|
""" Test cases for Series.plot """ |
|
from datetime import datetime |
|
from itertools import chain |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from pandas.compat import is_platform_linux |
|
from pandas.compat.numpy import np_version_gte1p24 |
|
import pandas.util._test_decorators as td |
|
|
|
import pandas as pd |
|
from pandas import ( |
|
DataFrame, |
|
Series, |
|
date_range, |
|
period_range, |
|
plotting, |
|
) |
|
import pandas._testing as tm |
|
from pandas.tests.plotting.common import ( |
|
_check_ax_scales, |
|
_check_axes_shape, |
|
_check_colors, |
|
_check_grid_settings, |
|
_check_has_errorbars, |
|
_check_legend_labels, |
|
_check_plot_works, |
|
_check_text_labels, |
|
_check_ticks_props, |
|
_unpack_cycler, |
|
get_y_axis, |
|
) |
|
|
|
mpl = pytest.importorskip("matplotlib") |
|
plt = pytest.importorskip("matplotlib.pyplot") |
|
|
|
|
|
@pytest.fixture |
|
def ts(): |
|
return Series( |
|
np.arange(10, dtype=np.float64), |
|
index=date_range("2020-01-01", periods=10), |
|
name="ts", |
|
) |
|
|
|
|
|
@pytest.fixture |
|
def series(): |
|
return Series( |
|
range(20), dtype=np.float64, name="series", index=[f"i_{i}" for i in range(20)] |
|
) |
|
|
|
|
|
class TestSeriesPlots: |
|
@pytest.mark.slow |
|
@pytest.mark.parametrize("kwargs", [{"label": "foo"}, {"use_index": False}]) |
|
def test_plot(self, ts, kwargs): |
|
_check_plot_works(ts.plot, **kwargs) |
|
|
|
@pytest.mark.slow |
|
def test_plot_tick_props(self, ts): |
|
axes = _check_plot_works(ts.plot, rot=0) |
|
_check_ticks_props(axes, xrot=0) |
|
|
|
@pytest.mark.slow |
|
@pytest.mark.parametrize( |
|
"scale, exp_scale", |
|
[ |
|
[{"logy": True}, {"yaxis": "log"}], |
|
[{"logx": True}, {"xaxis": "log"}], |
|
[{"loglog": True}, {"xaxis": "log", "yaxis": "log"}], |
|
], |
|
) |
|
def test_plot_scales(self, ts, scale, exp_scale): |
|
ax = _check_plot_works(ts.plot, style=".", **scale) |
|
_check_ax_scales(ax, **exp_scale) |
|
|
|
@pytest.mark.slow |
|
def test_plot_ts_bar(self, ts): |
|
_check_plot_works(ts[:10].plot.bar) |
|
|
|
@pytest.mark.slow |
|
def test_plot_ts_area_stacked(self, ts): |
|
_check_plot_works(ts.plot.area, stacked=False) |
|
|
|
def test_plot_iseries(self): |
|
ser = Series(range(5), period_range("2020-01-01", periods=5)) |
|
_check_plot_works(ser.plot) |
|
|
|
@pytest.mark.parametrize( |
|
"kind", |
|
[ |
|
"line", |
|
"bar", |
|
"barh", |
|
pytest.param("kde", marks=td.skip_if_no("scipy")), |
|
"hist", |
|
"box", |
|
], |
|
) |
|
def test_plot_series_kinds(self, series, kind): |
|
_check_plot_works(series[:5].plot, kind=kind) |
|
|
|
def test_plot_series_barh(self, series): |
|
_check_plot_works(series[:10].plot.barh) |
|
|
|
def test_plot_series_bar_ax(self): |
|
ax = _check_plot_works( |
|
Series(np.random.default_rng(2).standard_normal(10)).plot.bar, color="black" |
|
) |
|
_check_colors([ax.patches[0]], facecolors=["black"]) |
|
|
|
@pytest.mark.parametrize("kwargs", [{}, {"layout": (-1, 1)}, {"layout": (1, -1)}]) |
|
def test_plot_6951(self, ts, kwargs): |
|
|
|
ax = _check_plot_works(ts.plot, subplots=True, **kwargs) |
|
_check_axes_shape(ax, axes_num=1, layout=(1, 1)) |
|
|
|
def test_plot_figsize_and_title(self, series): |
|
|
|
_, ax = mpl.pyplot.subplots() |
|
ax = series.plot(title="Test", figsize=(16, 8), ax=ax) |
|
_check_text_labels(ax.title, "Test") |
|
_check_axes_shape(ax, axes_num=1, layout=(1, 1), figsize=(16, 8)) |
|
|
|
def test_dont_modify_rcParams(self): |
|
|
|
key = "axes.prop_cycle" |
|
colors = mpl.pyplot.rcParams[key] |
|
_, ax = mpl.pyplot.subplots() |
|
Series([1, 2, 3]).plot(ax=ax) |
|
assert colors == mpl.pyplot.rcParams[key] |
|
|
|
@pytest.mark.parametrize("kwargs", [{}, {"secondary_y": True}]) |
|
def test_ts_line_lim(self, ts, kwargs): |
|
_, ax = mpl.pyplot.subplots() |
|
ax = ts.plot(ax=ax, **kwargs) |
|
xmin, xmax = ax.get_xlim() |
|
