|
from __future__ import annotations |
|
|
|
import contextlib |
|
from contextlib import closing |
|
import csv |
|
from datetime import ( |
|
date, |
|
datetime, |
|
time, |
|
timedelta, |
|
) |
|
from io import StringIO |
|
from pathlib import Path |
|
import sqlite3 |
|
from typing import TYPE_CHECKING |
|
import uuid |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from pandas._libs import lib |
|
from pandas.compat import ( |
|
pa_version_under13p0, |
|
pa_version_under14p1, |
|
) |
|
from pandas.compat._optional import import_optional_dependency |
|
import pandas.util._test_decorators as td |
|
|
|
import pandas as pd |
|
from pandas import ( |
|
DataFrame, |
|
Index, |
|
MultiIndex, |
|
Series, |
|
Timestamp, |
|
concat, |
|
date_range, |
|
isna, |
|
to_datetime, |
|
to_timedelta, |
|
) |
|
import pandas._testing as tm |
|
from pandas.core.arrays import ( |
|
ArrowStringArray, |
|
StringArray, |
|
) |
|
from pandas.util.version import Version |
|
|
|
from pandas.io import sql |
|
from pandas.io.sql import ( |
|
SQLAlchemyEngine, |
|
SQLDatabase, |
|
SQLiteDatabase, |
|
get_engine, |
|
pandasSQL_builder, |
|
read_sql_query, |
|
read_sql_table, |
|
) |
|
|
|
if TYPE_CHECKING: |
|
import sqlalchemy |
|
|
|
|
|
pytestmark = pytest.mark.filterwarnings( |
|
"ignore:Passing a BlockManager to DataFrame:DeprecationWarning" |
|
) |
|
|
|
|
|
@pytest.fixture |
|
def sql_strings(): |
|
return { |
|
"read_parameters": { |
|
"sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?", |
|
"mysql": "SELECT * FROM iris WHERE `Name`=%s AND `SepalLength`=%s", |
|
"postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s', |
|
}, |
|
"read_named_parameters": { |
|
"sqlite": """ |
|
SELECT * FROM iris WHERE Name=:name AND SepalLength=:length |
|
""", |
|
"mysql": """ |
|
SELECT * FROM iris WHERE |
|
`Name`=%(name)s AND `SepalLength`=%(length)s |
|
""", |
|
"postgresql": """ |
|
SELECT * FROM iris WHERE |
|
"Name"=%(name)s AND "SepalLength"=%(length)s |
|
""", |
|
}, |
|
"read_no_parameters_with_percent": { |
|
"sqlite": "SELECT * FROM iris WHERE Name LIKE '%'", |
|
"mysql": "SELECT * FROM iris WHERE `Name` LIKE '%'", |
|
"postgresql": "SELECT * FROM iris WHERE \"Name\" LIKE '%'", |
|
}, |
|
} |
|
|
|
|
|
def iris_table_metadata(): |
|
import sqlalchemy |
|
from sqlalchemy import ( |
|
Column, |
|
Double, |
|
Float, |
|
MetaData, |
|
String, |
|
Table, |
|
) |
|
|
|
dtype = Double if Version(sqlalchemy.__version__) >= Version("2.0.0") else Float |
|
metadata = MetaData() |
|
iris = Table( |
|
"iris", |
|
metadata, |
|
Column("SepalLength", dtype), |
|
Column("SepalWidth", dtype), |
|
Column("PetalLength", dtype), |
|
Column("PetalWidth", dtype), |
|
Column("Name", String(200)), |
|
) |
|
return iris |
|
|
|
|
|
def create_and_load_iris_sqlite3(conn, iris_file: Path): |
|
stmt = """CREATE TABLE iris ( |
|
"SepalLength" REAL, |
|
"SepalWidth" REAL, |
|
"PetalLength" REAL, |
|
"PetalWidth" REAL, |
|
"Name" TEXT |
|
)""" |
|
|
|
cur = conn.cursor() |
|
cur.execute(stmt) |
|
with iris_file.open(newline=None, encoding="utf-8") as csvfile: |
|
reader = csv.reader(csvfile) |
|
next(reader) |
|
stmt = "INSERT INTO iris VALUES(?, ?, ?, ?, ?)" |
|
|
|
records = [] |
|
records = [ |
|
( |
|
float(row[0]), |
|
float(row[1]), |
|
float(row[2]), |
|
float(row[3]), |
|
row[4], |
|
) |
|
for row in reader |
|
] |
|
|
|
cur.executemany(stmt, records) |
|
cur.close() |
|
|
|
conn.commit() |
|
|
|
|
|
def create_and_load_iris_postgresql(conn, iris_file: Path): |
|
stmt = """CREATE TABLE iris ( |
|
"SepalLength" DOUBLE PRECISION, |
|
"SepalWidth" DOUBLE PRECISION, |
|
"PetalLength" DOUBLE PRECISION, |
|
"PetalWidth" DOUBLE PRECISION, |
|
"Name" TEXT |
|
)""" |
|
with conn.cursor() as cur: |
|
cur.execute(stmt) |
|
with iris_file.open(newline=None, encoding="utf-8") as csvfile: |
|
reader = csv.reader(csvfile) |
|
next(reader) |
|
stmt = "INSERT INTO iris VALUES($1, $2, $3, $4, $5)" |
|
|
|
records = [ |
|
( |
|
float(row[0]), |
|
float(row[1]), |
|
float(row[2]), |
|
float(row[3]), |
|
row[4], |
|
) |
|
for row in reader |
|
] |
|
|
|
cur.executemany(stmt, records) |
|
|
|
conn.commit() |
|
|
|
|
|
def create_and_load_iris(conn, iris_file: Path): |
|
from sqlalchemy import insert |
|
|
|
iris = iris_table_metadata() |
|
|
|
with iris_file.open(newline=None, encoding="utf-8") as csvfile: |
|
reader = csv.reader(csvfile) |
|
header = next(reader) |
|
params = [dict(zip(header, row)) for row in reader] |
|
stmt = insert(iris).values(params) |
|
with conn.begin() as con: |
|
iris.drop(con, checkfirst=True) |
|
iris.create(bind=con) |
|
con.execute(stmt) |
|
|
|
|
|
def create_and_load_iris_view(conn): |
|
stmt = "CREATE VIEW iris_view AS SELECT * FROM iris" |
|
if isinstance(conn, sqlite3.Connection): |
|
cur = conn.cursor() |
|
cur.execute(stmt) |
|
else: |
|
adbc = import_optional_dependency("adbc_driver_manager.dbapi", errors="ignore") |
|
if adbc and isinstance(conn, adbc.Connection): |
|
with conn.cursor() as cur: |
|
cur.execute(stmt) |
|
conn.commit() |
|
else: |
|
from sqlalchemy import text |
|
|
|
stmt = text(stmt) |
|
with conn.begin() as con: |
|
con.execute(stmt) |
|
|
|
|
|
def types_table_metadata(dialect: str): |
