spam-classifier
/
venv
/lib
/python3.11
/site-packages
/pandas
/tests
/plotting
/test_datetimelike.py
""" Test cases for time series specific (freq conversion, etc) """ | |
from datetime import ( | |
date, | |
datetime, | |
time, | |
timedelta, | |
) | |
import pickle | |
import numpy as np | |
import pytest | |
from pandas._libs.tslibs import ( | |
BaseOffset, | |
to_offset, | |
) | |
from pandas._libs.tslibs.dtypes import freq_to_period_freqstr | |
from pandas import ( | |
DataFrame, | |
Index, | |
NaT, | |
Series, | |
concat, | |
isna, | |
to_datetime, | |
) | |
import pandas._testing as tm | |
from pandas.core.indexes.datetimes import ( | |
DatetimeIndex, | |
bdate_range, | |
date_range, | |
) | |
from pandas.core.indexes.period import ( | |
Period, | |
PeriodIndex, | |
period_range, | |
) | |
from pandas.core.indexes.timedeltas import timedelta_range | |
from pandas.tests.plotting.common import _check_ticks_props | |
from pandas.tseries.offsets import WeekOfMonth | |
mpl = pytest.importorskip("matplotlib") | |
class TestTSPlot: | |
def test_ts_plot_with_tz(self, tz_aware_fixture): | |
# GH2877, GH17173, GH31205, GH31580 | |
tz = tz_aware_fixture | |
index = date_range("1/1/2011", periods=2, freq="h", tz=tz) | |
ts = Series([188.5, 328.25], index=index) | |
_check_plot_works(ts.plot) | |
ax = ts.plot() | |
xdata = next(iter(ax.get_lines())).get_xdata() | |
# Check first and last points' labels are correct | |
assert (xdata[0].hour, xdata[0].minute) == (0, 0) | |
assert (xdata[-1].hour, xdata[-1].minute) == (1, 0) | |
def test_fontsize_set_correctly(self): | |
# For issue #8765 | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 9)), index=range(10) | |
) | |
_, ax = mpl.pyplot.subplots() | |
df.plot(fontsize=2, ax=ax) | |
for label in ax.get_xticklabels() + ax.get_yticklabels(): | |
assert label.get_fontsize() == 2 | |
def test_frame_inferred(self): | |
# inferred freq | |
idx = date_range("1/1/1987", freq="MS", periods=100) | |
idx = DatetimeIndex(idx.values, freq=None) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((len(idx), 3)), index=idx | |
) | |
_check_plot_works(df.plot) | |
# axes freq | |
idx = idx[0:40].union(idx[45:99]) | |
df2 = DataFrame( | |
np.random.default_rng(2).standard_normal((len(idx), 3)), index=idx | |
) | |
_check_plot_works(df2.plot) | |
def test_frame_inferred_n_gt_1(self): | |
# N > 1 | |
idx = date_range("2008-1-1 00:15:00", freq="15min", periods=10) | |
idx = DatetimeIndex(idx.values, freq=None) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((len(idx), 3)), index=idx | |
) | |
_check_plot_works(df.plot) | |
def test_is_error_nozeroindex(self): | |
# GH11858 | |
i = np.array([1, 2, 3]) | |
a = DataFrame(i, index=i) | |
_check_plot_works(a.plot, xerr=a) | |
_check_plot_works(a.plot, yerr=a) | |
def test_nonnumeric_exclude(self): | |
idx = date_range("1/1/1987", freq="YE", periods=3) | |
df = DataFrame({"A": ["x", "y", "z"], "B": [1, 2, 3]}, idx) | |
fig, ax = mpl.pyplot.subplots() | |
df.plot(ax=ax) # it works | |
assert len(ax.get_lines()) == 1 # B was plotted | |
mpl.pyplot.close(fig) | |
def test_nonnumeric_exclude_error(self): | |
idx = date_range("1/1/1987", freq="YE", periods=3) | |
df = DataFrame({"A": ["x", "y", "z"], "B": [1, 2, 3]}, idx) | |
msg = "no numeric data to plot" | |
with pytest.raises(TypeError, match=msg): | |
df["A"].plot() | |
def test_tsplot_period(self, freq): | |
idx = period_range("12/31/1999", freq=freq, periods=100) | |
ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx) | |
_, ax = mpl.pyplot.subplots() | |
_check_plot_works(ser.plot, ax=ax) | |
def test_tsplot_datetime(self, freq): | |
idx = date_range("12/31/1999", freq=freq, periods=100) | |
ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx) | |
_, ax = mpl.pyplot.subplots() | |
_check_plot_works(ser.plot, ax=ax) | |
def test_tsplot(self): | |
ts = Series( | |
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10) | |
) | |
_, ax = mpl.pyplot.subplots() | |
ts.plot(style="k", ax=ax) | |
color = (0.0, 0.0, 0.0, 1) | |
assert color == ax.get_lines()[0].get_color() | |
def test_both_style_and_color(self): | |
ts = Series( | |
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10) | |
) | |
msg = ( | |
"Cannot pass 'style' string with a color symbol and 'color' " | |
"keyword argument. Please use one or the other or pass 'style' " | |
"without a color symbol" | |
) | |
with pytest.raises(ValueError, match=msg): | |
ts.plot(style="b-", color="#000099") | |
s = ts.reset_index(drop=True) | |
with pytest.raises(ValueError, match=msg): | |
s.plot(style="b-", color="#000099") | |
def test_high_freq(self, freq): | |
_, ax = mpl.pyplot.subplots() | |
rng = date_range("1/1/2012", periods=100, freq=freq) | |
ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng) | |
_check_plot_works(ser.plot, ax=ax) | |
def test_get_datevalue(self): | |
from pandas.plotting._matplotlib.converter import get_datevalue | |
assert get_datevalue(None, "D") is None | |
assert get_datevalue(1987, "Y") == 1987 | |
assert get_datevalue(Period(1987, "Y"), "M") == Period("1987-12", "M").ordinal | |
assert get_datevalue("1/1/1987", "D") == Period("1987-1-1", "D").ordinal | |
def test_ts_plot_format_coord(self): | |
def check_format_of_first_point(ax, expected_string): | |
first_line = ax.get_lines()[0] | |
first_x = first_line.get_xdata()[0].ordinal | |
first_y = first_line.get_ydata()[0] | |
assert expected_string == ax.format_coord(first_x, first_y) | |
annual = Series(1, index=date_range("2014-01-01", periods=3, freq="YE-DEC")) | |
_, ax = mpl.pyplot.subplots() | |
annual.plot(ax=ax) | |
check_format_of_first_point(ax, "t = 2014 y = 1.000000") | |
# note this is added to the annual plot already in existence, and | |
# changes its freq field | |
daily = Series(1, index=date_range("2014-01-01", periods=3, freq="D")) | |
daily.plot(ax=ax) | |
check_format_of_first_point(ax, "t = 2014-01-01 y = 1.000000") | |
def test_line_plot_period_series(self, freq): | |
idx = period_range("12/31/1999", freq=freq, periods=100) | |
ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx) | |
_check_plot_works(ser.plot, ser.index.freq) | |
def test_line_plot_period_mlt_series(self, frqncy): | |
# test period index line plot for series with multiples (`mlt`) of the | |
# frequency (`frqncy`) rule code. tests resolution of issue #14763 | |
idx = period_range("12/31/1999", freq=frqncy, periods=100) | |
s = Series(np.random.default_rng(2).standard_normal(len(idx)), idx) | |
_check_plot_works(s.plot, s.index.freq.rule_code) | |
def test_line_plot_datetime_series(self, freq): | |
idx = date_range("12/31/1999", freq=freq, periods=100) | |
ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx) | |
_check_plot_works(ser.plot, ser.index.freq.rule_code) | |
def test_line_plot_period_frame(self, freq): | |
idx = date_range("12/31/1999", freq=freq, periods=100) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((len(idx), 3)), | |
index=idx, | |