lines = ax.get_lines() |
|
assert xmin <= lines[0].get_data(orig=False)[0][0] |
|
assert xmax >= lines[0].get_data(orig=False)[0][-1] |
|
|
|
def test_ts_area_lim(self, ts): |
|
_, ax = mpl.pyplot.subplots() |
|
ax = ts.plot.area(stacked=False, ax=ax) |
|
xmin, xmax = ax.get_xlim() |
|
line = ax.get_lines()[0].get_data(orig=False)[0] |
|
assert xmin <= line[0] |
|
assert xmax >= line[-1] |
|
_check_ticks_props(ax, xrot=0) |
|
|
|
def test_ts_area_lim_xcompat(self, ts): |
|
|
|
_, ax = mpl.pyplot.subplots() |
|
ax = ts.plot.area(stacked=False, x_compat=True, ax=ax) |
|
xmin, xmax = ax.get_xlim() |
|
line = ax.get_lines()[0].get_data(orig=False)[0] |
|
assert xmin <= line[0] |
|
assert xmax >= line[-1] |
|
_check_ticks_props(ax, xrot=30) |
|
|
|
def test_ts_tz_area_lim_xcompat(self, ts): |
|
tz_ts = ts.copy() |
|
tz_ts.index = tz_ts.tz_localize("GMT").tz_convert("CET") |
|
_, ax = mpl.pyplot.subplots() |
|
ax = tz_ts.plot.area(stacked=False, x_compat=True, ax=ax) |
|
xmin, xmax = ax.get_xlim() |
|
line = ax.get_lines()[0].get_data(orig=False)[0] |
|
assert xmin <= line[0] |
|
assert xmax >= line[-1] |
|
_check_ticks_props(ax, xrot=0) |
|
|
|
def test_ts_tz_area_lim_xcompat_secondary_y(self, ts): |
|
tz_ts = ts.copy() |
|
tz_ts.index = tz_ts.tz_localize("GMT").tz_convert("CET") |
|
_, ax = mpl.pyplot.subplots() |
|
ax = tz_ts.plot.area(stacked=False, secondary_y=True, ax=ax) |
|
xmin, xmax = ax.get_xlim() |
|
line = ax.get_lines()[0].get_data(orig=False)[0] |
|
assert xmin <= line[0] |
|
assert xmax >= line[-1] |
|
_check_ticks_props(ax, xrot=0) |
|
|
|
def test_area_sharey_dont_overwrite(self, ts): |
|
|
|
fig, (ax1, ax2) = mpl.pyplot.subplots(1, 2, sharey=True) |
|
|
|
abs(ts).plot(ax=ax1, kind="area") |
|
abs(ts).plot(ax=ax2, kind="area") |
|
|
|
assert get_y_axis(ax1).joined(ax1, ax2) |
|
assert get_y_axis(ax2).joined(ax1, ax2) |
|
plt.close(fig) |
|
|
|
def test_label(self): |
|
s = Series([1, 2]) |
|
_, ax = mpl.pyplot.subplots() |
|
ax = s.plot(label="LABEL", legend=True, ax=ax) |
|
_check_legend_labels(ax, labels=["LABEL"]) |
|
mpl.pyplot.close("all") |
|
|
|
def test_label_none(self): |
|
s = Series([1, 2]) |
|
_, ax = mpl.pyplot.subplots() |
|
ax = s.plot(legend=True, ax=ax) |
|
_check_legend_labels(ax, labels=[""]) |
|
mpl.pyplot.close("all") |
|
|
|
def test_label_ser_name(self): |
|
s = Series([1, 2], name="NAME") |
|
_, ax = mpl.pyplot.subplots() |
|
ax = s.plot(legend=True, ax=ax) |
|
_check_legend_labels(ax, labels=["NAME"]) |
|
mpl.pyplot.close("all") |
|
|
|
def test_label_ser_name_override(self): |
|
s = Series([1, 2], name="NAME") |
|
|
|
_, ax = mpl.pyplot.subplots() |
|
ax = s.plot(legend=True, label="LABEL", ax=ax) |
|
_check_legend_labels(ax, labels=["LABEL"]) |
|
mpl.pyplot.close("all") |
|
|
|
def test_label_ser_name_override_dont_draw(self): |
|
s = Series([1, 2], name="NAME") |
|
|
|
_, ax = mpl.pyplot.subplots() |
|
ax = s.plot(legend=False, label="LABEL", ax=ax) |
|
assert ax.get_legend() is None |
|
ax.legend() |
|
_check_legend_labels(ax, labels=["LABEL"]) |
|
mpl.pyplot.close("all") |
|
|
|
def test_boolean(self): |
|
|
|
s = Series([False, False, True]) |
|
_check_plot_works(s.plot, include_bool=True) |
|
|
|
msg = "no numeric data to plot" |
|
with pytest.raises(TypeError, match=msg): |
|
_check_plot_works(s.plot) |
|
|
|
@pytest.mark.parametrize("index", [None, date_range("2020-01-01", periods=4)]) |
|
def test_line_area_nan_series(self, index): |
|
values = [1, 2, np.nan, 3] |
|
d = Series(values, index=index) |
|
ax = _check_plot_works(d.plot) |
|
masked = ax.lines[0].get_ydata() |
|
|
|
exp = np.array([1, 2, 3], dtype=np.float64) |
|
tm.assert_numpy_array_equal(np.delete(masked.data, 2), exp) |
|
tm.assert_numpy_array_equal(masked.mask, np.array([False, False, True, False])) |
|
|
|
expected = np.array([1, 2, 0, 3], dtype=np.float64) |
|