|
from sqlalchemy import ( |
|
TEXT, |
|
Boolean, |
|
Column, |
|
DateTime, |
|
Float, |
|
Integer, |
|
MetaData, |
|
Table, |
|
) |
|
|
|
date_type = TEXT if dialect == "sqlite" else DateTime |
|
bool_type = Integer if dialect == "sqlite" else Boolean |
|
metadata = MetaData() |
|
types = Table( |
|
"types", |
|
metadata, |
|
Column("TextCol", TEXT), |
|
Column("DateCol", date_type), |
|
Column("IntDateCol", Integer), |
|
Column("IntDateOnlyCol", Integer), |
|
Column("FloatCol", Float), |
|
Column("IntCol", Integer), |
|
Column("BoolCol", bool_type), |
|
Column("IntColWithNull", Integer), |
|
Column("BoolColWithNull", bool_type), |
|
) |
|
return types |
|
|
|
|
|
def create_and_load_types_sqlite3(conn, types_data: list[dict]): |
|
stmt = """CREATE TABLE types ( |
|
"TextCol" TEXT, |
|
"DateCol" TEXT, |
|
"IntDateCol" INTEGER, |
|
"IntDateOnlyCol" INTEGER, |
|
"FloatCol" REAL, |
|
"IntCol" INTEGER, |
|
"BoolCol" INTEGER, |
|
"IntColWithNull" INTEGER, |
|
"BoolColWithNull" INTEGER |
|
)""" |
|
|
|
ins_stmt = """ |
|
INSERT INTO types |
|
VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) |
|
""" |
|
|
|
if isinstance(conn, sqlite3.Connection): |
|
cur = conn.cursor() |
|
cur.execute(stmt) |
|
cur.executemany(ins_stmt, types_data) |
|
else: |
|
with conn.cursor() as cur: |
|
cur.execute(stmt) |
|
cur.executemany(ins_stmt, types_data) |
|
|
|
conn.commit() |
|
|
|
|
|
def create_and_load_types_postgresql(conn, types_data: list[dict]): |
|
with conn.cursor() as cur: |
|
stmt = """CREATE TABLE types ( |
|
"TextCol" TEXT, |
|
"DateCol" TIMESTAMP, |
|
"IntDateCol" INTEGER, |
|
"IntDateOnlyCol" INTEGER, |
|
"FloatCol" DOUBLE PRECISION, |
|
"IntCol" INTEGER, |
|
"BoolCol" BOOLEAN, |
|
"IntColWithNull" INTEGER, |
|
"BoolColWithNull" BOOLEAN |
|
)""" |
|
cur.execute(stmt) |
|
|
|
stmt = """ |
|
INSERT INTO types |
|
VALUES($1, $2::timestamp, $3, $4, $5, $6, $7, $8, $9) |
|
""" |
|
|
|
cur.executemany(stmt, types_data) |
|
|
|
conn.commit() |
|
|
|
|
|
def create_and_load_types(conn, types_data: list[dict], dialect: str): |
|
from sqlalchemy import insert |
|
from sqlalchemy.engine import Engine |
|
|
|
types = types_table_metadata(dialect) |
|
|
|
stmt = insert(types).values(types_data) |
|
if isinstance(conn, Engine): |
|
with conn.connect() as conn: |
|
with conn.begin(): |
|
types.drop(conn, checkfirst=True) |
|
types.create(bind=conn) |
|
conn.execute(stmt) |
|
else: |
|
with conn.begin(): |
|
types.drop(conn, checkfirst=True) |
|
types.create(bind=conn) |
|
conn.execute(stmt) |
|
|
|
|
|
def create_and_load_postgres_datetz(conn): |
|
from sqlalchemy import ( |
|
Column, |
|
DateTime, |
|
MetaData, |
|
Table, |
|
insert, |
|
) |
|
from sqlalchemy.engine import Engine |
|
|
|
metadata = MetaData() |
|
datetz = Table("datetz", metadata, Column("DateColWithTz", DateTime(timezone=True))) |
|
datetz_data = [ |
|
{ |
|
"DateColWithTz": "2000-01-01 00:00:00-08:00", |
|
}, |
|
{ |
|
"DateColWithTz": "2000-06-01 00:00:00-07:00", |
|
}, |
|
] |
|
stmt = insert(datetz).values(datetz_data) |
|
if isinstance(conn, Engine): |
|
with conn.connect() as conn: |
|
with conn.begin(): |
|
datetz.drop(conn, checkfirst=True) |
|
datetz.create(bind=conn) |
|
conn.execute(stmt) |
|
else: |
|
with conn.begin(): |
|
datetz.drop(conn, checkfirst=True) |
|
datetz.create(bind=conn) |
|
conn.execute(stmt) |
|
|
|
|
|
|
|
|
|
|
|
|
|
expected_data = [ |
|
Timestamp("2000-01-01 08:00:00", tz="UTC"), |
|
Timestamp("2000-06-01 07:00:00", tz="UTC"), |
|
] |
|
return Series(expected_data, name="DateColWithTz") |
|
|
|
|
|
def check_iris_frame(frame: DataFrame): |
|
pytype = frame.dtypes.iloc[0].type |
|
row = frame.iloc[0] |
|
assert issubclass(pytype, np.floating) |
|
tm.assert_series_equal( |
|
row, Series([5.1, 3.5, 1.4, 0.2, "Iris-setosa"], index=frame.columns, name=0) |
|
) |
|
assert frame.shape in ((150, 5), (8, 5)) |
|
|
|
|
|
def count_rows(conn, table_name: str): |
|
stmt = f"SELECT count(*) AS count_1 FROM {table_name}" |
|
adbc = import_optional_dependency("adbc_driver_manager.dbapi", errors="ignore") |
|
if isinstance(conn, sqlite3.Connection): |
|
cur = conn.cursor() |
|
return cur.execute(stmt).fetchone()[0] |
|
elif adbc and isinstance(conn, adbc.Connection): |
|
with conn.cursor() as cur: |
|
cur.execute(stmt) |
|
return cur.fetchone()[0] |
|
else: |
|
from sqlalchemy import create_engine |
|
from sqlalchemy.engine import Engine |
|
|
|
if isinstance(conn, str): |
|
try: |
|
engine = create_engine(conn) |
|
with engine.connect() as conn: |
|
return conn.exec_driver_sql(stmt).scalar_one() |
|
finally: |
|
engine.dispose() |
|
elif isinstance(conn, Engine): |
|
with conn.connect() as conn: |
|
return conn.exec_driver_sql(stmt).scalar_one() |
|
else: |
|
return conn.exec_driver_sql(stmt).scalar_one() |
|
|
|
|
|
@pytest.fixture |
|
def iris_path(datapath): |
|
iris_path = datapath("io", "data", "csv", "iris.csv") |
|
return Path(iris_path) |
|
|
|
|
|
@pytest.fixture |
|
def types_data(): |
|
return [ |
|
{ |
|
"TextCol": "first", |
|
"DateCol": "2000-01-03 00:00:00", |
|
"IntDateCol": 535852800, |
|
"IntDateOnlyCol": 20101010, |
|
"FloatCol": 10.10, |
|
"IntCol": 1, |
|