columns=["A", "B", "C"], | |
) | |
_check_plot_works(df.plot, df.index.freq) | |
def test_line_plot_period_mlt_frame(self, frqncy): | |
# test period index line plot for DataFrames with multiples (`mlt`) | |
# of the frequency (`frqncy`) rule code. tests resolution of issue | |
# #14763 | |
idx = period_range("12/31/1999", freq=frqncy, periods=100) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((len(idx), 3)), | |
index=idx, | |
columns=["A", "B", "C"], | |
) | |
freq = freq_to_period_freqstr(1, df.index.freq.rule_code) | |
freq = df.index.asfreq(freq).freq | |
_check_plot_works(df.plot, freq) | |
def test_line_plot_datetime_frame(self, freq): | |
idx = date_range("12/31/1999", freq=freq, periods=100) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((len(idx), 3)), | |
index=idx, | |
columns=["A", "B", "C"], | |
) | |
freq = freq_to_period_freqstr(1, df.index.freq.rule_code) | |
freq = df.index.to_period(freq).freq | |
_check_plot_works(df.plot, freq) | |
def test_line_plot_inferred_freq(self, freq): | |
idx = date_range("12/31/1999", freq=freq, periods=100) | |
ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx) | |
ser = Series(ser.values, Index(np.asarray(ser.index))) | |
_check_plot_works(ser.plot, ser.index.inferred_freq) | |
ser = ser.iloc[[0, 3, 5, 6]] | |
_check_plot_works(ser.plot) | |
def test_fake_inferred_business(self): | |
_, ax = mpl.pyplot.subplots() | |
rng = date_range("2001-1-1", "2001-1-10") | |
ts = Series(range(len(rng)), index=rng) | |
ts = concat([ts[:3], ts[5:]]) | |
ts.plot(ax=ax) | |
assert not hasattr(ax, "freq") | |
def test_plot_offset_freq(self): | |
ser = Series( | |
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10) | |
) | |
_check_plot_works(ser.plot) | |
def test_plot_offset_freq_business(self): | |
dr = date_range("2023-01-01", freq="BQS", periods=10) | |
ser = Series(np.random.default_rng(2).standard_normal(len(dr)), index=dr) | |
_check_plot_works(ser.plot) | |
def test_plot_multiple_inferred_freq(self): | |
dr = Index([datetime(2000, 1, 1), datetime(2000, 1, 6), datetime(2000, 1, 11)]) | |
ser = Series(np.random.default_rng(2).standard_normal(len(dr)), index=dr) | |
_check_plot_works(ser.plot) | |
def test_uhf(self): | |
import pandas.plotting._matplotlib.converter as conv | |
idx = date_range("2012-6-22 21:59:51.960928", freq="ms", periods=500) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((len(idx), 2)), index=idx | |
) | |
_, ax = mpl.pyplot.subplots() | |
df.plot(ax=ax) | |
axis = ax.get_xaxis() | |
tlocs = axis.get_ticklocs() | |
tlabels = axis.get_ticklabels() | |
for loc, label in zip(tlocs, tlabels): | |
xp = conv._from_ordinal(loc).strftime("%H:%M:%S.%f") | |
rs = str(label.get_text()) | |
if len(rs): | |
assert xp == rs | |
def test_irreg_hf(self): | |
idx = date_range("2012-6-22 21:59:51", freq="s", periods=10) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((len(idx), 2)), index=idx | |
) | |
irreg = df.iloc[[0, 1, 3, 4]] | |
_, ax = mpl.pyplot.subplots() | |
irreg.plot(ax=ax) | |
diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff() | |
sec = 1.0 / 24 / 60 / 60 | |
assert (np.fabs(diffs[1:] - [sec, sec * 2, sec]) < 1e-8).all() | |
def test_irreg_hf_object(self): | |
idx = date_range("2012-6-22 21:59:51", freq="s", periods=10) | |
df2 = DataFrame( | |
np.random.default_rng(2).standard_normal((len(idx), 2)), index=idx | |
) | |
_, ax = mpl.pyplot.subplots() | |
df2.index = df2.index.astype(object) | |
df2.plot(ax=ax) | |
diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff() | |
sec = 1.0 / 24 / 60 / 60 | |
assert (np.fabs(diffs[1:] - sec) < 1e-8).all() | |
def test_irregular_datetime64_repr_bug(self): | |
ser = Series( | |
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10) | |
) | |
ser = ser.iloc[[0, 1, 2, 7]] | |
_, ax = mpl.pyplot.subplots() | |
ret = ser.plot(ax=ax) | |
assert ret is not None | |
for rs, xp in zip(ax.get_lines()[0].get_xdata(), ser.index): | |
assert rs == xp | |
def test_business_freq(self): | |
bts = Series(range(5), period_range("2020-01-01", periods=5)) | |
msg = r"PeriodDtype\[B\] is deprecated" | |
dt = bts.index[0].to_timestamp() | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
bts.index = period_range(start=dt, periods=len(bts), freq="B") | |
_, ax = mpl.pyplot.subplots() | |
bts.plot(ax=ax) | |
assert ax.get_lines()[0].get_xydata()[0, 0] == bts.index[0].ordinal | |
idx = ax.get_lines()[0].get_xdata() | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
assert PeriodIndex(data=idx).freqstr == "B" | |
def test_business_freq_convert(self): | |
bts = Series( | |
np.arange(300, dtype=np.float64), | |
index=date_range("2020-01-01", periods=300, freq="B"), | |
).asfreq("BME") | |
ts = bts.to_period("M") | |
_, ax = mpl.pyplot.subplots() | |
bts.plot(ax=ax) | |
assert ax.get_lines()[0].get_xydata()[0, 0] == ts.index[0].ordinal | |
idx = ax.get_lines()[0].get_xdata() | |
assert PeriodIndex(data=idx).freqstr == "M" | |
def test_freq_with_no_period_alias(self): | |
# GH34487 | |
freq = WeekOfMonth() | |
bts = Series( | |
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10) | |
).asfreq(freq) | |
_, ax = mpl.pyplot.subplots() | |
bts.plot(ax=ax) | |
idx = ax.get_lines()[0].get_xdata() | |
msg = "freq not specified and cannot be inferred" | |
with pytest.raises(ValueError, match=msg): | |
PeriodIndex(data=idx) | |
def test_nonzero_base(self): | |
# GH2571 | |
idx = date_range("2012-12-20", periods=24, freq="h") + timedelta(minutes=30) | |
df = DataFrame(np.arange(24), index=idx) | |
_, ax = mpl.pyplot.subplots() | |
df.plot(ax=ax) | |
rs = ax.get_lines()[0].get_xdata() | |
assert not Index(rs).is_normalized | |
def test_dataframe(self): | |
bts = DataFrame( | |
{ | |
"a": Series( | |
np.arange(10, dtype=np.float64), | |
index=date_range("2020-01-01", periods=10), | |
) | |
} | |
) | |
_, ax = mpl.pyplot.subplots() | |
bts.plot(ax=ax) | |
idx = ax.get_lines()[0].get_xdata() | |
tm.assert_index_equal(bts.index.to_period(), PeriodIndex(idx)) | |
def test_axis_limits(self, obj): | |
_, ax = mpl.pyplot.subplots() | |
obj.plot(ax=ax) | |
xlim = ax.get_xlim() | |
ax.set_xlim(xlim[0] - 5, xlim[1] + 10) | |
result = ax.get_xlim() | |
assert result[0] == xlim[0] - 5 | |
assert result[1] == xlim[1] + 10 | |
# string | |
expected = (Period("1/1/2000", ax.freq), Period("4/1/2000", ax.freq)) | |
ax.set_xlim("1/1/2000", "4/1/2000") | |
result = ax.get_xlim() | |
assert int(result[0]) == expected[0].ordinal | |
assert int(result[1]) == expected[1].ordinal | |
# datetime | |
expected = (Period("1/1/2000", ax.freq), Period("4/1/2000", ax.freq)) | |
ax.set_xlim(datetime(2000, 1, 1), datetime(2000, 4, 1)) | |
result = ax.get_xlim() | |
assert int(result[0]) == expected[0].ordinal | |
assert int(result[1]) == expected[1].ordinal | |
fig = ax.get_figure() | |
mpl.pyplot.close(fig) | |
def test_get_finder(self): | |
import pandas.plotting._matplotlib.converter as conv | |
assert conv.get_finder(to_offset("B")) == conv._daily_finder | |