ax = _check_plot_works(d.plot, stacked=True) |
|
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) |
|
ax = _check_plot_works(d.plot.area) |
|
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) |
|
ax = _check_plot_works(d.plot.area, stacked=False) |
|
tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) |
|
|
|
def test_line_use_index_false(self): |
|
s = Series([1, 2, 3], index=["a", "b", "c"]) |
|
s.index.name = "The Index" |
|
_, ax = mpl.pyplot.subplots() |
|
ax = s.plot(use_index=False, ax=ax) |
|
label = ax.get_xlabel() |
|
assert label == "" |
|
|
|
def test_line_use_index_false_diff_var(self): |
|
s = Series([1, 2, 3], index=["a", "b", "c"]) |
|
s.index.name = "The Index" |
|
_, ax = mpl.pyplot.subplots() |
|
ax2 = s.plot.bar(use_index=False, ax=ax) |
|
label2 = ax2.get_xlabel() |
|
assert label2 == "" |
|
|
|
@pytest.mark.xfail( |
|
np_version_gte1p24 and is_platform_linux(), |
|
reason="Weird rounding problems", |
|
strict=False, |
|
) |
|
@pytest.mark.parametrize("axis, meth", [("yaxis", "bar"), ("xaxis", "barh")]) |
|
def test_bar_log(self, axis, meth): |
|
expected = np.array([1e-1, 1e0, 1e1, 1e2, 1e3, 1e4]) |
|
|
|
_, ax = mpl.pyplot.subplots() |
|
ax = getattr(Series([200, 500]).plot, meth)(log=True, ax=ax) |
|
tm.assert_numpy_array_equal(getattr(ax, axis).get_ticklocs(), expected) |
|
|
|
@pytest.mark.xfail( |
|
np_version_gte1p24 and is_platform_linux(), |
|
reason="Weird rounding problems", |
|
strict=False, |
|
) |
|
@pytest.mark.parametrize( |
|
"axis, kind, res_meth", |
|
[["yaxis", "bar", "get_ylim"], ["xaxis", "barh", "get_xlim"]], |
|
) |
|
def test_bar_log_kind_bar(self, axis, kind, res_meth): |
|
|
|
expected = np.array([1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1]) |
|
|
|
_, ax = mpl.pyplot.subplots() |
|
ax = Series([0.1, 0.01, 0.001]).plot(log=True, kind=kind, ax=ax) |
|
ymin = 0.0007943282347242822 |
|
ymax = 0.12589254117941673 |
|
res = getattr(ax, res_meth)() |
|
tm.assert_almost_equal(res[0], ymin) |
|
tm.assert_almost_equal(res[1], ymax) |
|
tm.assert_numpy_array_equal(getattr(ax, axis).get_ticklocs(), expected) |
|
|
|
def test_bar_ignore_index(self): |
|
df = Series([1, 2, 3, 4], index=["a", "b", "c", "d"]) |
|
_, ax = mpl.pyplot.subplots() |
|
ax = df.plot.bar(use_index=False, ax=ax) |
|
_check_text_labels(ax.get_xticklabels(), ["0", "1", "2", "3"]) |
|
|
|
def test_bar_user_colors(self): |
|
s = Series([1, 2, 3, 4]) |
|
ax = s.plot.bar(color=["red", "blue", "blue", "red"]) |
|
result = [p.get_facecolor() for p in ax.patches] |
|
expected = [ |
|
(1.0, 0.0, 0.0, 1.0), |
|
(0.0, 0.0, 1.0, 1.0), |
|
(0.0, 0.0, 1.0, 1.0), |
|
(1.0, 0.0, 0.0, 1.0), |
|
] |
|
assert result == expected |
|
|
|
def test_rotation_default(self): |
|
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) |
|
|
|
_, ax = mpl.pyplot.subplots() |
|
axes = df.plot(ax=ax) |
|
_check_ticks_props(axes, xrot=0) |
|
|
|
def test_rotation_30(self): |
|
df = DataFrame(np.random.default_rng(2).standard_normal((5, 5))) |
|
_, ax = mpl.pyplot.subplots() |
|
axes = df.plot(rot=30, ax=ax) |
|
_check_ticks_props(axes, xrot=30) |
|
|
|
def test_irregular_datetime(self): |
|
from pandas.plotting._matplotlib.converter import DatetimeConverter |
|
|
|
rng = date_range("1/1/2000", "3/1/2000") |
|
rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]] |
|
ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng) |
|
_, ax = mpl.pyplot.subplots() |
|
ax = ser.plot(ax=ax) |
|
xp = DatetimeConverter.convert(datetime(1999, 1, 1), "", ax) |
|
ax.set_xlim("1/1/1999", "1/1/2001") |
|
assert xp == ax.get_xlim()[0] |
|
_check_ticks_props(ax, xrot=30) |
|
|
|
def test_unsorted_index_xlim(self): |
|
ser = Series( |
|
[0.0, 1.0, np.nan, 3.0, 4.0, 5.0, 6.0], |
|
index=[1.0, 0.0, 3.0, 2.0, np.nan, 3.0, 2.0], |
|
) |
|
_, ax = mpl.pyplot.subplots() |
|
ax = ser.plot(ax=ax) |
|
xmin, xmax = ax.get_xlim() |
