|
from collections.abc import Generator |
|
from contextlib import contextmanager |
|
import re |
|
import struct |
|
import tracemalloc |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from pandas._libs import hashtable as ht |
|
|
|
import pandas as pd |
|
import pandas._testing as tm |
|
from pandas.core.algorithms import isin |
|
|
|
|
|
@contextmanager |
|
def activated_tracemalloc() -> Generator[None, None, None]: |
|
tracemalloc.start() |
|
try: |
|
yield |
|
finally: |
|
tracemalloc.stop() |
|
|
|
|
|
def get_allocated_khash_memory(): |
|
snapshot = tracemalloc.take_snapshot() |
|
snapshot = snapshot.filter_traces( |
|
(tracemalloc.DomainFilter(True, ht.get_hashtable_trace_domain()),) |
|
) |
|
return sum(x.size for x in snapshot.traces) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"table_type, dtype", |
|
[ |
|
(ht.PyObjectHashTable, np.object_), |
|
(ht.Complex128HashTable, np.complex128), |
|
(ht.Int64HashTable, np.int64), |
|
(ht.UInt64HashTable, np.uint64), |
|
(ht.Float64HashTable, np.float64), |
|
(ht.Complex64HashTable, np.complex64), |
|
(ht.Int32HashTable, np.int32), |
|
(ht.UInt32HashTable, np.uint32), |
|
(ht.Float32HashTable, np.float32), |
|
(ht.Int16HashTable, np.int16), |
|
(ht.UInt16HashTable, np.uint16), |
|
(ht.Int8HashTable, np.int8), |
|
(ht.UInt8HashTable, np.uint8), |
|
(ht.IntpHashTable, np.intp), |
|
], |
|
) |
|
class TestHashTable: |
|
def test_get_set_contains_len(self, table_type, dtype): |
|
index = 5 |
|
table = table_type(55) |
|
assert len(table) == 0 |
|
assert index not in table |
|
|
|
table.set_item(index, 42) |
|
assert len(table) == 1 |
|
assert index in table |
|
assert table.get_item(index) == 42 |
|
|
|
table.set_item(index + 1, 41) |
|
assert index in table |
|
assert index + 1 in table |
|
assert len(table) == 2 |
|
assert table.get_item(index) == 42 |
|
assert table.get_item(index + 1) == 41 |
|
|
|
table.set_item(index, 21) |
|
assert index in table |
|
assert index + 1 in table |
|
assert len(table) == 2 |
|
assert table.get_item(index) == 21 |
|
assert table.get_item(index + 1) == 41 |
|
assert index + 2 not in table |
|
|
|
table.set_item(index + 1, 21) |
|
assert index in table |
|
assert index + 1 in table |
|
assert len(table) == 2 |
|
assert table.get_item(index) == 21 |
|
assert table.get_item(index + 1) == 21 |
|
|
|
with pytest.raises(KeyError, match=str(index + 2)): |
|
table.get_item(index + 2) |
|
|
|
def test_get_set_contains_len_mask(self, table_type, dtype): |
|
if table_type == ht.PyObjectHashTable: |
|
pytest.skip("Mask not supported for object") |
|
index = 5 |
|
table = table_type(55, uses_mask=True) |
|
assert len(table) == 0 |
|
assert index not in table |
|
|
|
table.set_item(index, 42) |
|
assert len(table) == 1 |
|
assert index in table |
|
assert table.get_item(index) == 42 |
|
with pytest.raises(KeyError, match="NA"): |
|
table.get_na() |
|
|
|
table.set_item(index + 1, 41) |
|
table.set_na(41) |
|
assert pd.NA in table |
|
assert index in table |
|
assert index + 1 in table |
|
assert len(table) == 3 |
|
assert table.get_item(index) == 42 |
|
assert table.get_item(index + 1) == 41 |
|
assert table.get_na() == 41 |
|
|
|
table.set_na(21) |
|
assert index in table |
|