assert conv.get_finder(to_offset("D")) == conv._daily_finder | |
assert conv.get_finder(to_offset("ME")) == conv._monthly_finder | |
assert conv.get_finder(to_offset("QE")) == conv._quarterly_finder | |
assert conv.get_finder(to_offset("YE")) == conv._annual_finder | |
assert conv.get_finder(to_offset("W")) == conv._daily_finder | |
def test_finder_daily(self): | |
day_lst = [10, 40, 252, 400, 950, 2750, 10000] | |
msg = "Period with BDay freq is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
xpl1 = xpl2 = [Period("1999-1-1", freq="B").ordinal] * len(day_lst) | |
rs1 = [] | |
rs2 = [] | |
for n in day_lst: | |
rng = bdate_range("1999-1-1", periods=n) | |
ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng) | |
_, ax = mpl.pyplot.subplots() | |
ser.plot(ax=ax) | |
xaxis = ax.get_xaxis() | |
rs1.append(xaxis.get_majorticklocs()[0]) | |
vmin, vmax = ax.get_xlim() | |
ax.set_xlim(vmin + 0.9, vmax) | |
rs2.append(xaxis.get_majorticklocs()[0]) | |
mpl.pyplot.close(ax.get_figure()) | |
assert rs1 == xpl1 | |
assert rs2 == xpl2 | |
def test_finder_quarterly(self): | |
yrs = [3.5, 11] | |
xpl1 = xpl2 = [Period("1988Q1").ordinal] * len(yrs) | |
rs1 = [] | |
rs2 = [] | |
for n in yrs: | |
rng = period_range("1987Q2", periods=int(n * 4), freq="Q") | |
ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng) | |
_, ax = mpl.pyplot.subplots() | |
ser.plot(ax=ax) | |
xaxis = ax.get_xaxis() | |
rs1.append(xaxis.get_majorticklocs()[0]) | |
(vmin, vmax) = ax.get_xlim() | |
ax.set_xlim(vmin + 0.9, vmax) | |
rs2.append(xaxis.get_majorticklocs()[0]) | |
mpl.pyplot.close(ax.get_figure()) | |
assert rs1 == xpl1 | |
assert rs2 == xpl2 | |
def test_finder_monthly(self): | |
yrs = [1.15, 2.5, 4, 11] | |
xpl1 = xpl2 = [Period("Jan 1988").ordinal] * len(yrs) | |
rs1 = [] | |
rs2 = [] | |
for n in yrs: | |
rng = period_range("1987Q2", periods=int(n * 12), freq="M") | |
ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng) | |
_, ax = mpl.pyplot.subplots() | |
ser.plot(ax=ax) | |
xaxis = ax.get_xaxis() | |
rs1.append(xaxis.get_majorticklocs()[0]) | |
vmin, vmax = ax.get_xlim() | |
ax.set_xlim(vmin + 0.9, vmax) | |
rs2.append(xaxis.get_majorticklocs()[0]) | |
mpl.pyplot.close(ax.get_figure()) | |
assert rs1 == xpl1 | |
assert rs2 == xpl2 | |
def test_finder_monthly_long(self): | |
rng = period_range("1988Q1", periods=24 * 12, freq="M") | |
ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng) | |
_, ax = mpl.pyplot.subplots() | |
ser.plot(ax=ax) | |
xaxis = ax.get_xaxis() | |
rs = xaxis.get_majorticklocs()[0] | |
xp = Period("1989Q1", "M").ordinal | |
assert rs == xp | |
def test_finder_annual(self): | |
xp = [1987, 1988, 1990, 1990, 1995, 2020, 2070, 2170] | |
xp = [Period(x, freq="Y").ordinal for x in xp] | |
rs = [] | |
for nyears in [5, 10, 19, 49, 99, 199, 599, 1001]: | |
rng = period_range("1987", periods=nyears, freq="Y") | |
ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng) | |
_, ax = mpl.pyplot.subplots() | |
ser.plot(ax=ax) | |
xaxis = ax.get_xaxis() | |
rs.append(xaxis.get_majorticklocs()[0]) | |
mpl.pyplot.close(ax.get_figure()) | |
assert rs == xp | |
def test_finder_minutely(self): | |
nminutes = 50 * 24 * 60 | |
rng = date_range("1/1/1999", freq="Min", periods=nminutes) | |
ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng) | |
_, ax = mpl.pyplot.subplots() | |
ser.plot(ax=ax) | |
xaxis = ax.get_xaxis() | |
rs = xaxis.get_majorticklocs()[0] | |
xp = Period("1/1/1999", freq="Min").ordinal | |
assert rs == xp | |
def test_finder_hourly(self): | |
nhours = 23 | |
rng = date_range("1/1/1999", freq="h", periods=nhours) | |
ser = Series(np.random.default_rng(2).standard_normal(len(rng)), rng) | |
_, ax = mpl.pyplot.subplots() | |
ser.plot(ax=ax) | |
xaxis = ax.get_xaxis() | |
rs = xaxis.get_majorticklocs()[0] | |
xp = Period("1/1/1999", freq="h").ordinal | |
assert rs == xp | |
def test_gaps(self): | |
ts = Series( | |
np.arange(30, dtype=np.float64), index=date_range("2020-01-01", periods=30) | |
) | |
ts.iloc[5:25] = np.nan | |
_, ax = mpl.pyplot.subplots() | |
ts.plot(ax=ax) | |
lines = ax.get_lines() | |
assert len(lines) == 1 | |
line = lines[0] | |
data = line.get_xydata() | |
data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan) | |
assert isinstance(data, np.ma.core.MaskedArray) | |
mask = data.mask | |
assert mask[5:25, 1].all() | |
mpl.pyplot.close(ax.get_figure()) | |
def test_gaps_irregular(self): | |
# irregular | |
ts = Series( | |
np.arange(30, dtype=np.float64), index=date_range("2020-01-01", periods=30) | |
) | |
ts = ts.iloc[[0, 1, 2, 5, 7, 9, 12, 15, 20]] | |
ts.iloc[2:5] = np.nan | |
_, ax = mpl.pyplot.subplots() | |
ax = ts.plot(ax=ax) | |
lines = ax.get_lines() | |
assert len(lines) == 1 | |
line = lines[0] | |
data = line.get_xydata() | |
data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan) | |
assert isinstance(data, np.ma.core.MaskedArray) | |
mask = data.mask | |
assert mask[2:5, 1].all() | |
mpl.pyplot.close(ax.get_figure()) | |
def test_gaps_non_ts(self): | |
# non-ts | |
idx = [0, 1, 2, 5, 7, 9, 12, 15, 20] | |
ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx) | |
ser.iloc[2:5] = np.nan | |
_, ax = mpl.pyplot.subplots() | |
ser.plot(ax=ax) | |
lines = ax.get_lines() | |
assert len(lines) == 1 | |
line = lines[0] | |
data = line.get_xydata() | |
data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan) | |
assert isinstance(data, np.ma.core.MaskedArray) | |
mask = data.mask | |
assert mask[2:5, 1].all() | |
def test_gap_upsample(self): | |
low = Series( | |
np.arange(30, dtype=np.float64), index=date_range("2020-01-01", periods=30) | |
) | |
low.iloc[5:25] = np.nan | |
_, ax = mpl.pyplot.subplots() | |
low.plot(ax=ax) | |
idxh = date_range(low.index[0], low.index[-1], freq="12h") | |
s = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh) | |
s.plot(secondary_y=True) | |
lines = ax.get_lines() | |
assert len(lines) == 1 | |
assert len(ax.right_ax.get_lines()) == 1 | |
line = lines[0] | |
data = line.get_xydata() | |
data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan) | |
assert isinstance(data, np.ma.core.MaskedArray) | |
mask = data.mask | |
assert mask[5:25, 1].all() | |
def test_secondary_y(self): | |
ser = Series(np.random.default_rng(2).standard_normal(10)) | |
fig, _ = mpl.pyplot.subplots() | |
ax = ser.plot(secondary_y=True) | |
assert hasattr(ax, "left_ax") | |
assert not hasattr(ax, "right_ax") | |
axes = fig.get_axes() | |
line = ax.get_lines()[0] | |
xp = Series(line.get_ydata(), line.get_xdata()) | |
tm.assert_series_equal(ser, xp) | |
assert ax.get_yaxis().get_ticks_position() == "right" | |
assert not axes[0].get_yaxis().get_visible() | |
mpl.pyplot.close(fig) | |
def test_secondary_y_yaxis(self): | |
Series(np.random.default_rng(2).standard_normal(10)) | |
ser2 = Series(np.random.default_rng(2).standard_normal(10)) | |
_, ax2 = mpl.pyplot.subplots() | |
ser2.plot(ax=ax2) | |
assert ax2.get_yaxis().get_ticks_position() == "left" | |