"BoolCol": False, |
|
"IntColWithNull": 1, |
|
"BoolColWithNull": False, |
|
}, |
|
{ |
|
"TextCol": "first", |
|
"DateCol": "2000-01-04 00:00:00", |
|
"IntDateCol": 1356998400, |
|
"IntDateOnlyCol": 20101212, |
|
"FloatCol": 10.10, |
|
"IntCol": 1, |
|
"BoolCol": False, |
|
"IntColWithNull": None, |
|
"BoolColWithNull": None, |
|
}, |
|
] |
|
|
|
|
|
@pytest.fixture |
|
def types_data_frame(types_data): |
|
dtypes = { |
|
"TextCol": "str", |
|
"DateCol": "str", |
|
"IntDateCol": "int64", |
|
"IntDateOnlyCol": "int64", |
|
"FloatCol": "float", |
|
"IntCol": "int64", |
|
"BoolCol": "int64", |
|
"IntColWithNull": "float", |
|
"BoolColWithNull": "float", |
|
} |
|
df = DataFrame(types_data) |
|
return df[dtypes.keys()].astype(dtypes) |
|
|
|
|
|
@pytest.fixture |
|
def test_frame1(): |
|
columns = ["index", "A", "B", "C", "D"] |
|
data = [ |
|
( |
|
"2000-01-03 00:00:00", |
|
0.980268513777, |
|
3.68573087906, |
|
-0.364216805298, |
|
-1.15973806169, |
|
), |
|
( |
|
"2000-01-04 00:00:00", |
|
1.04791624281, |
|
-0.0412318367011, |
|
-0.16181208307, |
|
0.212549316967, |
|
), |
|
( |
|
"2000-01-05 00:00:00", |
|
0.498580885705, |
|
0.731167677815, |
|
-0.537677223318, |
|
1.34627041952, |
|
), |
|
( |
|
"2000-01-06 00:00:00", |
|
1.12020151869, |
|
1.56762092543, |
|
0.00364077397681, |
|
0.67525259227, |
|
), |
|
] |
|
return DataFrame(data, columns=columns) |
|
|
|
|
|
@pytest.fixture |
|
def test_frame3(): |
|
columns = ["index", "A", "B"] |
|
data = [ |
|
("2000-01-03 00:00:00", 2**31 - 1, -1.987670), |
|
("2000-01-04 00:00:00", -29, -0.0412318367011), |
|
("2000-01-05 00:00:00", 20000, 0.731167677815), |
|
("2000-01-06 00:00:00", -290867, 1.56762092543), |
|
] |
|
return DataFrame(data, columns=columns) |
|
|
|
|
|
def get_all_views(conn): |
|
if isinstance(conn, sqlite3.Connection): |
|
c = conn.execute("SELECT name FROM sqlite_master WHERE type='view'") |
|
return [view[0] for view in c.fetchall()] |
|
else: |
|
adbc = import_optional_dependency("adbc_driver_manager.dbapi", errors="ignore") |
|
if adbc and isinstance(conn, adbc.Connection): |
|
results = [] |
|
info = conn.adbc_get_objects().read_all().to_pylist() |
|
for catalog in info: |
|
catalog["catalog_name"] |
|
for schema in catalog["catalog_db_schemas"]: |
|
schema["db_schema_name"] |
|
for table in schema["db_schema_tables"]: |
|
if table["table_type"] == "view": |
|
view_name = table["table_name"] |
|
results.append(view_name) |
|
|
|
return results |
|
else: |
|
from sqlalchemy import inspect |
|
|
|
return inspect(conn).get_view_names() |
|
|
|
|
|
def get_all_tables(conn): |
|
if isinstance(conn, sqlite3.Connection): |
|
c = conn.execute("SELECT name FROM sqlite_master WHERE type='table'") |
|
return [table[0] for table in c.fetchall()] |
|
else: |
|
adbc = import_optional_dependency("adbc_driver_manager.dbapi", errors="ignore") |
|
|
|
if adbc and isinstance(conn, adbc.Connection): |
|
results = [] |
|
info = conn.adbc_get_objects().read_all().to_pylist() |
|
for catalog in info: |
|
for schema in catalog["catalog_db_schemas"]: |
|
for table in schema["db_schema_tables"]: |
|
if table["table_type"] == "table": |
|
table_name = table["table_name"] |
|
results.append(table_name) |
|
|
|
return results |
|
else: |
|
from sqlalchemy import inspect |
|
|
|
return inspect(conn).get_table_names() |
|
|
|
|
|
def drop_table( |
|
table_name: str, |
|
conn: sqlite3.Connection | sqlalchemy.engine.Engine | sqlalchemy.engine.Connection, |
|
): |
|
if isinstance(conn, sqlite3.Connection): |
|
conn.execute(f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}") |
|
conn.commit() |
|
|
|
else: |
|
adbc = import_optional_dependency("adbc_driver_manager.dbapi", errors="ignore") |
|
if adbc and isinstance(conn, adbc.Connection): |
|
with conn.cursor() as cur: |
|
cur.execute(f'DROP TABLE IF EXISTS "{table_name}"') |
|
else: |
|
with conn.begin() as con: |
|
with sql.SQLDatabase(con) as db: |
|
db.drop_table(table_name) |
|
|
|
|
|
def drop_view( |
|
view_name: str, |
|
conn: sqlite3.Connection | sqlalchemy.engine.Engine | sqlalchemy.engine.Connection, |
|
): |
|
import sqlalchemy |
|
|
|
if isinstance(conn, sqlite3.Connection): |
|
conn.execute(f"DROP VIEW IF EXISTS {sql._get_valid_sqlite_name(view_name)}") |
|
conn.commit() |
|
else: |
|
adbc = import_optional_dependency("adbc_driver_manager.dbapi", errors="ignore") |
|
if adbc and isinstance(conn, adbc.Connection): |
|
with conn.cursor() as cur: |
|
cur.execute(f'DROP VIEW IF EXISTS "{view_name}"') |
|
else: |
|
quoted_view = conn.engine.dialect.identifier_preparer.quote_identifier( |
|
view_name |
|
) |
|
stmt = sqlalchemy.text(f"DROP VIEW IF EXISTS {quoted_view}") |
|
with conn.begin() as con: |
|
con.execute(stmt) |
|
|
|
|
|
@pytest.fixture |
|
def mysql_pymysql_engine(): |
|
sqlalchemy = pytest.importorskip("sqlalchemy") |
|
pymysql = pytest.importorskip("pymysql") |
|
engine = sqlalchemy.create_engine( |
|
"mysql+pymysql://root@localhost:3306/pandas", |
|
connect_args={"client_flag": pymysql.constants.CLIENT.MULTI_STATEMENTS}, |
|
poolclass=sqlalchemy.pool.NullPool, |
|
) |
|
yield engine |
|
for view in get_all_views(engine): |
|
drop_view(view, engine) |
|