assert index + 1 in table |
|
assert len(table) == 3 |
|
assert table.get_item(index + 1) == 41 |
|
assert table.get_na() == 21 |
|
assert index + 2 not in table |
|
|
|
with pytest.raises(KeyError, match=str(index + 2)): |
|
table.get_item(index + 2) |
|
|
|
def test_map_keys_to_values(self, table_type, dtype, writable): |
|
|
|
if table_type == ht.Int64HashTable: |
|
N = 77 |
|
table = table_type() |
|
keys = np.arange(N).astype(dtype) |
|
vals = np.arange(N).astype(np.int64) + N |
|
keys.flags.writeable = writable |
|
vals.flags.writeable = writable |
|
table.map_keys_to_values(keys, vals) |
|
for i in range(N): |
|
assert table.get_item(keys[i]) == i + N |
|
|
|
def test_map_locations(self, table_type, dtype, writable): |
|
N = 8 |
|
table = table_type() |
|
keys = (np.arange(N) + N).astype(dtype) |
|
keys.flags.writeable = writable |
|
table.map_locations(keys) |
|
for i in range(N): |
|
assert table.get_item(keys[i]) == i |
|
|
|
def test_map_locations_mask(self, table_type, dtype, writable): |
|
if table_type == ht.PyObjectHashTable: |
|
pytest.skip("Mask not supported for object") |
|
N = 3 |
|
table = table_type(uses_mask=True) |
|
keys = (np.arange(N) + N).astype(dtype) |
|
keys.flags.writeable = writable |
|
table.map_locations(keys, np.array([False, False, True])) |
|
for i in range(N - 1): |
|
assert table.get_item(keys[i]) == i |
|
|
|
with pytest.raises(KeyError, match=re.escape(str(keys[N - 1]))): |
|
table.get_item(keys[N - 1]) |
|
|
|
assert table.get_na() == 2 |
|
|
|
def test_lookup(self, table_type, dtype, writable): |
|
N = 3 |
|
table = table_type() |
|
keys = (np.arange(N) + N).astype(dtype) |
|
keys.flags.writeable = writable |
|
table.map_locations(keys) |
|
result = table.lookup(keys) |
|
expected = np.arange(N) |
|
tm.assert_numpy_array_equal(result.astype(np.int64), expected.astype(np.int64)) |
|
|
|
def test_lookup_wrong(self, table_type, dtype): |
|
if dtype in (np.int8, np.uint8): |
|
N = 100 |
|
else: |
|
N = 512 |
|
table = table_type() |
|
keys = (np.arange(N) + N).astype(dtype) |
|
table.map_locations(keys) |
|
wrong_keys = np.arange(N).astype(dtype) |
|
result = table.lookup(wrong_keys) |
|
assert np.all(result == -1) |
|
|
|
def test_lookup_mask(self, table_type, dtype, writable): |
|
if table_type == ht.PyObjectHashTable: |
|
pytest.skip("Mask not supported for object") |
|
N = 3 |
|
table = table_type(uses_mask=True) |
|
keys = (np.arange(N) + N).astype(dtype) |
|
mask = np.array([False, True, False]) |
|
keys.flags.writeable = writable |
|
table.map_locations(keys, mask) |
|
result = table.lookup(keys, mask) |
|
expected = np.arange(N) |
|
tm.assert_numpy_array_equal(result.astype(np.int64), expected.astype(np.int64)) |
|
|
|
result = table.lookup(np.array([1 + N]).astype(dtype), np.array([False])) |
|
tm.assert_numpy_array_equal( |
|
result.astype(np.int64), np.array([-1], dtype=np.int64) |
|
) |
|
|
|
def test_unique(self, table_type, dtype, writable): |
|
if dtype in (np.int8, np.uint8): |
|
N = 88 |
|
else: |
|
N = 1000 |
|
table = table_type() |
|
expected = (np.arange(N) + N).astype(dtype) |
|
keys = np.repeat(expected, 5) |
|
keys.flags.writeable = writable |
|
unique = table.unique(keys) |
|
tm.assert_numpy_array_equal(unique, expected) |