mpl.pyplot.close(ax2.get_figure()) | |
def test_secondary_both(self): | |
ser = Series(np.random.default_rng(2).standard_normal(10)) | |
ser2 = Series(np.random.default_rng(2).standard_normal(10)) | |
ax = ser2.plot() | |
ax2 = ser.plot(secondary_y=True) | |
assert ax.get_yaxis().get_visible() | |
assert not hasattr(ax, "left_ax") | |
assert hasattr(ax, "right_ax") | |
assert hasattr(ax2, "left_ax") | |
assert not hasattr(ax2, "right_ax") | |
def test_secondary_y_ts(self): | |
idx = date_range("1/1/2000", periods=10) | |
ser = Series(np.random.default_rng(2).standard_normal(10), idx) | |
fig, _ = mpl.pyplot.subplots() | |
ax = ser.plot(secondary_y=True) | |
assert hasattr(ax, "left_ax") | |
assert not hasattr(ax, "right_ax") | |
axes = fig.get_axes() | |
line = ax.get_lines()[0] | |
xp = Series(line.get_ydata(), line.get_xdata()).to_timestamp() | |
tm.assert_series_equal(ser, xp) | |
assert ax.get_yaxis().get_ticks_position() == "right" | |
assert not axes[0].get_yaxis().get_visible() | |
mpl.pyplot.close(fig) | |
def test_secondary_y_ts_yaxis(self): | |
idx = date_range("1/1/2000", periods=10) | |
ser2 = Series(np.random.default_rng(2).standard_normal(10), idx) | |
_, ax2 = mpl.pyplot.subplots() | |
ser2.plot(ax=ax2) | |
assert ax2.get_yaxis().get_ticks_position() == "left" | |
mpl.pyplot.close(ax2.get_figure()) | |
def test_secondary_y_ts_visible(self): | |
idx = date_range("1/1/2000", periods=10) | |
ser2 = Series(np.random.default_rng(2).standard_normal(10), idx) | |
ax = ser2.plot() | |
assert ax.get_yaxis().get_visible() | |
def test_secondary_kde(self): | |
pytest.importorskip("scipy") | |
ser = Series(np.random.default_rng(2).standard_normal(10)) | |
fig, ax = mpl.pyplot.subplots() | |
ax = ser.plot(secondary_y=True, kind="density", ax=ax) | |
assert hasattr(ax, "left_ax") | |
assert not hasattr(ax, "right_ax") | |
axes = fig.get_axes() | |
assert axes[1].get_yaxis().get_ticks_position() == "right" | |
def test_secondary_bar(self): | |
ser = Series(np.random.default_rng(2).standard_normal(10)) | |
fig, ax = mpl.pyplot.subplots() | |
ser.plot(secondary_y=True, kind="bar", ax=ax) | |
axes = fig.get_axes() | |
assert axes[1].get_yaxis().get_ticks_position() == "right" | |
def test_secondary_frame(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 3)), columns=["a", "b", "c"] | |
) | |
axes = df.plot(secondary_y=["a", "c"], subplots=True) | |
assert axes[0].get_yaxis().get_ticks_position() == "right" | |
assert axes[1].get_yaxis().get_ticks_position() == "left" | |
assert axes[2].get_yaxis().get_ticks_position() == "right" | |
def test_secondary_bar_frame(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((5, 3)), columns=["a", "b", "c"] | |
) | |
axes = df.plot(kind="bar", secondary_y=["a", "c"], subplots=True) | |
assert axes[0].get_yaxis().get_ticks_position() == "right" | |
assert axes[1].get_yaxis().get_ticks_position() == "left" | |
assert axes[2].get_yaxis().get_ticks_position() == "right" | |
def test_mixed_freq_regular_first(self): | |
# TODO | |
s1 = Series( | |
np.arange(20, dtype=np.float64), | |
index=date_range("2020-01-01", periods=20, freq="B"), | |
) | |
s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15]] | |
# it works! | |
_, ax = mpl.pyplot.subplots() | |
s1.plot(ax=ax) | |
ax2 = s2.plot(style="g", ax=ax) | |
lines = ax2.get_lines() | |
msg = r"PeriodDtype\[B\] is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
idx1 = PeriodIndex(lines[0].get_xdata()) | |
idx2 = PeriodIndex(lines[1].get_xdata()) | |
tm.assert_index_equal(idx1, s1.index.to_period("B")) | |
tm.assert_index_equal(idx2, s2.index.to_period("B")) | |
left, right = ax2.get_xlim() | |
pidx = s1.index.to_period() | |
assert left <= pidx[0].ordinal | |
assert right >= pidx[-1].ordinal | |
def test_mixed_freq_irregular_first(self): | |
s1 = Series( | |
np.arange(20, dtype=np.float64), index=date_range("2020-01-01", periods=20) | |
) | |
s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15]] | |
_, ax = mpl.pyplot.subplots() | |
s2.plot(style="g", ax=ax) | |
s1.plot(ax=ax) | |
assert not hasattr(ax, "freq") | |
lines = ax.get_lines() | |
x1 = lines[0].get_xdata() | |
tm.assert_numpy_array_equal(x1, s2.index.astype(object).values) | |
x2 = lines[1].get_xdata() | |
tm.assert_numpy_array_equal(x2, s1.index.astype(object).values) | |
def test_mixed_freq_regular_first_df(self): | |
# GH 9852 | |
s1 = Series( | |
np.arange(20, dtype=np.float64), | |
index=date_range("2020-01-01", periods=20, freq="B"), | |
).to_frame() | |
s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15], :] | |
_, ax = mpl.pyplot.subplots() | |
s1.plot(ax=ax) | |
ax2 = s2.plot(style="g", ax=ax) | |
lines = ax2.get_lines() | |
msg = r"PeriodDtype\[B\] is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
idx1 = PeriodIndex(lines[0].get_xdata()) | |
idx2 = PeriodIndex(lines[1].get_xdata()) | |
assert idx1.equals(s1.index.to_period("B")) | |
assert idx2.equals(s2.index.to_period("B")) | |
left, right = ax2.get_xlim() | |
pidx = s1.index.to_period() | |
assert left <= pidx[0].ordinal | |
assert right >= pidx[-1].ordinal | |
def test_mixed_freq_irregular_first_df(self): | |
# GH 9852 | |
s1 = Series( | |
np.arange(20, dtype=np.float64), index=date_range("2020-01-01", periods=20) | |
).to_frame() | |
s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15], :] | |
_, ax = mpl.pyplot.subplots() | |
s2.plot(style="g", ax=ax) | |
s1.plot(ax=ax) | |
assert not hasattr(ax, "freq") | |
lines = ax.get_lines() | |
x1 = lines[0].get_xdata() | |
tm.assert_numpy_array_equal(x1, s2.index.astype(object).values) | |
x2 = lines[1].get_xdata() | |
tm.assert_numpy_array_equal(x2, s1.index.astype(object).values) | |
def test_mixed_freq_hf_first(self): | |
idxh = date_range("1/1/1999", periods=365, freq="D") | |
idxl = date_range("1/1/1999", periods=12, freq="ME") | |
high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh) | |
low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl) | |
_, ax = mpl.pyplot.subplots() | |
high.plot(ax=ax) | |
low.plot(ax=ax) | |
for line in ax.get_lines(): | |
assert PeriodIndex(data=line.get_xdata()).freq == "D" | |
def test_mixed_freq_alignment(self): | |
ts_ind = date_range("2012-01-01 13:00", "2012-01-02", freq="h") | |
ts_data = np.random.default_rng(2).standard_normal(12) | |
ts = Series(ts_data, index=ts_ind) | |
ts2 = ts.asfreq("min").interpolate() | |
_, ax = mpl.pyplot.subplots() | |
ax = ts.plot(ax=ax) | |
ts2.plot(style="r", ax=ax) | |
assert ax.lines[0].get_xdata()[0] == ax.lines[1].get_xdata()[0] | |
def test_mixed_freq_lf_first(self): | |
idxh = date_range("1/1/1999", periods=365, freq="D") | |
idxl = date_range("1/1/1999", periods=12, freq="ME") | |
high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh) | |
low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl) | |
_, ax = mpl.pyplot.subplots() | |
low.plot(legend=True, ax=ax) | |
high.plot(legend=True, ax=ax) | |
for line in ax.get_lines(): | |