|
lines = ax.get_lines() |
|
assert xmin <= np.nanmin(lines[0].get_data(orig=False)[0]) |
|
assert xmax >= np.nanmax(lines[0].get_data(orig=False)[0]) |
|
|
|
def test_pie_series(self): |
|
|
|
|
|
series = Series( |
|
np.random.default_rng(2).integers(1, 5), |
|
index=["a", "b", "c", "d", "e"], |
|
name="YLABEL", |
|
) |
|
ax = _check_plot_works(series.plot.pie) |
|
_check_text_labels(ax.texts, series.index) |
|
assert ax.get_ylabel() == "YLABEL" |
|
|
|
def test_pie_series_no_label(self): |
|
series = Series( |
|
np.random.default_rng(2).integers(1, 5), |
|
index=["a", "b", "c", "d", "e"], |
|
name="YLABEL", |
|
) |
|
ax = _check_plot_works(series.plot.pie, labels=None) |
|
_check_text_labels(ax.texts, [""] * 5) |
|
|
|
def test_pie_series_less_colors_than_elements(self): |
|
series = Series( |
|
np.random.default_rng(2).integers(1, 5), |
|
index=["a", "b", "c", "d", "e"], |
|
name="YLABEL", |
|
) |
|
color_args = ["r", "g", "b"] |
|
ax = _check_plot_works(series.plot.pie, colors=color_args) |
|
|
|
color_expected = ["r", "g", "b", "r", "g"] |
|
_check_colors(ax.patches, facecolors=color_expected) |
|
|
|
def test_pie_series_labels_and_colors(self): |
|
series = Series( |
|
np.random.default_rng(2).integers(1, 5), |
|
index=["a", "b", "c", "d", "e"], |
|
name="YLABEL", |
|
) |
|
|
|
labels = ["A", "B", "C", "D", "E"] |
|
color_args = ["r", "g", "b", "c", "m"] |
|
ax = _check_plot_works(series.plot.pie, labels=labels, colors=color_args) |
|
_check_text_labels(ax.texts, labels) |
|
_check_colors(ax.patches, facecolors=color_args) |
|
|
|
def test_pie_series_autopct_and_fontsize(self): |
|
series = Series( |
|
np.random.default_rng(2).integers(1, 5), |
|
index=["a", "b", "c", "d", "e"], |
|
name="YLABEL", |
|
) |
|
color_args = ["r", "g", "b", "c", "m"] |
|
ax = _check_plot_works( |
|
series.plot.pie, colors=color_args, autopct="%.2f", fontsize=7 |
|
) |
|
pcts = [f"{s*100:.2f}" for s in series.values / series.sum()] |
|
expected_texts = list(chain.from_iterable(zip(series.index, pcts))) |
|
_check_text_labels(ax.texts, expected_texts) |
|
for t in ax.texts: |
|
assert t.get_fontsize() == 7 |
|
|
|
def test_pie_series_negative_raises(self): |
|
|
|
series = Series([1, 2, 0, 4, -1], index=["a", "b", "c", "d", "e"]) |
|
with pytest.raises(ValueError, match="pie plot doesn't allow negative values"): |
|
series.plot.pie() |
|
|
|
def test_pie_series_nan(self): |
|
|
|
series = Series([1, 2, np.nan, 4], index=["a", "b", "c", "d"], name="YLABEL") |
|
ax = _check_plot_works(series.plot.pie) |
|
_check_text_labels(ax.texts, ["a", "b", "", "d"]) |
|
|
|
def test_pie_nan(self): |
|
s = Series([1, np.nan, 1, 1]) |
|
_, ax = mpl.pyplot.subplots() |
|
ax = s.plot.pie(legend=True, ax=ax) |
|
expected = ["0", "", "2", "3"] |
|
result = [x.get_text() for x in ax.texts] |
|
assert result == expected |
|
|
|
def test_df_series_secondary_legend(self): |
|
|
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((30, 3)), columns=list("abc") |
|
) |
|
s = Series(np.random.default_rng(2).standard_normal(30), name="x") |
|
|
|
|
|
_, ax = mpl.pyplot.subplots() |
|
ax = df.plot(ax=ax) |
|
s.plot(legend=True, secondary_y=True, ax=ax) |
|
|
|
|
|
_check_legend_labels(ax, labels=["a", "b", "c", "x (right)"]) |
|
assert ax.get_yaxis().get_visible() |
|
assert ax.right_ax.get_yaxis().get_visible() |
|
|
|
def test_df_series_secondary_legend_with_axes(self): |
|
|
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((30, 3)), columns=list("abc") |
|
) |
|
s = Series(np.random.default_rng(2).standard_normal(30), name="x") |
|
|
|
_, ax = mpl.pyplot.subplots() |
|
ax = df.plot(ax=ax) |
|
s.plot(ax=ax, legend=True, secondary_y=True) |
|
|
|
|
|
_check_legend_labels(ax, labels=["a", "b", "c", "x (right)"]) |
|
assert ax.get_yaxis().get_visible() |
|
assert ax.right_ax.get_yaxis().get_visible() |
|
|
|