|
|
|
def test_tracemalloc_works(self, table_type, dtype): |
|
if dtype in (np.int8, np.uint8): |
|
N = 256 |
|
else: |
|
N = 30000 |
|
keys = np.arange(N).astype(dtype) |
|
with activated_tracemalloc(): |
|
table = table_type() |
|
table.map_locations(keys) |
|
used = get_allocated_khash_memory() |
|
my_size = table.sizeof() |
|
assert used == my_size |
|
del table |
|
assert get_allocated_khash_memory() == 0 |
|
|
|
def test_tracemalloc_for_empty(self, table_type, dtype): |
|
with activated_tracemalloc(): |
|
table = table_type() |
|
used = get_allocated_khash_memory() |
|
my_size = table.sizeof() |
|
assert used == my_size |
|
del table |
|
assert get_allocated_khash_memory() == 0 |
|
|
|
def test_get_state(self, table_type, dtype): |
|
table = table_type(1000) |
|
state = table.get_state() |
|
assert state["size"] == 0 |
|
assert state["n_occupied"] == 0 |
|
assert "n_buckets" in state |
|
assert "upper_bound" in state |
|
|
|
@pytest.mark.parametrize("N", range(1, 110)) |
|
def test_no_reallocation(self, table_type, dtype, N): |
|
keys = np.arange(N).astype(dtype) |
|
preallocated_table = table_type(N) |
|
n_buckets_start = preallocated_table.get_state()["n_buckets"] |
|
preallocated_table.map_locations(keys) |
|
n_buckets_end = preallocated_table.get_state()["n_buckets"] |
|
|
|
assert n_buckets_start == n_buckets_end |
|
|
|
clean_table = table_type() |
|
clean_table.map_locations(keys) |
|
assert n_buckets_start == clean_table.get_state()["n_buckets"] |
|
|
|
|
|
class TestHashTableUnsorted: |
|
|
|
def test_string_hashtable_set_item_signature(self): |
|
|
|
tbl = ht.StringHashTable() |
|
|
|
tbl.set_item("key", 1) |
|
assert tbl.get_item("key") == 1 |
|
|
|
with pytest.raises(TypeError, match="'key' has incorrect type"): |
|
|
|
tbl.set_item(4, 6) |
|
with pytest.raises(TypeError, match="'val' has incorrect type"): |
|
tbl.get_item(4) |
|
|
|
def test_lookup_nan(self, writable): |
|
|
|
xs = np.array([2.718, 3.14, np.nan, -7, 5, 2, 3]) |
|
xs.setflags(write=writable) |
|
m = ht.Float64HashTable() |
|
m.map_locations(xs) |
|
tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.intp)) |
|
|
|
def test_add_signed_zeros(self): |
|
|
|
|
|
|
|
|
|
N = 4 |
|
m = ht.Float64HashTable(N) |
|
m.set_item(0.0, 0) |
|
m.set_item(-0.0, 0) |
|
assert len(m) == 1 |
|
|
|
def test_add_different_nans(self): |
|
|
|
|
|
NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0] |
|
NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0] |
|
assert NAN1 != NAN1 |
|
assert NAN2 != NAN2 |
|
|
|
|
|
m = ht.Float64HashTable() |
|
m.set_item(NAN1, 0) |
|
m.set_item(NAN2, 0) |
|
assert len(m) == 1 |
|
|
|
def test_lookup_overflow(self, writable): |
|
xs = np.array([1, 2, 2**63], dtype=np.uint64) |
|
|
|
xs.setflags(write=writable) |
|
m = ht.UInt64HashTable() |
|
m.map_locations(xs) |
|
tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.intp)) |
|
|
|
@pytest.mark.parametrize("nvals", [0, 10]) |
|
@pytest.mark.parametrize( |
|
"htable, uniques, dtype, safely_resizes", |
|
[ |
|
(ht.PyObjectHashTable, ht.ObjectVector, "object", False), |
|
(ht.StringHashTable, ht.ObjectVector, "object", True), |
|
(ht.Float64HashTable, ht.Float64Vector, "float64", False), |
|