assert PeriodIndex(data=line.get_xdata()).freq == "D" | |
leg = ax.get_legend() | |
assert len(leg.texts) == 2 | |
mpl.pyplot.close(ax.get_figure()) | |
def test_mixed_freq_lf_first_hourly(self): | |
idxh = date_range("1/1/1999", periods=240, freq="min") | |
idxl = date_range("1/1/1999", periods=4, freq="h") | |
high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh) | |
low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl) | |
_, ax = mpl.pyplot.subplots() | |
low.plot(ax=ax) | |
high.plot(ax=ax) | |
for line in ax.get_lines(): | |
assert PeriodIndex(data=line.get_xdata()).freq == "min" | |
def test_mixed_freq_irreg_period(self): | |
ts = Series( | |
np.arange(30, dtype=np.float64), index=date_range("2020-01-01", periods=30) | |
) | |
irreg = ts.iloc[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 17, 18, 29]] | |
msg = r"PeriodDtype\[B\] is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
rng = period_range("1/3/2000", periods=30, freq="B") | |
ps = Series(np.random.default_rng(2).standard_normal(len(rng)), rng) | |
_, ax = mpl.pyplot.subplots() | |
irreg.plot(ax=ax) | |
ps.plot(ax=ax) | |
def test_mixed_freq_shared_ax(self): | |
# GH13341, using sharex=True | |
idx1 = date_range("2015-01-01", periods=3, freq="ME") | |
idx2 = idx1[:1].union(idx1[2:]) | |
s1 = Series(range(len(idx1)), idx1) | |
s2 = Series(range(len(idx2)), idx2) | |
_, (ax1, ax2) = mpl.pyplot.subplots(nrows=2, sharex=True) | |
s1.plot(ax=ax1) | |
s2.plot(ax=ax2) | |
assert ax1.freq == "M" | |
assert ax2.freq == "M" | |
assert ax1.lines[0].get_xydata()[0, 0] == ax2.lines[0].get_xydata()[0, 0] | |
def test_mixed_freq_shared_ax_twin_x(self): | |
# GH13341, using sharex=True | |
idx1 = date_range("2015-01-01", periods=3, freq="ME") | |
idx2 = idx1[:1].union(idx1[2:]) | |
s1 = Series(range(len(idx1)), idx1) | |
s2 = Series(range(len(idx2)), idx2) | |
# using twinx | |
_, ax1 = mpl.pyplot.subplots() | |
ax2 = ax1.twinx() | |
s1.plot(ax=ax1) | |
s2.plot(ax=ax2) | |
assert ax1.lines[0].get_xydata()[0, 0] == ax2.lines[0].get_xydata()[0, 0] | |
def test_mixed_freq_shared_ax_twin_x_irregular_first(self): | |
# GH13341, using sharex=True | |
idx1 = date_range("2015-01-01", periods=3, freq="M") | |
idx2 = idx1[:1].union(idx1[2:]) | |
s1 = Series(range(len(idx1)), idx1) | |
s2 = Series(range(len(idx2)), idx2) | |
_, ax1 = mpl.pyplot.subplots() | |
ax2 = ax1.twinx() | |
s2.plot(ax=ax1) | |
s1.plot(ax=ax2) | |
assert ax1.lines[0].get_xydata()[0, 0] == ax2.lines[0].get_xydata()[0, 0] | |
def test_nat_handling(self): | |
_, ax = mpl.pyplot.subplots() | |
dti = DatetimeIndex(["2015-01-01", NaT, "2015-01-03"]) | |
s = Series(range(len(dti)), dti) | |
s.plot(ax=ax) | |
xdata = ax.get_lines()[0].get_xdata() | |
# plot x data is bounded by index values | |
assert s.index.min() <= Series(xdata).min() | |
assert Series(xdata).max() <= s.index.max() | |
def test_to_weekly_resampling_disallow_how_kwd(self): | |
idxh = date_range("1/1/1999", periods=52, freq="W") | |
idxl = date_range("1/1/1999", periods=12, freq="ME") | |
high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh) | |
low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl) | |
_, ax = mpl.pyplot.subplots() | |
high.plot(ax=ax) | |
msg = ( | |
"'how' is not a valid keyword for plotting functions. If plotting " | |
"multiple objects on shared axes, resample manually first." | |
) | |
with pytest.raises(ValueError, match=msg): | |
low.plot(ax=ax, how="foo") | |
def test_to_weekly_resampling(self): | |
idxh = date_range("1/1/1999", periods=52, freq="W") | |
idxl = date_range("1/1/1999", periods=12, freq="ME") | |
high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh) | |
low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl) | |
_, ax = mpl.pyplot.subplots() | |
high.plot(ax=ax) | |
low.plot(ax=ax) | |
for line in ax.get_lines(): | |
assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq | |
def test_from_weekly_resampling(self): | |
idxh = date_range("1/1/1999", periods=52, freq="W") | |
idxl = date_range("1/1/1999", periods=12, freq="ME") | |
high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh) | |
low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl) | |
_, ax = mpl.pyplot.subplots() | |
low.plot(ax=ax) | |
high.plot(ax=ax) | |
expected_h = idxh.to_period().asi8.astype(np.float64) | |
expected_l = np.array( | |
[1514, 1519, 1523, 1527, 1531, 1536, 1540, 1544, 1549, 1553, 1558, 1562], | |
dtype=np.float64, | |
) | |
for line in ax.get_lines(): | |
assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq | |
xdata = line.get_xdata(orig=False) | |
if len(xdata) == 12: # idxl lines | |
tm.assert_numpy_array_equal(xdata, expected_l) | |
else: | |
tm.assert_numpy_array_equal(xdata, expected_h) | |
def test_from_resampling_area_line_mixed(self, kind1, kind2): | |
idxh = date_range("1/1/1999", periods=52, freq="W") | |
idxl = date_range("1/1/1999", periods=12, freq="ME") | |
high = DataFrame( | |
np.random.default_rng(2).random((len(idxh), 3)), | |
index=idxh, | |
columns=[0, 1, 2], | |
) | |
low = DataFrame( | |
np.random.default_rng(2).random((len(idxl), 3)), | |
index=idxl, | |
columns=[0, 1, 2], | |
) | |
_, ax = mpl.pyplot.subplots() | |
low.plot(kind=kind1, stacked=True, ax=ax) | |
high.plot(kind=kind2, stacked=True, ax=ax) | |
# check low dataframe result | |
expected_x = np.array( | |
[ | |
1514, | |
1519, | |
1523, | |
1527, | |
1531, | |
1536, | |
1540, | |
1544, | |
1549, | |
1553, | |
1558, | |
1562, | |
], | |
dtype=np.float64, | |
) | |
expected_y = np.zeros(len(expected_x), dtype=np.float64) | |
for i in range(3): | |
line = ax.lines[i] | |
assert PeriodIndex(line.get_xdata()).freq == idxh.freq | |
tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x) | |
# check stacked values are correct | |
expected_y += low[i].values | |
tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y) | |
# check high dataframe result | |
expected_x = idxh.to_period().asi8.astype(np.float64) | |
expected_y = np.zeros(len(expected_x), dtype=np.float64) | |
for i in range(3): | |
line = ax.lines[3 + i] | |
assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq | |
tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x) | |
expected_y += high[i].values | |
tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y) | |
def test_from_resampling_area_line_mixed_high_to_low(self, kind1, kind2): | |
idxh = date_range("1/1/1999", periods=52, freq="W") | |
idxl = date_range("1/1/1999", periods=12, freq="ME") | |
high = DataFrame( | |
np.random.default_rng(2).random((len(idxh), 3)), | |
index=idxh, | |
columns=[0, 1, 2], | |
) | |
low = DataFrame( | |
np.random.default_rng(2).random((len(idxl), 3)), | |
index=idxl, | |
columns=[0, 1, 2], | |
) | |
_, ax = mpl.pyplot.subplots() | |
high.plot(kind=kind1, stacked=True, ax=ax) | |
low.plot(kind=kind2, stacked=True, ax=ax) | |
# check high dataframe result | |
expected_x = idxh.to_period().asi8.astype(np.float64) | |
expected_y = np.zeros(len(expected_x), dtype=np.float64) | |
