|
""" Test cases for GroupBy.plot """ |
|
|
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from pandas import ( |
|
DataFrame, |
|
Index, |
|
Series, |
|
) |
|
from pandas.tests.plotting.common import ( |
|
_check_axes_shape, |
|
_check_legend_labels, |
|
) |
|
|
|
pytest.importorskip("matplotlib") |
|
|
|
|
|
class TestDataFrameGroupByPlots: |
|
def test_series_groupby_plotting_nominally_works(self): |
|
n = 10 |
|
weight = Series(np.random.default_rng(2).normal(166, 20, size=n)) |
|
gender = np.random.default_rng(2).choice(["male", "female"], size=n) |
|
|
|
weight.groupby(gender).plot() |
|
|
|
def test_series_groupby_plotting_nominally_works_hist(self): |
|
n = 10 |
|
height = Series(np.random.default_rng(2).normal(60, 10, size=n)) |
|
gender = np.random.default_rng(2).choice(["male", "female"], size=n) |
|
height.groupby(gender).hist() |
|
|
|
def test_series_groupby_plotting_nominally_works_alpha(self): |
|
n = 10 |
|
height = Series(np.random.default_rng(2).normal(60, 10, size=n)) |
|
gender = np.random.default_rng(2).choice(["male", "female"], size=n) |
|
|
|
height.groupby(gender).plot(alpha=0.5) |
|
|
|
def test_plotting_with_float_index_works(self): |
|
|
|
df = DataFrame( |
|
{ |
|
"def": [1, 1, 1, 2, 2, 2, 3, 3, 3], |
|
"val": np.random.default_rng(2).standard_normal(9), |
|
}, |
|
index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0], |
|
) |
|
|
|
df.groupby("def")["val"].plot() |
|
|
|
def test_plotting_with_float_index_works_apply(self): |
|
|
|
df = DataFrame( |
|
{ |
|
"def": [1, 1, 1, 2, 2, 2, 3, 3, 3], |
|
"val": np.random.default_rng(2).standard_normal(9), |
|
}, |
|
index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0], |
|
) |
|
df.groupby("def")["val"].apply(lambda x: x.plot()) |
|
|
|
def test_hist_single_row(self): |
|
|
|
bins = np.arange(80, 100 + 2, 1) |
|
df = DataFrame({"Name": ["AAA", "BBB"], "ByCol": [1, 2], "Mark": [85, 89]}) |
|
df["Mark"].hist(by=df["ByCol"], bins=bins) |
|
|
|
def test_hist_single_row_single_bycol(self): |
|
|
|
bins = np.arange(80, 100 + 2, 1) |
|
df = DataFrame({"Name": ["AAA"], "ByCol": [1], "Mark": [85]}) |
|
df["Mark"].hist(by=df["ByCol"], bins=bins) |
|
|
|
def test_plot_submethod_works(self): |
|
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) |
|
df.groupby("z").plot.scatter("x", "y") |
|
|
|
def test_plot_submethod_works_line(self): |
|
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) |
|
df.groupby("z")["x"].plot.line() |
|
|
|
def test_plot_kwargs(self): |
|
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) |
|
|
|
res = df.groupby("z").plot(kind="scatter", x="x", y="y") |
|
|
|
|
|
assert len(res["a"].collections) == 1 |
|
|
|
def test_plot_kwargs_scatter(self): |
|
df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) |
|
res = df.groupby("z").plot.scatter(x="x", y="y") |
|
assert len(res["a"].collections) == 1 |
|
|
|
@pytest.mark.parametrize("column, expected_axes_num", [(None, 2), ("b", 1)]) |
|
def test_groupby_hist_frame_with_legend(self, column, expected_axes_num): |
|
|
|
expected_layout = (1, expected_axes_num) |
|
expected_labels = column or [["a"], ["b"]] |
|
|
|
index = Index(15 * ["1"] + 15 * ["2"], name="c") |
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((30, 2)), |
|
index=index, |
|
columns=["a", "b"], |
|
) |
|
g = df.groupby("c") |
|
|
|
for axes in g.hist(legend=True, column=column): |
|
_check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout) |
|
for ax, expected_label in zip(axes[0], expected_labels): |
|
_check_legend_labels(ax, expected_label) |
|
|
|
@pytest.mark.parametrize("column", [None, "b"]) |
|
def test_groupby_hist_frame_with_legend_raises(self, column): |
|
|
|
index = Index(15 * ["1"] + 15 * ["2"], name="c") |
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((30, 2)), |
|
index=index, |
|
columns=["a", "b"], |
|
) |
|
g = df.groupby("c") |
|
|
|
with pytest.raises(ValueError, match="Cannot use both legend and label"): |
|
g.hist(legend=True, column=column, label="d") |
|
|
|
def test_groupby_hist_series_with_legend(self): |
|
|
|
index = Index(15 * ["1"] + 15 * ["2"], name="c") |
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((30, 2)), |
|
index=index, |
|
columns=["a", "b"], |
|
) |
|
g = df.groupby("c") |
|
|
|
for ax in g["a"].hist(legend=True): |
|
_check_axes_shape(ax, axes_num=1, layout=(1, 1)) |
|
_check_legend_labels(ax, ["1", "2"]) |
|
|
|
def test_groupby_hist_series_with_legend_raises(self): |
|
|
|
index = Index(15 * ["1"] + 15 * ["2"], name="c") |
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((30, 2)), |
|
index=index, |
|
columns=["a", "b"], |
|
) |
|
g = df.groupby("c") |
|
|
|
with pytest.raises(ValueError, match="Cannot use both legend and label"): |
|
g.hist(legend=True, label="d") |
|
|