(ht.Int64HashTable, ht.Int64Vector, "int64", False), |
|
(ht.Int32HashTable, ht.Int32Vector, "int32", False), |
|
(ht.UInt64HashTable, ht.UInt64Vector, "uint64", False), |
|
], |
|
) |
|
def test_vector_resize( |
|
self, writable, htable, uniques, dtype, safely_resizes, nvals |
|
): |
|
|
|
|
|
|
|
|
|
vals = np.array(range(1000), dtype=dtype) |
|
|
|
|
|
vals.setflags(write=writable) |
|
|
|
|
|
|
|
|
|
htable = htable() |
|
uniques = uniques() |
|
|
|
|
|
htable.get_labels(vals[:nvals], uniques, 0, -1) |
|
|
|
tmp = uniques.to_array() |
|
oldshape = tmp.shape |
|
|
|
|
|
|
|
if safely_resizes: |
|
htable.get_labels(vals, uniques, 0, -1) |
|
else: |
|
with pytest.raises(ValueError, match="external reference.*"): |
|
htable.get_labels(vals, uniques, 0, -1) |
|
|
|
uniques.to_array() |
|
assert tmp.shape == oldshape |
|
|
|
@pytest.mark.parametrize( |
|
"hashtable", |
|
[ |
|
ht.PyObjectHashTable, |
|
ht.StringHashTable, |
|
ht.Float64HashTable, |
|
ht.Int64HashTable, |
|
ht.Int32HashTable, |
|
ht.UInt64HashTable, |
|
], |
|
) |
|
def test_hashtable_large_sizehint(self, hashtable): |
|
|
|
size_hint = np.iinfo(np.uint32).max + 1 |
|
hashtable(size_hint=size_hint) |
|
|
|
|
|
class TestPyObjectHashTableWithNans: |
|
def test_nan_float(self): |
|
nan1 = float("nan") |
|
nan2 = float("nan") |
|
assert nan1 is not nan2 |
|
table = ht.PyObjectHashTable() |
|
table.set_item(nan1, 42) |
|
assert table.get_item(nan2) == 42 |
|
|
|
def test_nan_complex_both(self): |
|
nan1 = complex(float("nan"), float("nan")) |
|
nan2 = complex(float("nan"), float("nan")) |
|
assert nan1 is not nan2 |
|
table = ht.PyObjectHashTable() |
|
table.set_item(nan1, 42) |
|
assert table.get_item(nan2) == 42 |
|
|
|
def test_nan_complex_real(self): |
|
nan1 = complex(float("nan"), 1) |
|
nan2 = complex(float("nan"), 1) |
|
other = complex(float("nan"), 2) |
|
assert nan1 is not nan2 |
|
table = ht.PyObjectHashTable() |
|
table.set_item(nan1, 42) |
|
assert table.get_item(nan2) == 42 |
|
with pytest.raises(KeyError, match=None) as error: |
|
table.get_item(other) |
|
assert str(error.value) == str(other) |
|
|
|
def test_nan_complex_imag(self): |
|
nan1 = complex(1, float("nan")) |
|
nan2 = complex(1, float("nan")) |
|
other = complex(2, float("nan")) |
|
assert nan1 is not nan2 |
|
table = ht.PyObjectHashTable() |
|
table.set_item(nan1, 42) |
|
assert table.get_item(nan2) == 42 |
|
with pytest.raises(KeyError, match=None) as error: |
|
table.get_item(other) |
|
assert str(error.value) == str(other) |
|
|
|
def test_nan_in_tuple(self): |
|
nan1 = (float("nan"),) |
|
nan2 = (float("nan"),) |
|
assert nan1[0] is not nan2[0] |
|
table = ht.PyObjectHashTable() |
|
table.set_item(nan1, 42) |
|
assert table.get_item(nan2) == 42 |
|
|
|
def test_nan_in_nested_tuple(self): |
|
nan1 = (1, (2, (float("nan"),))) |
|
nan2 = (1, (2, (float("nan"),))) |
|
other = (1, 2) |
|
table = ht.PyObjectHashTable() |
|
table.set_item(nan1, 42) |
|
assert table.get_item(nan2) == 42 |
|
with pytest.raises(KeyError, match=None) as error: |
|
table.get_item(other) |
|
assert str(error.value) == str(other) |
|
|
|
|
|
def test_hash_equal_tuple_with_nans(): |
|
a = (float("nan"), (float("nan"), float("nan"))) |
|