for i in range(3): | |
line = ax.lines[i] | |
assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq | |
tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x) | |
expected_y += high[i].values | |
tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y) | |
# check low dataframe result | |
expected_x = np.array( | |
[ | |
1514, | |
1519, | |
1523, | |
1527, | |
1531, | |
1536, | |
1540, | |
1544, | |
1549, | |
1553, | |
1558, | |
1562, | |
], | |
dtype=np.float64, | |
) | |
expected_y = np.zeros(len(expected_x), dtype=np.float64) | |
for i in range(3): | |
lines = ax.lines[3 + i] | |
assert PeriodIndex(data=lines.get_xdata()).freq == idxh.freq | |
tm.assert_numpy_array_equal(lines.get_xdata(orig=False), expected_x) | |
expected_y += low[i].values | |
tm.assert_numpy_array_equal(lines.get_ydata(orig=False), expected_y) | |
def test_mixed_freq_second_millisecond(self): | |
# GH 7772, GH 7760 | |
idxh = date_range("2014-07-01 09:00", freq="s", periods=50) | |
idxl = date_range("2014-07-01 09:00", freq="100ms", periods=500) | |
high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh) | |
low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl) | |
# high to low | |
_, ax = mpl.pyplot.subplots() | |
high.plot(ax=ax) | |
low.plot(ax=ax) | |
assert len(ax.get_lines()) == 2 | |
for line in ax.get_lines(): | |
assert PeriodIndex(data=line.get_xdata()).freq == "ms" | |
def test_mixed_freq_second_millisecond_low_to_high(self): | |
# GH 7772, GH 7760 | |
idxh = date_range("2014-07-01 09:00", freq="s", periods=50) | |
idxl = date_range("2014-07-01 09:00", freq="100ms", periods=500) | |
high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh) | |
low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl) | |
# low to high | |
_, ax = mpl.pyplot.subplots() | |
low.plot(ax=ax) | |
high.plot(ax=ax) | |
assert len(ax.get_lines()) == 2 | |
for line in ax.get_lines(): | |
assert PeriodIndex(data=line.get_xdata()).freq == "ms" | |
def test_irreg_dtypes(self): | |
# date | |
idx = [date(2000, 1, 1), date(2000, 1, 5), date(2000, 1, 20)] | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((len(idx), 3)), | |
Index(idx, dtype=object), | |
) | |
_check_plot_works(df.plot) | |
def test_irreg_dtypes_dt64(self): | |
# np.datetime64 | |
idx = date_range("1/1/2000", periods=10) | |
idx = idx[[0, 2, 5, 9]].astype(object) | |
df = DataFrame(np.random.default_rng(2).standard_normal((len(idx), 3)), idx) | |
_, ax = mpl.pyplot.subplots() | |
_check_plot_works(df.plot, ax=ax) | |
def test_time(self): | |
t = datetime(1, 1, 1, 3, 30, 0) | |
deltas = np.random.default_rng(2).integers(1, 20, 3).cumsum() | |
ts = np.array([(t + timedelta(minutes=int(x))).time() for x in deltas]) | |
df = DataFrame( | |
{ | |
"a": np.random.default_rng(2).standard_normal(len(ts)), | |
"b": np.random.default_rng(2).standard_normal(len(ts)), | |
}, | |
index=ts, | |
) | |
_, ax = mpl.pyplot.subplots() | |
df.plot(ax=ax) | |
# verify tick labels | |
ticks = ax.get_xticks() | |
labels = ax.get_xticklabels() | |
for _tick, _label in zip(ticks, labels): | |
m, s = divmod(int(_tick), 60) | |
h, m = divmod(m, 60) | |
rs = _label.get_text() | |
if len(rs) > 0: | |
if s != 0: | |
xp = time(h, m, s).strftime("%H:%M:%S") | |
else: | |
xp = time(h, m, s).strftime("%H:%M") | |
assert xp == rs | |
def test_time_change_xlim(self): | |
t = datetime(1, 1, 1, 3, 30, 0) | |
deltas = np.random.default_rng(2).integers(1, 20, 3).cumsum() | |
ts = np.array([(t + timedelta(minutes=int(x))).time() for x in deltas]) | |
df = DataFrame( | |
{ | |
"a": np.random.default_rng(2).standard_normal(len(ts)), | |
"b": np.random.default_rng(2).standard_normal(len(ts)), | |
}, | |
index=ts, | |
) | |
_, ax = mpl.pyplot.subplots() | |
df.plot(ax=ax) | |
# verify tick labels | |
ticks = ax.get_xticks() | |
labels = ax.get_xticklabels() | |
for _tick, _label in zip(ticks, labels): | |
m, s = divmod(int(_tick), 60) | |
h, m = divmod(m, 60) | |
rs = _label.get_text() | |
if len(rs) > 0: | |
if s != 0: | |
xp = time(h, m, s).strftime("%H:%M:%S") | |
else: | |
xp = time(h, m, s).strftime("%H:%M") | |
assert xp == rs | |
# change xlim | |
ax.set_xlim("1:30", "5:00") | |
# check tick labels again | |
ticks = ax.get_xticks() | |
labels = ax.get_xticklabels() | |
for _tick, _label in zip(ticks, labels): | |
m, s = divmod(int(_tick), 60) | |
h, m = divmod(m, 60) | |
rs = _label.get_text() | |
if len(rs) > 0: | |
if s != 0: | |
xp = time(h, m, s).strftime("%H:%M:%S") | |
else: | |
xp = time(h, m, s).strftime("%H:%M") | |
assert xp == rs | |
def test_time_musec(self): | |
t = datetime(1, 1, 1, 3, 30, 0) | |
deltas = np.random.default_rng(2).integers(1, 20, 3).cumsum() | |
ts = np.array([(t + timedelta(microseconds=int(x))).time() for x in deltas]) | |
df = DataFrame( | |
{ | |
"a": np.random.default_rng(2).standard_normal(len(ts)), | |
"b": np.random.default_rng(2).standard_normal(len(ts)), | |
}, | |
index=ts, | |
) | |
_, ax = mpl.pyplot.subplots() | |
ax = df.plot(ax=ax) | |
# verify tick labels | |
ticks = ax.get_xticks() | |
labels = ax.get_xticklabels() | |
for _tick, _label in zip(ticks, labels): | |
m, s = divmod(int(_tick), 60) | |
us = round((_tick - int(_tick)) * 1e6) | |
h, m = divmod(m, 60) | |
rs = _label.get_text() | |
if len(rs) > 0: | |
if (us % 1000) != 0: | |
xp = time(h, m, s, us).strftime("%H:%M:%S.%f") | |
elif (us // 1000) != 0: | |
xp = time(h, m, s, us).strftime("%H:%M:%S.%f")[:-3] | |
elif s != 0: | |
xp = time(h, m, s, us).strftime("%H:%M:%S") | |
else: | |
xp = time(h, m, s, us).strftime("%H:%M") | |
assert xp == rs | |
def test_secondary_upsample(self): | |
idxh = date_range("1/1/1999", periods=365, freq="D") | |
idxl = date_range("1/1/1999", periods=12, freq="ME") | |
high = Series(np.random.default_rng(2).standard_normal(len(idxh)), idxh) | |
low = Series(np.random.default_rng(2).standard_normal(len(idxl)), idxl) | |
_, ax = mpl.pyplot.subplots() | |
low.plot(ax=ax) | |
ax = high.plot(secondary_y=True, ax=ax) | |
for line in ax.get_lines(): | |
assert PeriodIndex(line.get_xdata()).freq == "D" | |
assert hasattr(ax, "left_ax") | |
assert not hasattr(ax, "right_ax") | |
for line in ax.left_ax.get_lines(): | |
assert PeriodIndex(line.get_xdata()).freq == "D" | |
def test_secondary_legend(self): | |
fig = mpl.pyplot.figure() | |
ax = fig.add_subplot(211) | |
# ts | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
df.plot(secondary_y=["A", "B"], ax=ax) | |
leg = ax.get_legend() | |
assert len(leg.get_lines()) == 4 | |
assert leg.get_texts()[0].get_text() == "A (right)" | |
assert leg.get_texts()[1].get_text() == "B (right)" | |
assert leg.get_texts()[2].get_text() == "C" | |
assert leg.get_texts()[3].get_text() == "D" | |
assert ax.right_ax.get_legend() is None | |
colors = set() | |
for line in leg.get_lines(): | |
colors.add(line.get_color()) | |
# TODO: color cycle problems | |
assert len(colors) == 4 | |
mpl.pyplot.close(fig) | |
def test_secondary_legend_right(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