def test_df_series_secondary_legend_both(self): |
|
|
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((30, 3)), columns=list("abc") |
|
) |
|
s = Series(np.random.default_rng(2).standard_normal(30), name="x") |
|
|
|
_, ax = mpl.pyplot.subplots() |
|
ax = df.plot(secondary_y=True, ax=ax) |
|
s.plot(legend=True, secondary_y=True, ax=ax) |
|
|
|
|
|
expected = ["a (right)", "b (right)", "c (right)", "x (right)"] |
|
_check_legend_labels(ax.left_ax, labels=expected) |
|
assert not ax.left_ax.get_yaxis().get_visible() |
|
assert ax.get_yaxis().get_visible() |
|
|
|
def test_df_series_secondary_legend_both_with_axis(self): |
|
|
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((30, 3)), columns=list("abc") |
|
) |
|
s = Series(np.random.default_rng(2).standard_normal(30), name="x") |
|
|
|
_, ax = mpl.pyplot.subplots() |
|
ax = df.plot(secondary_y=True, ax=ax) |
|
s.plot(ax=ax, legend=True, secondary_y=True) |
|
|
|
|
|
expected = ["a (right)", "b (right)", "c (right)", "x (right)"] |
|
_check_legend_labels(ax.left_ax, expected) |
|
assert not ax.left_ax.get_yaxis().get_visible() |
|
assert ax.get_yaxis().get_visible() |
|
|
|
def test_df_series_secondary_legend_both_with_axis_2(self): |
|
|
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((30, 3)), columns=list("abc") |
|
) |
|
s = Series(np.random.default_rng(2).standard_normal(30), name="x") |
|
|
|
_, ax = mpl.pyplot.subplots() |
|
ax = df.plot(secondary_y=True, mark_right=False, ax=ax) |
|
s.plot(ax=ax, legend=True, secondary_y=True) |
|
|
|
|
|
expected = ["a", "b", "c", "x (right)"] |
|
_check_legend_labels(ax.left_ax, expected) |
|
assert not ax.left_ax.get_yaxis().get_visible() |
|
assert ax.get_yaxis().get_visible() |
|
|
|
@pytest.mark.parametrize( |
|
"input_logy, expected_scale", [(True, "log"), ("sym", "symlog")] |
|
) |
|
def test_secondary_logy(self, input_logy, expected_scale): |
|
|
|
s1 = Series(np.random.default_rng(2).standard_normal(100)) |
|
s2 = Series(np.random.default_rng(2).standard_normal(100)) |
|
|
|
|
|
ax1 = s1.plot(logy=input_logy) |
|
ax2 = s2.plot(secondary_y=True, logy=input_logy) |
|
|
|
assert ax1.get_yscale() == expected_scale |
|
assert ax2.get_yscale() == expected_scale |
|
|
|
def test_plot_fails_with_dupe_color_and_style(self): |
|
x = Series(np.random.default_rng(2).standard_normal(2)) |
|
_, ax = mpl.pyplot.subplots() |
|
msg = ( |
|
"Cannot pass 'style' string with a color symbol and 'color' keyword " |
|
"argument. Please use one or the other or pass 'style' without a color " |
|
"symbol" |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
x.plot(style="k--", color="k", ax=ax) |
|
|
|
@pytest.mark.parametrize( |
|
"bw_method, ind", |
|
[ |
|
["scott", 20], |
|
[None, 20], |
|
[None, np.int_(20)], |
|
[0.5, np.linspace(-100, 100, 20)], |
|
], |
|
) |
|
def test_kde_kwargs(self, ts, bw_method, ind): |
|
pytest.importorskip("scipy") |
|
_check_plot_works(ts.plot.kde, bw_method=bw_method, ind=ind) |
|
|
|
def test_density_kwargs(self, ts): |
|
pytest.importorskip("scipy") |
|
sample_points = np.linspace(-100, 100, 20) |
|
_check_plot_works(ts.plot.density, bw_method=0.5, ind=sample_points) |
|
|
|
def test_kde_kwargs_check_axes(self, ts): |
|
pytest.importorskip("scipy") |
|
_, ax = mpl.pyplot.subplots() |
|
sample_points = np.linspace(-100, 100, 20) |
|
ax = ts.plot.kde(logy=True, bw_method=0.5, ind=sample_points, ax=ax) |
|
_check_ax_scales(ax, yaxis="log") |
|
_check_text_labels(ax.yaxis.get_label(), "Density") |
|
|
|
def test_kde_missing_vals(self): |
|
pytest.importorskip("scipy") |
|
s = Series(np.random.default_rng(2).uniform(size=50)) |
|
s[0] = np.nan |
|
axes = _check_plot_works(s.plot.kde) |
|
|
|
|
|
assert any(~np.isnan(axes.lines[0].get_xdata())) |
|
|
|
@pytest.mark.xfail(reason="Api changed in 3.6.0") |
|
def test_boxplot_series(self, ts): |
|
_, ax = mpl.pyplot.subplots() |