for tbl in get_all_tables(engine): |
|
drop_table(tbl, engine) |
|
engine.dispose() |
|
|
|
|
|
@pytest.fixture |
|
def mysql_pymysql_engine_iris(mysql_pymysql_engine, iris_path): |
|
create_and_load_iris(mysql_pymysql_engine, iris_path) |
|
create_and_load_iris_view(mysql_pymysql_engine) |
|
yield mysql_pymysql_engine |
|
|
|
|
|
@pytest.fixture |
|
def mysql_pymysql_engine_types(mysql_pymysql_engine, types_data): |
|
create_and_load_types(mysql_pymysql_engine, types_data, "mysql") |
|
yield mysql_pymysql_engine |
|
|
|
|
|
@pytest.fixture |
|
def mysql_pymysql_conn(mysql_pymysql_engine): |
|
with mysql_pymysql_engine.connect() as conn: |
|
yield conn |
|
|
|
|
|
@pytest.fixture |
|
def mysql_pymysql_conn_iris(mysql_pymysql_engine_iris): |
|
with mysql_pymysql_engine_iris.connect() as conn: |
|
yield conn |
|
|
|
|
|
@pytest.fixture |
|
def mysql_pymysql_conn_types(mysql_pymysql_engine_types): |
|
with mysql_pymysql_engine_types.connect() as conn: |
|
yield conn |
|
|
|
|
|
@pytest.fixture |
|
def postgresql_psycopg2_engine(): |
|
sqlalchemy = pytest.importorskip("sqlalchemy") |
|
pytest.importorskip("psycopg2") |
|
engine = sqlalchemy.create_engine( |
|
"postgresql+psycopg2://postgres:postgres@localhost:5432/pandas", |
|
poolclass=sqlalchemy.pool.NullPool, |
|
) |
|
yield engine |
|
for view in get_all_views(engine): |
|
drop_view(view, engine) |
|
for tbl in get_all_tables(engine): |
|
drop_table(tbl, engine) |
|
engine.dispose() |
|
|
|
|
|
@pytest.fixture |
|
def postgresql_psycopg2_engine_iris(postgresql_psycopg2_engine, iris_path): |
|
create_and_load_iris(postgresql_psycopg2_engine, iris_path) |
|
create_and_load_iris_view(postgresql_psycopg2_engine) |
|
yield postgresql_psycopg2_engine |
|
|
|
|
|
@pytest.fixture |
|
def postgresql_psycopg2_engine_types(postgresql_psycopg2_engine, types_data): |
|
create_and_load_types(postgresql_psycopg2_engine, types_data, "postgres") |
|
yield postgresql_psycopg2_engine |
|
|
|
|
|
@pytest.fixture |
|
def postgresql_psycopg2_conn(postgresql_psycopg2_engine): |
|
with postgresql_psycopg2_engine.connect() as conn: |
|
yield conn |
|
|
|
|
|
@pytest.fixture |
|
def postgresql_adbc_conn(): |
|
pytest.importorskip("adbc_driver_postgresql") |
|
from adbc_driver_postgresql import dbapi |
|
|
|
uri = "postgresql://postgres:postgres@localhost:5432/pandas" |
|
with dbapi.connect(uri) as conn: |
|
yield conn |
|
for view in get_all_views(conn): |
|
drop_view(view, conn) |
|
for tbl in get_all_tables(conn): |
|
drop_table(tbl, conn) |
|
conn.commit() |
|
|
|
|
|
@pytest.fixture |
|
def postgresql_adbc_iris(postgresql_adbc_conn, iris_path): |
|
import adbc_driver_manager as mgr |
|
|
|
conn = postgresql_adbc_conn |
|
|
|
try: |
|
conn.adbc_get_table_schema("iris") |
|
except mgr.ProgrammingError: |
|
conn.rollback() |
|
create_and_load_iris_postgresql(conn, iris_path) |
|
try: |
|
conn.adbc_get_table_schema("iris_view") |
|
except mgr.ProgrammingError: |
|
conn.rollback() |
|
create_and_load_iris_view(conn) |
|
yield conn |
|
|
|
|
|
@pytest.fixture |
|
def postgresql_adbc_types(postgresql_adbc_conn, types_data): |
|
import adbc_driver_manager as mgr |
|
|
|
conn = postgresql_adbc_conn |
|
|
|
try: |
|
conn.adbc_get_table_schema("types") |
|
except mgr.ProgrammingError: |
|
conn.rollback() |
|
new_data = [tuple(entry.values()) for entry in types_data] |
|
|
|
create_and_load_types_postgresql(conn, new_data) |
|
|
|
yield conn |
|
|
|
|
|
@pytest.fixture |
|
def postgresql_psycopg2_conn_iris(postgresql_psycopg2_engine_iris): |
|
with postgresql_psycopg2_engine_iris.connect() as conn: |
|
yield conn |
|
|
|
|
|
@pytest.fixture |
|
def postgresql_psycopg2_conn_types(postgresql_psycopg2_engine_types): |
|
with postgresql_psycopg2_engine_types.connect() as conn: |
|
yield conn |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_str(): |
|
pytest.importorskip("sqlalchemy") |
|
with tm.ensure_clean() as name: |
|
yield f"sqlite:///{name}" |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_engine(sqlite_str): |
|
sqlalchemy = pytest.importorskip("sqlalchemy") |
|
engine = sqlalchemy.create_engine(sqlite_str, poolclass=sqlalchemy.pool.NullPool) |
|
yield engine |
|
for view in get_all_views(engine): |
|
drop_view(view, engine) |
|
for tbl in get_all_tables(engine): |
|
drop_table(tbl, engine) |
|
engine.dispose() |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_conn(sqlite_engine): |
|
with sqlite_engine.connect() as conn: |
|
yield conn |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_str_iris(sqlite_str, iris_path): |
|
sqlalchemy = pytest.importorskip("sqlalchemy") |
|
engine = sqlalchemy.create_engine(sqlite_str) |
|
create_and_load_iris(engine, iris_path) |
|
create_and_load_iris_view(engine) |
|
engine.dispose() |
|
return sqlite_str |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_engine_iris(sqlite_engine, iris_path): |
|
create_and_load_iris(sqlite_engine, iris_path) |
|
create_and_load_iris_view(sqlite_engine) |
|
yield sqlite_engine |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_conn_iris(sqlite_engine_iris): |
|
with sqlite_engine_iris.connect() as conn: |
|
yield conn |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_str_types(sqlite_str, types_data): |