fig = mpl.pyplot.figure() | |
ax = fig.add_subplot(211) | |
df.plot(secondary_y=["A", "C"], mark_right=False, ax=ax) | |
leg = ax.get_legend() | |
assert len(leg.get_lines()) == 4 | |
assert leg.get_texts()[0].get_text() == "A" | |
assert leg.get_texts()[1].get_text() == "B" | |
assert leg.get_texts()[2].get_text() == "C" | |
assert leg.get_texts()[3].get_text() == "D" | |
mpl.pyplot.close(fig) | |
def test_secondary_legend_bar(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
fig, ax = mpl.pyplot.subplots() | |
df.plot(kind="bar", secondary_y=["A"], ax=ax) | |
leg = ax.get_legend() | |
assert leg.get_texts()[0].get_text() == "A (right)" | |
assert leg.get_texts()[1].get_text() == "B" | |
mpl.pyplot.close(fig) | |
def test_secondary_legend_bar_right(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
fig, ax = mpl.pyplot.subplots() | |
df.plot(kind="bar", secondary_y=["A"], mark_right=False, ax=ax) | |
leg = ax.get_legend() | |
assert leg.get_texts()[0].get_text() == "A" | |
assert leg.get_texts()[1].get_text() == "B" | |
mpl.pyplot.close(fig) | |
def test_secondary_legend_multi_col(self): | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
fig = mpl.pyplot.figure() | |
ax = fig.add_subplot(211) | |
df = DataFrame( | |
np.random.default_rng(2).standard_normal((10, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=date_range("2000-01-01", periods=10, freq="B"), | |
) | |
ax = df.plot(secondary_y=["C", "D"], ax=ax) | |
leg = ax.get_legend() | |
assert len(leg.get_lines()) == 4 | |
assert ax.right_ax.get_legend() is None | |
colors = set() | |
for line in leg.get_lines(): | |
colors.add(line.get_color()) | |
# TODO: color cycle problems | |
assert len(colors) == 4 | |
mpl.pyplot.close(fig) | |
def test_secondary_legend_nonts(self): | |
# non-ts | |
df = DataFrame( | |
1.1 * np.arange(120).reshape((30, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=Index([f"i-{i}" for i in range(30)], dtype=object), | |
) | |
fig = mpl.pyplot.figure() | |
ax = fig.add_subplot(211) | |
ax = df.plot(secondary_y=["A", "B"], ax=ax) | |
leg = ax.get_legend() | |
assert len(leg.get_lines()) == 4 | |
assert ax.right_ax.get_legend() is None | |
colors = set() | |
for line in leg.get_lines(): | |
colors.add(line.get_color()) | |
# TODO: color cycle problems | |
assert len(colors) == 4 | |
mpl.pyplot.close() | |
def test_secondary_legend_nonts_multi_col(self): | |
# non-ts | |
df = DataFrame( | |
1.1 * np.arange(120).reshape((30, 4)), | |
columns=Index(list("ABCD"), dtype=object), | |
index=Index([f"i-{i}" for i in range(30)], dtype=object), | |
) | |
fig = mpl.pyplot.figure() | |
ax = fig.add_subplot(211) | |
ax = df.plot(secondary_y=["C", "D"], ax=ax) | |
leg = ax.get_legend() | |
assert len(leg.get_lines()) == 4 | |
assert ax.right_ax.get_legend() is None | |
colors = set() | |
for line in leg.get_lines(): | |
colors.add(line.get_color()) | |
# TODO: color cycle problems | |
assert len(colors) == 4 | |
def test_format_date_axis(self): | |
rng = date_range("1/1/2012", periods=12, freq="ME") | |
df = DataFrame(np.random.default_rng(2).standard_normal((len(rng), 3)), rng) | |
_, ax = mpl.pyplot.subplots() | |
ax = df.plot(ax=ax) | |
xaxis = ax.get_xaxis() | |
for line in xaxis.get_ticklabels(): | |
if len(line.get_text()) > 0: | |
assert line.get_rotation() == 30 | |
def test_ax_plot(self): | |
x = date_range(start="2012-01-02", periods=10, freq="D") | |
y = list(range(len(x))) | |
_, ax = mpl.pyplot.subplots() | |
lines = ax.plot(x, y, label="Y") | |
tm.assert_index_equal(DatetimeIndex(lines[0].get_xdata()), x) | |
def test_mpl_nopandas(self): | |
dates = [date(2008, 12, 31), date(2009, 1, 31)] | |
values1 = np.arange(10.0, 11.0, 0.5) | |
values2 = np.arange(11.0, 12.0, 0.5) | |
_, ax = mpl.pyplot.subplots() | |
( | |
line1, | |
line2, | |
) = ax.plot( | |
[x.toordinal() for x in dates], | |
values1, | |
"-", | |
[x.toordinal() for x in dates], | |
values2, | |
"-", | |
linewidth=4, | |
) | |
exp = np.array([x.toordinal() for x in dates], dtype=np.float64) | |
tm.assert_numpy_array_equal(line1.get_xydata()[:, 0], exp) | |
exp = np.array([x.toordinal() for x in dates], dtype=np.float64) | |
tm.assert_numpy_array_equal(line2.get_xydata()[:, 0], exp) | |
def test_irregular_ts_shared_ax_xlim(self): | |
# GH 2960 | |
from pandas.plotting._matplotlib.converter import DatetimeConverter | |
ts = Series( | |
np.arange(20, dtype=np.float64), index=date_range("2020-01-01", periods=20) | |
) | |
ts_irregular = ts.iloc[[1, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18]] | |
# plot the left section of the irregular series, then the right section | |
_, ax = mpl.pyplot.subplots() | |
ts_irregular[:5].plot(ax=ax) | |
ts_irregular[5:].plot(ax=ax) | |
# check that axis limits are correct | |
left, right = ax.get_xlim() | |
assert left <= DatetimeConverter.convert(ts_irregular.index.min(), "", ax) | |
assert right >= DatetimeConverter.convert(ts_irregular.index.max(), "", ax) | |
def test_secondary_y_non_ts_xlim(self): | |
# GH 3490 - non-timeseries with secondary y | |
index_1 = [1, 2, 3, 4] | |
index_2 = [5, 6, 7, 8] | |
s1 = Series(1, index=index_1) | |
s2 = Series(2, index=index_2) | |
_, ax = mpl.pyplot.subplots() | |
s1.plot(ax=ax) | |
left_before, right_before = ax.get_xlim() | |
s2.plot(secondary_y=True, ax=ax) | |
left_after, right_after = ax.get_xlim() | |
assert left_before >= left_after | |
assert right_before < right_after | |
def test_secondary_y_regular_ts_xlim(self): | |
# GH 3490 - regular-timeseries with secondary y | |
index_1 = date_range(start="2000-01-01", periods=4, freq="D") | |
index_2 = date_range(start="2000-01-05", periods=4, freq="D") | |
s1 = Series(1, index=index_1) | |
s2 = Series(2, index=index_2) | |
_, ax = mpl.pyplot.subplots() | |
s1.plot(ax=ax) | |
left_before, right_before = ax.get_xlim() | |
s2.plot(secondary_y=True, ax=ax) | |
left_after, right_after = ax.get_xlim() | |
assert left_before >= left_after | |
assert right_before < right_after | |
def test_secondary_y_mixed_freq_ts_xlim(self): | |
# GH 3490 - mixed frequency timeseries with secondary y | |
rng = date_range("2000-01-01", periods=10000, freq="min") | |
ts = Series(1, index=rng) | |
_, ax = mpl.pyplot.subplots() | |
ts.plot(ax=ax) | |
left_before, right_before = ax.get_xlim() | |
ts.resample("D").mean().plot(secondary_y=True, ax=ax) | |
left_after, right_after = ax.get_xlim() | |
# a downsample should not have changed either limit | |
assert left_before == left_after | |
assert right_before == right_after | |
def test_secondary_y_irregular_ts_xlim(self): | |
# GH 3490 - irregular-timeseries with secondary y | |
from pandas.plotting._matplotlib.converter import DatetimeConverter | |
ts = Series( | |
np.arange(20, dtype=np.float64), index=date_range("2020-01-01", periods=20) | |
) | |
ts_irregular = ts.iloc[[1, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18]] | |
_, ax = mpl.pyplot.subplots() | |