b = (float("nan"), (float("nan"), float("nan"))) |
|
assert ht.object_hash(a) == ht.object_hash(b) |
|
assert ht.objects_are_equal(a, b) |
|
|
|
|
|
def test_get_labels_groupby_for_Int64(writable): |
|
table = ht.Int64HashTable() |
|
vals = np.array([1, 2, -1, 2, 1, -1], dtype=np.int64) |
|
vals.flags.writeable = writable |
|
arr, unique = table.get_labels_groupby(vals) |
|
expected_arr = np.array([0, 1, -1, 1, 0, -1], dtype=np.intp) |
|
expected_unique = np.array([1, 2], dtype=np.int64) |
|
tm.assert_numpy_array_equal(arr, expected_arr) |
|
tm.assert_numpy_array_equal(unique, expected_unique) |
|
|
|
|
|
def test_tracemalloc_works_for_StringHashTable(): |
|
N = 1000 |
|
keys = np.arange(N).astype(np.str_).astype(np.object_) |
|
with activated_tracemalloc(): |
|
table = ht.StringHashTable() |
|
table.map_locations(keys) |
|
used = get_allocated_khash_memory() |
|
my_size = table.sizeof() |
|
assert used == my_size |
|
del table |
|
assert get_allocated_khash_memory() == 0 |
|
|
|
|
|
def test_tracemalloc_for_empty_StringHashTable(): |
|
with activated_tracemalloc(): |
|
table = ht.StringHashTable() |
|
used = get_allocated_khash_memory() |
|
my_size = table.sizeof() |
|
assert used == my_size |
|
del table |
|
assert get_allocated_khash_memory() == 0 |
|
|
|
|
|
@pytest.mark.parametrize("N", range(1, 110)) |
|
def test_no_reallocation_StringHashTable(N): |
|
keys = np.arange(N).astype(np.str_).astype(np.object_) |
|
preallocated_table = ht.StringHashTable(N) |
|
n_buckets_start = preallocated_table.get_state()["n_buckets"] |
|
preallocated_table.map_locations(keys) |
|
n_buckets_end = preallocated_table.get_state()["n_buckets"] |
|
|
|
assert n_buckets_start == n_buckets_end |
|
|
|
clean_table = ht.StringHashTable() |
|
clean_table.map_locations(keys) |
|
assert n_buckets_start == clean_table.get_state()["n_buckets"] |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"table_type, dtype", |
|
[ |
|
(ht.Float64HashTable, np.float64), |
|
(ht.Float32HashTable, np.float32), |
|
(ht.Complex128HashTable, np.complex128), |
|
(ht.Complex64HashTable, np.complex64), |
|
], |
|
) |
|
class TestHashTableWithNans: |
|
def test_get_set_contains_len(self, table_type, dtype): |
|
index = float("nan") |
|
table = table_type() |
|
assert index not in table |
|
|
|
table.set_item(index, 42) |
|
assert len(table) == 1 |
|
assert index in table |
|
assert table.get_item(index) == 42 |
|
|
|
table.set_item(index, 41) |
|
assert len(table) == 1 |
|
assert index in table |
|
assert table.get_item(index) == 41 |
|
|
|
def test_map_locations(self, table_type, dtype): |
|
N = 10 |
|
table = table_type() |
|
keys = np.full(N, np.nan, dtype=dtype) |
|
table.map_locations(keys) |
|
assert len(table) == 1 |
|
assert table.get_item(np.nan) == N - 1 |
|
|
|
def test_unique(self, table_type, dtype): |
|
N = 1020 |
|
table = table_type() |
|
keys = np.full(N, np.nan, dtype=dtype) |
|
unique = table.unique(keys) |
|
assert np.all(np.isnan(unique)) and len(unique) == 1 |
|
|
|
|
|
def test_unique_for_nan_objects_floats(): |
|
table = ht.PyObjectHashTable() |
|
keys = np.array([float("nan") for i in range(50)], dtype=np.object_) |
|
unique = table.unique(keys) |
|
assert len(unique) == 1 |
|
|
|
|
|