|
ax = ts.plot.box(logy=True, ax=ax) |
|
_check_ax_scales(ax, yaxis="log") |
|
xlabels = ax.get_xticklabels() |
|
_check_text_labels(xlabels, [ts.name]) |
|
ylabels = ax.get_yticklabels() |
|
_check_text_labels(ylabels, [""] * len(ylabels)) |
|
|
|
@pytest.mark.parametrize( |
|
"kind", |
|
plotting.PlotAccessor._common_kinds + plotting.PlotAccessor._series_kinds, |
|
) |
|
def test_kind_kwarg(self, kind): |
|
pytest.importorskip("scipy") |
|
s = Series(range(3)) |
|
_, ax = mpl.pyplot.subplots() |
|
s.plot(kind=kind, ax=ax) |
|
mpl.pyplot.close() |
|
|
|
@pytest.mark.parametrize( |
|
"kind", |
|
plotting.PlotAccessor._common_kinds + plotting.PlotAccessor._series_kinds, |
|
) |
|
def test_kind_attr(self, kind): |
|
pytest.importorskip("scipy") |
|
s = Series(range(3)) |
|
_, ax = mpl.pyplot.subplots() |
|
getattr(s.plot, kind)() |
|
mpl.pyplot.close() |
|
|
|
@pytest.mark.parametrize("kind", plotting.PlotAccessor._common_kinds) |
|
def test_invalid_plot_data(self, kind): |
|
s = Series(list("abcd")) |
|
_, ax = mpl.pyplot.subplots() |
|
msg = "no numeric data to plot" |
|
with pytest.raises(TypeError, match=msg): |
|
s.plot(kind=kind, ax=ax) |
|
|
|
@pytest.mark.parametrize("kind", plotting.PlotAccessor._common_kinds) |
|
def test_valid_object_plot(self, kind): |
|
pytest.importorskip("scipy") |
|
s = Series(range(10), dtype=object) |
|
_check_plot_works(s.plot, kind=kind) |
|
|
|
@pytest.mark.parametrize("kind", plotting.PlotAccessor._common_kinds) |
|
def test_partially_invalid_plot_data(self, kind): |
|
s = Series(["a", "b", 1.0, 2]) |
|
_, ax = mpl.pyplot.subplots() |
|
msg = "no numeric data to plot" |
|
with pytest.raises(TypeError, match=msg): |
|
s.plot(kind=kind, ax=ax) |
|
|
|
def test_invalid_kind(self): |
|
s = Series([1, 2]) |
|
with pytest.raises(ValueError, match="invalid_kind is not a valid plot kind"): |
|
s.plot(kind="invalid_kind") |
|
|
|
def test_dup_datetime_index_plot(self): |
|
dr1 = date_range("1/1/2009", periods=4) |
|
dr2 = date_range("1/2/2009", periods=4) |
|
index = dr1.append(dr2) |
|
values = np.random.default_rng(2).standard_normal(index.size) |
|
s = Series(values, index=index) |
|
_check_plot_works(s.plot) |
|
|
|
def test_errorbar_asymmetrical(self): |
|
|
|
s = Series(np.arange(10), name="x") |
|
err = np.random.default_rng(2).random((2, 10)) |
|
|
|
ax = s.plot(yerr=err, xerr=err) |
|
|
|
result = np.vstack([i.vertices[:, 1] for i in ax.collections[1].get_paths()]) |
|
expected = (err.T * np.array([-1, 1])) + s.to_numpy().reshape(-1, 1) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
msg = ( |
|
"Asymmetrical error bars should be provided " |
|
f"with the shape \\(2, {len(s)}\\)" |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
s.plot(yerr=np.random.default_rng(2).random((2, 11))) |
|
|
|
@pytest.mark.slow |
|
@pytest.mark.parametrize("kind", ["line", "bar"]) |
|
@pytest.mark.parametrize( |
|
"yerr", |
|
[ |
|
Series(np.abs(np.random.default_rng(2).standard_normal(10))), |
|
np.abs(np.random.default_rng(2).standard_normal(10)), |
|
list(np.abs(np.random.default_rng(2).standard_normal(10))), |
|
DataFrame( |
|
np.abs(np.random.default_rng(2).standard_normal((10, 2))), |
|
columns=["x", "y"], |
|
), |
|
], |
|
) |
|
def test_errorbar_plot(self, kind, yerr): |
|
s = Series(np.arange(10), name="x") |
|
ax = _check_plot_works(s.plot, yerr=yerr, kind=kind) |
|
_check_has_errorbars(ax, xerr=0, yerr=1) |
|
|
|
@pytest.mark.slow |
|
def test_errorbar_plot_yerr_0(self): |
|
s = Series(np.arange(10), name="x") |
|
s_err = np.abs(np.random.default_rng(2).standard_normal(10)) |
|
ax = _check_plot_works(s.plot, xerr=s_err) |
|
_check_has_errorbars(ax, xerr=1, yerr=0) |
|
|
|
@pytest.mark.slow |
|
@pytest.mark.parametrize( |
|
"yerr", |
|
[ |
|
Series(np.abs(np.random.default_rng(2).standard_normal(12))), |
|
DataFrame( |
|
