample("2D").quantile(0.99) |
|
expected = DataFrame( |
|
{ |
|
"value": [ |
|
pd.Timedelta("0 days 00:00:00.990000"), |
|
pd.Timedelta("0 days 00:00:02.990000"), |
|
] |
|
}, |
|
index=pd.date_range("20200101", periods=2, tz="UTC", freq="2D"), |
|
).astype(dtype) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_resample_closed_right(): |
|
|
|
idx = pd.Index([pd.Timedelta(seconds=120 + i * 30) for i in range(10)]) |
|
ser = Series(range(10), index=idx) |
|
result = ser.resample("min", closed="right", label="right").sum() |
|
expected = Series( |
|
[0, 3, 7, 11, 15, 9], |
|
index=pd.TimedeltaIndex( |
|
[pd.Timedelta(seconds=120 + i * 60) for i in range(6)], freq="min" |
|
), |
|
) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@td.skip_if_no("pyarrow") |
|
def test_arrow_duration_resample(): |
|
|
|
idx = pd.Index(timedelta_range("1 day", periods=5), dtype="duration[ns][pyarrow]") |
|
expected = Series(np.arange(5, dtype=np.float64), index=idx) |
|
result = expected.resample("1D").mean() |
|
tm.assert_series_equal(result, expected) |
|
|