|
sqlalchemy = pytest.importorskip("sqlalchemy") |
|
engine = sqlalchemy.create_engine(sqlite_str) |
|
create_and_load_types(engine, types_data, "sqlite") |
|
engine.dispose() |
|
return sqlite_str |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_engine_types(sqlite_engine, types_data): |
|
create_and_load_types(sqlite_engine, types_data, "sqlite") |
|
yield sqlite_engine |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_conn_types(sqlite_engine_types): |
|
with sqlite_engine_types.connect() as conn: |
|
yield conn |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_adbc_conn(): |
|
pytest.importorskip("adbc_driver_sqlite") |
|
from adbc_driver_sqlite import dbapi |
|
|
|
with tm.ensure_clean() as name: |
|
uri = f"file:{name}" |
|
with dbapi.connect(uri) as conn: |
|
yield conn |
|
for view in get_all_views(conn): |
|
drop_view(view, conn) |
|
for tbl in get_all_tables(conn): |
|
drop_table(tbl, conn) |
|
conn.commit() |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_adbc_iris(sqlite_adbc_conn, iris_path): |
|
import adbc_driver_manager as mgr |
|
|
|
conn = sqlite_adbc_conn |
|
try: |
|
conn.adbc_get_table_schema("iris") |
|
except mgr.ProgrammingError: |
|
conn.rollback() |
|
create_and_load_iris_sqlite3(conn, iris_path) |
|
try: |
|
conn.adbc_get_table_schema("iris_view") |
|
except mgr.ProgrammingError: |
|
conn.rollback() |
|
create_and_load_iris_view(conn) |
|
yield conn |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_adbc_types(sqlite_adbc_conn, types_data): |
|
import adbc_driver_manager as mgr |
|
|
|
conn = sqlite_adbc_conn |
|
try: |
|
conn.adbc_get_table_schema("types") |
|
except mgr.ProgrammingError: |
|
conn.rollback() |
|
new_data = [] |
|
for entry in types_data: |
|
entry["BoolCol"] = int(entry["BoolCol"]) |
|
if entry["BoolColWithNull"] is not None: |
|
entry["BoolColWithNull"] = int(entry["BoolColWithNull"]) |
|
new_data.append(tuple(entry.values())) |
|
|
|
create_and_load_types_sqlite3(conn, new_data) |
|
conn.commit() |
|
|
|
yield conn |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_buildin(): |
|
with contextlib.closing(sqlite3.connect(":memory:")) as closing_conn: |
|
with closing_conn as conn: |
|
yield conn |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_buildin_iris(sqlite_buildin, iris_path): |
|
create_and_load_iris_sqlite3(sqlite_buildin, iris_path) |
|
create_and_load_iris_view(sqlite_buildin) |
|
yield sqlite_buildin |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_buildin_types(sqlite_buildin, types_data): |
|
types_data = [tuple(entry.values()) for entry in types_data] |
|
create_and_load_types_sqlite3(sqlite_buildin, types_data) |
|
yield sqlite_buildin |
|
|
|
|
|
mysql_connectable = [ |
|
pytest.param("mysql_pymysql_engine", marks=pytest.mark.db), |
|
pytest.param("mysql_pymysql_conn", marks=pytest.mark.db), |
|
] |
|
|
|
mysql_connectable_iris = [ |
|
pytest.param("mysql_pymysql_engine_iris", marks=pytest.mark.db), |
|
pytest.param("mysql_pymysql_conn_iris", marks=pytest.mark.db), |
|
] |
|
|
|
mysql_connectable_types = [ |
|
pytest.param("mysql_pymysql_engine_types", marks=pytest.mark.db), |
|
pytest.param("mysql_pymysql_conn_types", marks=pytest.mark.db), |
|
] |
|
|
|
postgresql_connectable = [ |
|
pytest.param("postgresql_psycopg2_engine", marks=pytest.mark.db), |
|
pytest.param("postgresql_psycopg2_conn", marks=pytest.mark.db), |
|
] |
|
|
|
postgresql_connectable_iris = [ |
|
pytest.param("postgresql_psycopg2_engine_iris", marks=pytest.mark.db), |
|
pytest.param("postgresql_psycopg2_conn_iris", marks=pytest.mark.db), |
|
] |
|
|
|
postgresql_connectable_types = [ |
|
pytest.param("postgresql_psycopg2_engine_types", marks=pytest.mark.db), |
|
pytest.param("postgresql_psycopg2_conn_types", marks=pytest.mark.db), |
|
] |
|
|
|
sqlite_connectable = [ |
|
"sqlite_engine", |
|
"sqlite_conn", |
|
"sqlite_str", |
|
] |
|
|
|
sqlite_connectable_iris = [ |
|
"sqlite_engine_iris", |
|
"sqlite_conn_iris", |
|
"sqlite_str_iris", |
|
] |
|
|
|
sqlite_connectable_types = [ |
|
"sqlite_engine_types", |
|
"sqlite_conn_types", |
|
"sqlite_str_types", |
|
] |
|
|
|
sqlalchemy_connectable = mysql_connectable + postgresql_connectable + sqlite_connectable |
|
|
|
sqlalchemy_connectable_iris = ( |
|
mysql_connectable_iris + postgresql_connectable_iris + sqlite_connectable_iris |
|
) |
|
|
|
sqlalchemy_connectable_types = ( |
|
mysql_connectable_types + postgresql_connectable_types + sqlite_connectable_types |
|
) |
|
|
|
adbc_connectable = [ |
|
"sqlite_adbc_conn", |
|
pytest.param("postgresql_adbc_conn", marks=pytest.mark.db), |
|
] |
|
|
|
adbc_connectable_iris = [ |
|
pytest.param("postgresql_adbc_iris", marks=pytest.mark.db), |
|
pytest.param("sqlite_adbc_iris", marks=pytest.mark.db), |
|
] |
|
|
|
adbc_connectable_types = [ |
|
pytest.param("postgresql_adbc_types", marks=pytest.mark.db), |
|
pytest.param("sqlite_adbc_types", marks=pytest.mark.db), |
|
] |
|
|
|
|
|
all_connectable = sqlalchemy_connectable + ["sqlite_buildin"] + adbc_connectable |
|
|
|
all_connectable_iris = ( |
|
sqlalchemy_connectable_iris + ["sqlite_buildin_iris"] + adbc_connectable_iris |
|
) |
|