np.abs(np.random.default_rng(2).standard_normal((12, 2))), |
|
columns=["x", "y"], |
|
), |
|
], |
|
) |
|
def test_errorbar_plot_ts(self, yerr): |
|
|
|
ix = date_range("1/1/2000", "1/1/2001", freq="ME") |
|
ts = Series(np.arange(12), index=ix, name="x") |
|
yerr.index = ix |
|
|
|
ax = _check_plot_works(ts.plot, yerr=yerr) |
|
_check_has_errorbars(ax, xerr=0, yerr=1) |
|
|
|
@pytest.mark.slow |
|
def test_errorbar_plot_invalid_yerr_shape(self): |
|
s = Series(np.arange(10), name="x") |
|
|
|
with tm.external_error_raised(ValueError): |
|
s.plot(yerr=np.arange(11)) |
|
|
|
@pytest.mark.slow |
|
def test_errorbar_plot_invalid_yerr(self): |
|
s = Series(np.arange(10), name="x") |
|
s_err = ["zzz"] * 10 |
|
with tm.external_error_raised(TypeError): |
|
s.plot(yerr=s_err) |
|
|
|
@pytest.mark.slow |
|
def test_table_true(self, series): |
|
_check_plot_works(series.plot, table=True) |
|
|
|
@pytest.mark.slow |
|
def test_table_self(self, series): |
|
_check_plot_works(series.plot, table=series) |
|
|
|
@pytest.mark.slow |
|
def test_series_grid_settings(self): |
|
|
|
pytest.importorskip("scipy") |
|
_check_grid_settings( |
|
Series([1, 2, 3]), |
|
plotting.PlotAccessor._series_kinds + plotting.PlotAccessor._common_kinds, |
|
) |
|
|
|
@pytest.mark.parametrize("c", ["r", "red", "green", "#FF0000"]) |
|
def test_standard_colors(self, c): |
|
from pandas.plotting._matplotlib.style import get_standard_colors |
|
|
|
result = get_standard_colors(1, color=c) |
|
assert result == [c] |
|
|
|
result = get_standard_colors(1, color=[c]) |
|
assert result == [c] |
|
|
|
result = get_standard_colors(3, color=c) |
|
assert result == [c] * 3 |
|
|
|
result = get_standard_colors(3, color=[c]) |
|
assert result == [c] * 3 |
|
|
|
def test_standard_colors_all(self): |
|
from matplotlib import colors |
|
|
|
from pandas.plotting._matplotlib.style import get_standard_colors |
|
|
|
|
|
for c in colors.cnames: |
|
result = get_standard_colors(num_colors=1, color=c) |
|
assert result == [c] |
|
|
|
result = get_standard_colors(num_colors=1, color=[c]) |
|
assert result == [c] |
|
|
|
result = get_standard_colors(num_colors=3, color=c) |
|
assert result == [c] * 3 |
|
|
|
result = get_standard_colors(num_colors=3, color=[c]) |
|
assert result == [c] * 3 |
|
|
|
|
|
for c in colors.ColorConverter.colors: |
|
result = get_standard_colors(num_colors=1, color=c) |
|
assert result == [c] |
|
|
|
result = get_standard_colors(num_colors=1, color=[c]) |
|
assert result == [c] |
|
|
|
result = get_standard_colors(num_colors=3, color=c) |
|
assert result == [c] * 3 |
|
|
|
result = get_standard_colors(num_colors=3, color=[c]) |
|
assert result == [c] * 3 |
|
|
|
def test_series_plot_color_kwargs(self): |
|
|
|
_, ax = mpl.pyplot.subplots() |
|
ax = Series(np.arange(12) + 1).plot(color="green", ax=ax) |
|
_check_colors(ax.get_lines(), linecolors=["green"]) |
|
|
|
def test_time_series_plot_color_kwargs(self): |
|
|
|
_, ax = mpl.pyplot.subplots() |
|
ax = Series(np.arange(12) + 1, index=date_range("1/1/2000", periods=12)).plot( |
|
color="green", ax=ax |
|
) |
|
_check_colors(ax.get_lines(), linecolors=["green"]) |
|
|
|
def test_time_series_plot_color_with_empty_kwargs(self): |
|
import matplotlib as mpl |
|
|
|
def_colors = _unpack_cycler(mpl.rcParams) |
|
index = date_range("1/1/2000", periods=12) |
|
s = Series(np.arange(1, 13), index=index) |
|
|
|
ncolors = 3 |
|
|
|
_, ax = mpl.pyplot.subplots() |
|
for i in range(ncolors): |
|
ax = s.plot(ax=ax) |
|
_check_colors(ax.get_lines(), linecolors=def_colors[:ncolors]) |
|
|
|
def test_xticklabels(self): |
|
|
|
s = Series(np.arange(10), index=[f"P{i:02d}" for i in range(10)]) |
|
_, ax = mpl.pyplot.subplots() |
|
ax = s.plot(xticks=[0, 3, 5, 9], ax=ax) |
|
exp = [f"P{i:02d}" for i in [0, 3, 5, 9]] |
|
_check_text_labels(ax.get_xticklabels(), exp) |
|
|
|
def test_xtick_barPlot(self): |