def test_unique_for_nan_objects_complex(): |
|
table = ht.PyObjectHashTable() |
|
keys = np.array([complex(float("nan"), 1.0) for i in range(50)], dtype=np.object_) |
|
unique = table.unique(keys) |
|
assert len(unique) == 1 |
|
|
|
|
|
def test_unique_for_nan_objects_tuple(): |
|
table = ht.PyObjectHashTable() |
|
keys = np.array( |
|
[1] + [(1.0, (float("nan"), 1.0)) for i in range(50)], dtype=np.object_ |
|
) |
|
unique = table.unique(keys) |
|
assert len(unique) == 2 |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"dtype", |
|
[ |
|
np.object_, |
|
np.complex128, |
|
np.int64, |
|
np.uint64, |
|
np.float64, |
|
np.complex64, |
|
np.int32, |
|
np.uint32, |
|
np.float32, |
|
np.int16, |
|
np.uint16, |
|
np.int8, |
|
np.uint8, |
|
np.intp, |
|
], |
|
) |
|
class TestHelpFunctions: |
|
def test_value_count(self, dtype, writable): |
|
N = 43 |
|
expected = (np.arange(N) + N).astype(dtype) |
|
values = np.repeat(expected, 5) |
|
values.flags.writeable = writable |
|
keys, counts, _ = ht.value_count(values, False) |
|
tm.assert_numpy_array_equal(np.sort(keys), expected) |
|
assert np.all(counts == 5) |
|
|
|
def test_value_count_mask(self, dtype): |
|
if dtype == np.object_: |
|
pytest.skip("mask not implemented for object dtype") |
|
values = np.array([1] * 5, dtype=dtype) |
|
mask = np.zeros((5,), dtype=np.bool_) |
|
mask[1] = True |
|
mask[4] = True |
|
keys, counts, na_counter = ht.value_count(values, False, mask=mask) |
|
assert len(keys) == 2 |
|
assert na_counter == 2 |
|
|
|
def test_value_count_stable(self, dtype, writable): |
|
|
|
values = np.array([2, 1, 5, 22, 3, -1, 8]).astype(dtype) |
|
values.flags.writeable = writable |
|
keys, counts, _ = ht.value_count(values, False) |
|
tm.assert_numpy_array_equal(keys, values) |
|
assert np.all(counts == 1) |
|
|
|
def test_duplicated_first(self, dtype, writable): |
|
N = 100 |
|
values = np.repeat(np.arange(N).astype(dtype), 5) |
|
values.flags.writeable = writable |
|
result = ht.duplicated(values) |
|
expected = np.ones_like(values, dtype=np.bool_) |
|
expected[::5] = False |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
def test_ismember_yes(self, dtype, writable): |
|
N = 127 |
|
arr = np.arange(N).astype(dtype) |
|
values = np.arange(N).astype(dtype) |
|
arr.flags.writeable = writable |
|
values.flags.writeable = writable |
|
result = ht.ismember(arr, values) |
|
expected = np.ones_like(values, dtype=np.bool_) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
def test_ismember_no(self, dtype): |
|
N = 17 |
|
arr = np.arange(N).astype(dtype) |
|
values = (np.arange(N) + N).astype(dtype) |
|
result = ht.ismember(arr, values) |
|
expected = np.zeros_like(values, dtype=np.bool_) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
def test_mode(self, dtype, writable): |
|
if dtype in (np.int8, np.uint8): |
|
N = 53 |
|
else: |
|
N = 11111 |
|
values = np.repeat(np.arange(N).astype(dtype), 5) |
|
values[0] = 42 |
|
values.flags.writeable = writable |
|
result = ht.mode(values, False)[0] |
|
assert result == 42 |
|
|
|
def test_mode_stable(self, dtype, writable): |
|
values = np.array([2, 1, 5, 22, 3, -1, 8]).astype(dtype) |
|
values.flags.writeable = writable |
|
keys = ht.mode(values, False)[0] |
|