|
|
all_connectable_types = ( |
|
sqlalchemy_connectable_types + ["sqlite_buildin_types"] + adbc_connectable_types |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_dataframe_to_sql(conn, test_frame1, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
test_frame1.to_sql(name="test", con=conn, if_exists="append", index=False) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_dataframe_to_sql_empty(conn, test_frame1, request): |
|
if conn == "postgresql_adbc_conn": |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="postgres ADBC driver cannot insert index with null type", |
|
strict=True, |
|
) |
|
) |
|
|
|
conn = request.getfixturevalue(conn) |
|
empty_df = test_frame1.iloc[:0] |
|
empty_df.to_sql(name="test", con=conn, if_exists="append", index=False) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_dataframe_to_sql_arrow_dtypes(conn, request): |
|
|
|
pytest.importorskip("pyarrow") |
|
df = DataFrame( |
|
{ |
|
"int": pd.array([1], dtype="int8[pyarrow]"), |
|
"datetime": pd.array( |
|
[datetime(2023, 1, 1)], dtype="timestamp[ns][pyarrow]" |
|
), |
|
"date": pd.array([date(2023, 1, 1)], dtype="date32[day][pyarrow]"), |
|
"timedelta": pd.array([timedelta(1)], dtype="duration[ns][pyarrow]"), |
|
"string": pd.array(["a"], dtype="string[pyarrow]"), |
|
} |
|
) |
|
|
|
if "adbc" in conn: |
|
if conn == "sqlite_adbc_conn": |
|
df = df.drop(columns=["timedelta"]) |
|
if pa_version_under14p1: |
|
exp_warning = DeprecationWarning |
|
msg = "is_sparse is deprecated" |
|
else: |
|
exp_warning = None |
|
msg = "" |
|
else: |
|
exp_warning = UserWarning |
|
msg = "the 'timedelta'" |
|
|
|
conn = request.getfixturevalue(conn) |
|
with tm.assert_produces_warning(exp_warning, match=msg, check_stacklevel=False): |
|
df.to_sql(name="test_arrow", con=conn, if_exists="replace", index=False) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_dataframe_to_sql_arrow_dtypes_missing(conn, request, nulls_fixture): |
|
|
|
pytest.importorskip("pyarrow") |
|
df = DataFrame( |
|
{ |
|
"datetime": pd.array( |
|
[datetime(2023, 1, 1), nulls_fixture], dtype="timestamp[ns][pyarrow]" |
|
), |
|
} |
|
) |
|
conn = request.getfixturevalue(conn) |
|
df.to_sql(name="test_arrow", con=conn, if_exists="replace", index=False) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
@pytest.mark.parametrize("method", [None, "multi"]) |
|
def test_to_sql(conn, method, test_frame1, request): |
|
if method == "multi" and "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="'method' not implemented for ADBC drivers", strict=True |
|
) |
|
) |
|
|
|
conn = request.getfixturevalue(conn) |
|
with pandasSQL_builder(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.to_sql(test_frame1, "test_frame", method=method) |
|
assert pandasSQL.has_table("test_frame") |
|
assert count_rows(conn, "test_frame") == len(test_frame1) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
@pytest.mark.parametrize("mode, num_row_coef", [("replace", 1), ("append", 2)]) |
|
def test_to_sql_exist(conn, mode, num_row_coef, test_frame1, request): |
|
conn = request.getfixturevalue(conn) |
|
with pandasSQL_builder(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.to_sql(test_frame1, "test_frame", if_exists="fail") |
|
pandasSQL.to_sql(test_frame1, "test_frame", if_exists=mode) |
|
assert pandasSQL.has_table("test_frame") |
|
assert count_rows(conn, "test_frame") == num_row_coef * len(test_frame1) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_to_sql_exist_fail(conn, test_frame1, request): |
|
conn = request.getfixturevalue(conn) |
|
with pandasSQL_builder(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.to_sql(test_frame1, "test_frame", if_exists="fail") |
|
assert pandasSQL.has_table("test_frame") |
|
|
|
msg = "Table 'test_frame' already exists" |
|
with pytest.raises(ValueError, match=msg): |
|
pandasSQL.to_sql(test_frame1, "test_frame", if_exists="fail") |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_iris) |
|
def test_read_iris_query(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
iris_frame = read_sql_query("SELECT * FROM iris", conn) |
|
check_iris_frame(iris_frame) |
|
iris_frame = pd.read_sql("SELECT * FROM iris", conn) |
|
check_iris_frame(iris_frame) |
|
iris_frame = pd.read_sql("SELECT * FROM iris where 0=1", conn) |
|
assert iris_frame.shape == (0, 5) |
|
assert "SepalWidth" in iris_frame.columns |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_iris) |
|
def test_read_iris_query_chunksize(conn, request): |
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="'chunksize' not implemented for ADBC drivers", |
|
strict=True, |
|
) |
|
) |
|
conn = request.getfixturevalue(conn) |
|
iris_frame = concat(read_sql_query("SELECT * FROM iris", conn, chunksize=7)) |
|
check_iris_frame(iris_frame) |
|
iris_frame = concat(pd.read_sql("SELECT * FROM iris", conn, chunksize=7)) |
|
check_iris_frame(iris_frame) |
|
iris_frame = concat(pd.read_sql("SELECT * FROM iris where 0=1", conn, chunksize=7)) |
|
assert iris_frame.shape == (0, 5) |
|
assert "SepalWidth" in iris_frame.columns |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable_iris) |
|
def test_read_iris_query_expression_with_parameter(conn, request): |