ts_irregular[:5].plot(ax=ax) | |
# plot higher-x values on secondary axis | |
ts_irregular[5:].plot(secondary_y=True, ax=ax) | |
# ensure secondary limits aren't overwritten by plot on primary | |
ts_irregular[:5].plot(ax=ax) | |
left, right = ax.get_xlim() | |
assert left <= DatetimeConverter.convert(ts_irregular.index.min(), "", ax) | |
assert right >= DatetimeConverter.convert(ts_irregular.index.max(), "", ax) | |
def test_plot_outofbounds_datetime(self): | |
# 2579 - checking this does not raise | |
values = [date(1677, 1, 1), date(1677, 1, 2)] | |
_, ax = mpl.pyplot.subplots() | |
ax.plot(values) | |
values = [datetime(1677, 1, 1, 12), datetime(1677, 1, 2, 12)] | |
ax.plot(values) | |
def test_format_timedelta_ticks_narrow(self): | |
expected_labels = [f"00:00:00.0000000{i:0>2d}" for i in np.arange(10)] | |
rng = timedelta_range("0", periods=10, freq="ns") | |
df = DataFrame(np.random.default_rng(2).standard_normal((len(rng), 3)), rng) | |
_, ax = mpl.pyplot.subplots() | |
df.plot(fontsize=2, ax=ax) | |
mpl.pyplot.draw() | |
labels = ax.get_xticklabels() | |
result_labels = [x.get_text() for x in labels] | |
assert len(result_labels) == len(expected_labels) | |
assert result_labels == expected_labels | |
def test_format_timedelta_ticks_wide(self): | |
expected_labels = [ | |
"00:00:00", | |
"1 days 03:46:40", | |
"2 days 07:33:20", | |
"3 days 11:20:00", | |
"4 days 15:06:40", | |
"5 days 18:53:20", | |
"6 days 22:40:00", | |
"8 days 02:26:40", | |
"9 days 06:13:20", | |
] | |
rng = timedelta_range("0", periods=10, freq="1 d") | |
df = DataFrame(np.random.default_rng(2).standard_normal((len(rng), 3)), rng) | |
_, ax = mpl.pyplot.subplots() | |
ax = df.plot(fontsize=2, ax=ax) | |
mpl.pyplot.draw() | |
labels = ax.get_xticklabels() | |
result_labels = [x.get_text() for x in labels] | |
assert len(result_labels) == len(expected_labels) | |
assert result_labels == expected_labels | |
def test_timedelta_plot(self): | |
# test issue #8711 | |
s = Series(range(5), timedelta_range("1day", periods=5)) | |
_, ax = mpl.pyplot.subplots() | |
_check_plot_works(s.plot, ax=ax) | |
def test_timedelta_long_period(self): | |
# test long period | |
index = timedelta_range("1 day 2 hr 30 min 10 s", periods=10, freq="1 d") | |
s = Series(np.random.default_rng(2).standard_normal(len(index)), index) | |
_, ax = mpl.pyplot.subplots() | |
_check_plot_works(s.plot, ax=ax) | |
def test_timedelta_short_period(self): | |
# test short period | |
index = timedelta_range("1 day 2 hr 30 min 10 s", periods=10, freq="1 ns") | |
s = Series(np.random.default_rng(2).standard_normal(len(index)), index) | |
_, ax = mpl.pyplot.subplots() | |
_check_plot_works(s.plot, ax=ax) | |
def test_hist(self): | |
# https://github.com/matplotlib/matplotlib/issues/8459 | |
rng = date_range("1/1/2011", periods=10, freq="h") | |
x = rng | |
w1 = np.arange(0, 1, 0.1) | |
w2 = np.arange(0, 1, 0.1)[::-1] | |
_, ax = mpl.pyplot.subplots() | |
ax.hist([x, x], weights=[w1, w2]) | |
def test_overlapping_datetime(self): | |
# GB 6608 | |
s1 = Series( | |
[1, 2, 3], | |
index=[ | |
datetime(1995, 12, 31), | |
datetime(2000, 12, 31), | |
datetime(2005, 12, 31), | |
], | |
) | |
s2 = Series( | |
[1, 2, 3], | |
index=[ | |
datetime(1997, 12, 31), | |
datetime(2003, 12, 31), | |
datetime(2008, 12, 31), | |
], | |
) | |
# plot first series, then add the second series to those axes, | |
# then try adding the first series again | |
_, ax = mpl.pyplot.subplots() | |
s1.plot(ax=ax) | |
s2.plot(ax=ax) | |
s1.plot(ax=ax) | |
def test_add_matplotlib_datetime64(self): | |
# GH9053 - ensure that a plot with PeriodConverter still understands | |
# datetime64 data. This still fails because matplotlib overrides the | |
# ax.xaxis.converter with a DatetimeConverter | |
s = Series( | |
np.random.default_rng(2).standard_normal(10), | |
index=date_range("1970-01-02", periods=10), | |
) | |
ax = s.plot() | |
with tm.assert_produces_warning(DeprecationWarning): | |
# multi-dimensional indexing | |
ax.plot(s.index, s.values, color="g") | |
l1, l2 = ax.lines | |
tm.assert_numpy_array_equal(l1.get_xydata(), l2.get_xydata()) | |
def test_matplotlib_scatter_datetime64(self): | |
# https://github.com/matplotlib/matplotlib/issues/11391 | |
df = DataFrame(np.random.default_rng(2).random((10, 2)), columns=["x", "y"]) | |
df["time"] = date_range("2018-01-01", periods=10, freq="D") | |
_, ax = mpl.pyplot.subplots() | |
ax.scatter(x="time", y="y", data=df) | |
mpl.pyplot.draw() | |
label = ax.get_xticklabels()[0] | |
expected = "2018-01-01" | |
assert label.get_text() == expected | |
def test_check_xticks_rot(self): | |
# https://github.com/pandas-dev/pandas/issues/29460 | |
# regular time series | |
x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-03"]) | |
df = DataFrame({"x": x, "y": [1, 2, 3]}) | |
axes = df.plot(x="x", y="y") | |
_check_ticks_props(axes, xrot=0) | |
def test_check_xticks_rot_irregular(self): | |
# irregular time series | |
x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-04"]) | |
df = DataFrame({"x": x, "y": [1, 2, 3]}) | |
axes = df.plot(x="x", y="y") | |
_check_ticks_props(axes, xrot=30) | |
def test_check_xticks_rot_use_idx(self): | |
# irregular time series | |
x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-04"]) | |
df = DataFrame({"x": x, "y": [1, 2, 3]}) | |
# use timeseries index or not | |
axes = df.set_index("x").plot(y="y", use_index=True) | |
_check_ticks_props(axes, xrot=30) | |
axes = df.set_index("x").plot(y="y", use_index=False) | |
_check_ticks_props(axes, xrot=0) | |
def test_check_xticks_rot_sharex(self): | |
# irregular time series | |
x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-04"]) | |
df = DataFrame({"x": x, "y": [1, 2, 3]}) | |
# separate subplots | |
axes = df.plot(x="x", y="y", subplots=True, sharex=True) | |
_check_ticks_props(axes, xrot=30) | |
axes = df.plot(x="x", y="y", subplots=True, sharex=False) | |
_check_ticks_props(axes, xrot=0) | |
def _check_plot_works(f, freq=None, series=None, *args, **kwargs): | |
import matplotlib.pyplot as plt | |
fig = plt.gcf() | |
try: | |
plt.clf() | |
ax = fig.add_subplot(211) | |
orig_ax = kwargs.pop("ax", plt.gca()) | |
orig_axfreq = getattr(orig_ax, "freq", None) | |
ret = f(*args, **kwargs) | |
assert ret is not None # do something more intelligent | |
ax = kwargs.pop("ax", plt.gca()) | |
if series is not None: | |
dfreq = series.index.freq | |
if isinstance(dfreq, BaseOffset): | |
dfreq = dfreq.rule_code | |
if orig_axfreq is None: | |
assert ax.freq == dfreq | |
if freq is not None: | |
ax_freq = to_offset(ax.freq, is_period=True) | |
if freq is not None and orig_axfreq is None: | |
assert ax_freq == freq | |
ax = fig.add_subplot(212) | |
kwargs["ax"] = ax | |
ret = f(*args, **kwargs) | |
assert ret is not None # TODO: do something more intelligent | |
# GH18439, GH#24088, statsmodels#4772 | |
with tm.ensure_clean(return_filelike=True) as path: | |
pickle.dump(fig, path) | |
finally: | |
plt.close(fig) | |