|
|
|
s = Series(range(10), index=[f"P{i:02d}" for i in range(10)]) |
|
ax = s.plot.bar(xticks=range(0, 11, 2)) |
|
exp = np.array(list(range(0, 11, 2))) |
|
tm.assert_numpy_array_equal(exp, ax.get_xticks()) |
|
|
|
def test_custom_business_day_freq(self): |
|
|
|
from pandas.tseries.offsets import CustomBusinessDay |
|
|
|
s = Series( |
|
range(100, 121), |
|
index=pd.bdate_range( |
|
start="2014-05-01", |
|
end="2014-06-01", |
|
freq=CustomBusinessDay(holidays=["2014-05-26"]), |
|
), |
|
) |
|
|
|
_check_plot_works(s.plot) |
|
|
|
@pytest.mark.xfail( |
|
reason="GH#24426, see also " |
|
"github.com/pandas-dev/pandas/commit/" |
|
"ef1bd69fa42bbed5d09dd17f08c44fc8bfc2b685#r61470674" |
|
) |
|
def test_plot_accessor_updates_on_inplace(self): |
|
ser = Series([1, 2, 3, 4]) |
|
_, ax = mpl.pyplot.subplots() |
|
ax = ser.plot(ax=ax) |
|
before = ax.xaxis.get_ticklocs() |
|
|
|
ser.drop([0, 1], inplace=True) |
|
_, ax = mpl.pyplot.subplots() |
|
after = ax.xaxis.get_ticklocs() |
|
tm.assert_numpy_array_equal(before, after) |
|
|
|
@pytest.mark.parametrize("kind", ["line", "area"]) |
|
def test_plot_xlim_for_series(self, kind): |
|
|
|
|
|
s = Series([2, 3]) |
|
_, ax = mpl.pyplot.subplots() |
|
s.plot(kind=kind, ax=ax) |
|
xlims = ax.get_xlim() |
|
|
|
assert xlims[0] < 0 |
|
assert xlims[1] > 1 |
|
|
|
def test_plot_no_rows(self): |
|
|
|
df = Series(dtype=int) |
|
assert df.empty |
|
ax = df.plot() |
|
assert len(ax.get_lines()) == 1 |
|
line = ax.get_lines()[0] |
|
assert len(line.get_xdata()) == 0 |
|
assert len(line.get_ydata()) == 0 |
|
|
|
def test_plot_no_numeric_data(self): |
|
df = Series(["a", "b", "c"]) |
|
with pytest.raises(TypeError, match="no numeric data to plot"): |
|
df.plot() |
|
|
|
@pytest.mark.parametrize( |
|
"data, index", |
|
[ |
|
([1, 2, 3, 4], [3, 2, 1, 0]), |
|
([10, 50, 20, 30], [1910, 1920, 1980, 1950]), |
|
], |
|
) |
|
def test_plot_order(self, data, index): |
|
|
|
ser = Series(data=data, index=index) |
|
ax = ser.plot(kind="bar") |
|
|
|
expected = ser.tolist() |
|
result = [ |
|
patch.get_bbox().ymax |
|
for patch in sorted(ax.patches, key=lambda patch: patch.get_bbox().xmax) |
|
] |
|
assert expected == result |
|
|
|
def test_style_single_ok(self): |
|
s = Series([1, 2]) |
|
ax = s.plot(style="s", color="C3") |
|
assert ax.lines[0].get_color() == "C3" |
|
|
|
@pytest.mark.parametrize( |
|
"index_name, old_label, new_label", |
|
[(None, "", "new"), ("old", "old", "new"), (None, "", "")], |
|
) |
|
@pytest.mark.parametrize("kind", ["line", "area", "bar", "barh", "hist"]) |
|
def test_xlabel_ylabel_series(self, kind, index_name, old_label, new_label): |
|
|
|
ser = Series([1, 2, 3, 4]) |
|
ser.index.name = index_name |
|
|
|
|
|
ax = ser.plot(kind=kind) |
|
if kind == "barh": |
|
assert ax.get_xlabel() == "" |
|
assert ax.get_ylabel() == old_label |
|
elif kind == "hist": |
|
assert ax.get_xlabel() == "" |
|
assert ax.get_ylabel() == "Frequency" |
|
else: |
|
assert ax.get_ylabel() == "" |
|
assert ax.get_xlabel() == old_label |
|
|
|
|
|
ax = ser.plot(kind=kind, ylabel=new_label, xlabel=new_label) |
|
assert ax.get_ylabel() == new_label |
|
assert ax.get_xlabel() == new_label |
|
|
|
@pytest.mark.parametrize( |
|
"index", |
|
[ |
|
pd.timedelta_range(start=0, periods=2, freq="D"), |
|
[pd.Timedelta(days=1), pd.Timedelta(days=2)], |
|
], |
|
) |
|
def test_timedelta_index(self, index): |
|
|
|
xlims = (3, 1) |
|
ax = Series([1, 2], index=index).plot(xlim=(xlims)) |
|
assert ax.get_xlim() == (3, 1) |
|
|
|
def test_series_none_color(self): |
|
|
|
series = Series([1, 2, 3]) |
|
ax = series.plot(color=None) |
|
expected = _unpack_cycler(mpl.pyplot.rcParams)[:1] |
|
_check_colors(ax.get_lines(), linecolors=expected) |
|
|
|
@pytest.mark.slow |
|
def test_plot_no_warning(self, ts): |
|
|
|
|
|
with tm.assert_produces_warning(False): |
|
_ = ts.plot() |
|
|