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="'chunksize' not implemented for ADBC drivers", |
|
strict=True, |
|
) |
|
) |
|
conn = request.getfixturevalue(conn) |
|
from sqlalchemy import ( |
|
MetaData, |
|
Table, |
|
create_engine, |
|
select, |
|
) |
|
|
|
metadata = MetaData() |
|
autoload_con = create_engine(conn) if isinstance(conn, str) else conn |
|
iris = Table("iris", metadata, autoload_with=autoload_con) |
|
iris_frame = read_sql_query( |
|
select(iris), conn, params={"name": "Iris-setosa", "length": 5.1} |
|
) |
|
check_iris_frame(iris_frame) |
|
if isinstance(conn, str): |
|
autoload_con.dispose() |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_iris) |
|
def test_read_iris_query_string_with_parameter(conn, request, sql_strings): |
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="'chunksize' not implemented for ADBC drivers", |
|
strict=True, |
|
) |
|
) |
|
|
|
for db, query in sql_strings["read_parameters"].items(): |
|
if db in conn: |
|
break |
|
else: |
|
raise KeyError(f"No part of {conn} found in sql_strings['read_parameters']") |
|
conn = request.getfixturevalue(conn) |
|
iris_frame = read_sql_query(query, conn, params=("Iris-setosa", 5.1)) |
|
check_iris_frame(iris_frame) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable_iris) |
|
def test_read_iris_table(conn, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
iris_frame = read_sql_table("iris", conn) |
|
check_iris_frame(iris_frame) |
|
iris_frame = pd.read_sql("iris", conn) |
|
check_iris_frame(iris_frame) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable_iris) |
|
def test_read_iris_table_chunksize(conn, request): |
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail(reason="chunksize argument NotImplemented with ADBC") |
|
) |
|
conn = request.getfixturevalue(conn) |
|
iris_frame = concat(read_sql_table("iris", conn, chunksize=7)) |
|
check_iris_frame(iris_frame) |
|
iris_frame = concat(pd.read_sql("iris", conn, chunksize=7)) |
|
check_iris_frame(iris_frame) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_to_sql_callable(conn, test_frame1, request): |
|
conn = request.getfixturevalue(conn) |
|
|
|
check = [] |
|
|
|
def sample(pd_table, conn, keys, data_iter): |
|
check.append(1) |
|
data = [dict(zip(keys, row)) for row in data_iter] |
|
conn.execute(pd_table.table.insert(), data) |
|
|
|
with pandasSQL_builder(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.to_sql(test_frame1, "test_frame", method=sample) |
|
assert pandasSQL.has_table("test_frame") |
|
assert check == [1] |
|
assert count_rows(conn, "test_frame") == len(test_frame1) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_types) |
|
def test_default_type_conversion(conn, request): |
|
conn_name = conn |
|
if conn_name == "sqlite_buildin_types": |
|
request.applymarker( |
|
pytest.mark.xfail( |
|
reason="sqlite_buildin connection does not implement read_sql_table" |
|
) |
|
) |
|
|
|
conn = request.getfixturevalue(conn) |
|
df = sql.read_sql_table("types", conn) |
|
|
|
assert issubclass(df.FloatCol.dtype.type, np.floating) |
|
assert issubclass(df.IntCol.dtype.type, np.integer) |
|
|
|
|
|
if "postgresql" in conn_name: |
|
assert issubclass(df.BoolCol.dtype.type, np.bool_) |
|
else: |
|
assert issubclass(df.BoolCol.dtype.type, np.integer) |
|
|
|
|
|
assert issubclass(df.IntColWithNull.dtype.type, np.floating) |
|
|
|
|
|
if "postgresql" in conn_name: |
|
assert issubclass(df.BoolColWithNull.dtype.type, object) |
|
else: |
|
assert issubclass(df.BoolColWithNull.dtype.type, np.floating) |
|
|
|
|
|
@pytest.mark.parametrize("conn", mysql_connectable) |
|
def test_read_procedure(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
|
|
|
|
|
|
|
|
from sqlalchemy import text |
|
from sqlalchemy.engine import Engine |
|
|
|
df = DataFrame({"a": [1, 2, 3], "b": [0.1, 0.2, 0.3]}) |
|
df.to_sql(name="test_frame", con=conn, index=False) |
|
|
|
proc = """DROP PROCEDURE IF EXISTS get_testdb; |
|
|
|
CREATE PROCEDURE get_testdb () |
|
|
|
BEGIN |
|
SELECT * FROM test_frame; |
|
END""" |
|
proc = text(proc) |
|
if isinstance(conn, Engine): |
|
with conn.connect() as engine_conn: |
|
with engine_conn.begin(): |
|
engine_conn.execute(proc) |
|
else: |
|
with conn.begin(): |
|
conn.execute(proc) |
|
|
|
res1 = sql.read_sql_query("CALL get_testdb();", conn) |
|
tm.assert_frame_equal(df, res1) |
|
|
|
|
|
res2 = sql.read_sql("CALL get_testdb();", conn) |
|
tm.assert_frame_equal(df, res2) |
|
|
|
|
|
@pytest.mark.parametrize("conn", postgresql_connectable) |
|
@pytest.mark.parametrize("expected_count", [2, "Success!"]) |
|
def test_copy_from_callable_insertion_method(conn, expected_count, request): |
|
|
|
|
|
|
|
def psql_insert_copy(table, conn, keys, data_iter): |
|
|
|
dbapi_conn = conn.connection |
|
with dbapi_conn.cursor() as cur: |
|
s_buf = StringIO() |
|
writer = csv.writer(s_buf) |
|
writer.writerows(data_iter) |
|
s_buf.seek(0) |
|
|
|
columns = ", ".join([f'"{k}"' for k in keys]) |
|
if table.schema: |
|
table_name = f"{table.schema}.{table.name}" |
|
else: |
|
table_name = table.name |
|
|
|
sql_query = f"COPY {table_name} ({columns}) FROM STDIN WITH CSV" |
|