tm.assert_numpy_array_equal(keys, values) |
|
|
|
|
|
def test_modes_with_nans(): |
|
|
|
nulls = [pd.NA, np.nan, pd.NaT, None] |
|
values = np.array([True] + nulls * 2, dtype=np.object_) |
|
modes = ht.mode(values, False)[0] |
|
assert modes.size == len(nulls) |
|
|
|
|
|
def test_unique_label_indices_intp(writable): |
|
keys = np.array([1, 2, 2, 2, 1, 3], dtype=np.intp) |
|
keys.flags.writeable = writable |
|
result = ht.unique_label_indices(keys) |
|
expected = np.array([0, 1, 5], dtype=np.intp) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
def test_unique_label_indices(): |
|
a = np.random.default_rng(2).integers(1, 1 << 10, 1 << 15).astype(np.intp) |
|
|
|
left = ht.unique_label_indices(a) |
|
right = np.unique(a, return_index=True)[1] |
|
|
|
tm.assert_numpy_array_equal(left, right, check_dtype=False) |
|
|
|
a[np.random.default_rng(2).choice(len(a), 10)] = -1 |
|
left = ht.unique_label_indices(a) |
|
right = np.unique(a, return_index=True)[1][1:] |
|
tm.assert_numpy_array_equal(left, right, check_dtype=False) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"dtype", |
|
[ |
|
np.float64, |
|
np.float32, |
|
np.complex128, |
|
np.complex64, |
|
], |
|
) |
|
class TestHelpFunctionsWithNans: |
|
def test_value_count(self, dtype): |
|
values = np.array([np.nan, np.nan, np.nan], dtype=dtype) |
|
keys, counts, _ = ht.value_count(values, True) |
|
assert len(keys) == 0 |
|
keys, counts, _ = ht.value_count(values, False) |
|
assert len(keys) == 1 and np.all(np.isnan(keys)) |
|
assert counts[0] == 3 |
|
|
|
def test_duplicated_first(self, dtype): |
|
values = np.array([np.nan, np.nan, np.nan], dtype=dtype) |
|
result = ht.duplicated(values) |
|
expected = np.array([False, True, True]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
def test_ismember_yes(self, dtype): |
|
arr = np.array([np.nan, np.nan, np.nan], dtype=dtype) |
|
values = np.array([np.nan, np.nan], dtype=dtype) |
|
result = ht.ismember(arr, values) |
|
expected = np.array([True, True, True], dtype=np.bool_) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
def test_ismember_no(self, dtype): |
|
arr = np.array([np.nan, np.nan, np.nan], dtype=dtype) |
|
values = np.array([1], dtype=dtype) |
|
result = ht.ismember(arr, values) |
|
expected = np.array([False, False, False], dtype=np.bool_) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
def test_mode(self, dtype): |
|
values = np.array([42, np.nan, np.nan, np.nan], dtype=dtype) |
|
assert ht.mode(values, True)[0] == 42 |
|
assert np.isnan(ht.mode(values, False)[0]) |
|
|
|
|
|
def test_ismember_tuple_with_nans(): |
|
|
|
values = [("a", float("nan")), ("b", 1)] |
|
comps = [("a", float("nan"))] |
|
|
|
msg = "isin with argument that is not not a Series" |
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
result = isin(values, comps) |
|
expected = np.array([True, False], dtype=np.bool_) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
def test_float_complex_int_are_equal_as_objects(): |
|
values = ["a", 5, 5.0, 5.0 + 0j] |
|
comps = list(range(129)) |
|
result = isin(np.array(values, dtype=object), np.asarray(comps)) |
|
expected = np.array([False, True, True, True], dtype=np.bool_) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|