cur.copy_expert(sql=sql_query, file=s_buf) |
|
return expected_count |
|
|
|
conn = request.getfixturevalue(conn) |
|
expected = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) |
|
result_count = expected.to_sql( |
|
name="test_frame", con=conn, index=False, method=psql_insert_copy |
|
) |
|
|
|
if expected_count is None: |
|
assert result_count is None |
|
else: |
|
assert result_count == expected_count |
|
result = sql.read_sql_table("test_frame", conn) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("conn", postgresql_connectable) |
|
def test_insertion_method_on_conflict_do_nothing(conn, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
|
|
from sqlalchemy.dialects.postgresql import insert |
|
from sqlalchemy.engine import Engine |
|
from sqlalchemy.sql import text |
|
|
|
def insert_on_conflict(table, conn, keys, data_iter): |
|
data = [dict(zip(keys, row)) for row in data_iter] |
|
stmt = ( |
|
insert(table.table) |
|
.values(data) |
|
.on_conflict_do_nothing(index_elements=["a"]) |
|
) |
|
result = conn.execute(stmt) |
|
return result.rowcount |
|
|
|
create_sql = text( |
|
""" |
|
CREATE TABLE test_insert_conflict ( |
|
a integer PRIMARY KEY, |
|
b numeric, |
|
c text |
|
); |
|
""" |
|
) |
|
if isinstance(conn, Engine): |
|
with conn.connect() as con: |
|
with con.begin(): |
|
con.execute(create_sql) |
|
else: |
|
with conn.begin(): |
|
conn.execute(create_sql) |
|
|
|
expected = DataFrame([[1, 2.1, "a"]], columns=list("abc")) |
|
expected.to_sql( |
|
name="test_insert_conflict", con=conn, if_exists="append", index=False |
|
) |
|
|
|
df_insert = DataFrame([[1, 3.2, "b"]], columns=list("abc")) |
|
inserted = df_insert.to_sql( |
|
name="test_insert_conflict", |
|
con=conn, |
|
index=False, |
|
if_exists="append", |
|
method=insert_on_conflict, |
|
) |
|
result = sql.read_sql_table("test_insert_conflict", conn) |
|
tm.assert_frame_equal(result, expected) |
|
assert inserted == 0 |
|
|
|
|
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_insert_conflict") |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_to_sql_on_public_schema(conn, request): |
|
if "sqlite" in conn or "mysql" in conn: |
|
request.applymarker( |
|
pytest.mark.xfail( |
|
reason="test for public schema only specific to postgresql" |
|
) |
|
) |
|
|
|
conn = request.getfixturevalue(conn) |
|
|
|
test_data = DataFrame([[1, 2.1, "a"], [2, 3.1, "b"]], columns=list("abc")) |
|
test_data.to_sql( |
|
name="test_public_schema", |
|
con=conn, |
|
if_exists="append", |
|
index=False, |
|
schema="public", |
|
) |
|
|
|
df_out = sql.read_sql_table("test_public_schema", conn, schema="public") |
|
tm.assert_frame_equal(test_data, df_out) |
|
|
|
|
|
@pytest.mark.parametrize("conn", mysql_connectable) |
|
def test_insertion_method_on_conflict_update(conn, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
|
|
from sqlalchemy.dialects.mysql import insert |
|
from sqlalchemy.engine import Engine |
|
from sqlalchemy.sql import text |
|
|
|
def insert_on_conflict(table, conn, keys, data_iter): |
|
data = [dict(zip(keys, row)) for row in data_iter] |
|
stmt = insert(table.table).values(data) |
|
stmt = stmt.on_duplicate_key_update(b=stmt.inserted.b, c=stmt.inserted.c) |
|
result = conn.execute(stmt) |
|
return result.rowcount |
|
|
|
create_sql = text( |
|
""" |
|
CREATE TABLE test_insert_conflict ( |
|
a INT PRIMARY KEY, |
|
b FLOAT, |
|
c VARCHAR(10) |
|
); |
|
""" |
|
) |
|
if isinstance(conn, Engine): |
|
with conn.connect() as con: |
|
with con.begin(): |
|
con.execute(create_sql) |
|
else: |
|
with conn.begin(): |
|
conn.execute(create_sql) |
|
|
|
df = DataFrame([[1, 2.1, "a"]], columns=list("abc")) |
|
df.to_sql(name="test_insert_conflict", con=conn, if_exists="append", index=False) |
|
|
|
expected = DataFrame([[1, 3.2, "b"]], columns=list("abc")) |
|
inserted = expected.to_sql( |
|
name="test_insert_conflict", |
|
con=conn, |
|
index=False, |
|
if_exists="append", |
|
method=insert_on_conflict, |
|
) |
|
result = sql.read_sql_table("test_insert_conflict", conn) |
|
tm.assert_frame_equal(result, expected) |
|
assert inserted == 2 |
|
|
|
|
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_insert_conflict") |
|
|
|
|
|
@pytest.mark.parametrize("conn", postgresql_connectable) |
|
def test_read_view_postgres(conn, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
|
|
from sqlalchemy.engine import Engine |
|
from sqlalchemy.sql import text |
|
|
|
table_name = f"group_{uuid.uuid4().hex}" |
|
view_name = f"group_view_{uuid.uuid4().hex}" |
|
|
|
sql_stmt = text( |
|
f""" |
|
CREATE TABLE {table_name} ( |
|
group_id INTEGER, |
|
name TEXT |
|
); |
|
INSERT INTO {table_name} VALUES |
|
(1, 'name'); |
|
CREATE VIEW {view_name} |
|
AS |
|
SELECT * FROM {table_name}; |
|
""" |
|
) |
|
if isinstance(conn, Engine): |
|
with conn.connect() as con: |
|
with con.begin(): |
|
con.execute(sql_stmt) |
|
else: |
|
with conn.begin(): |
|
conn.execute(sql_stmt) |
|
result = read_sql_table(view_name, conn) |
|
expected = DataFrame({"group_id": [1], "name": "name"}) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_read_view_sqlite(sqlite_buildin): |
|
|
|
create_table = """ |
|
CREATE TABLE groups ( |
|
group_id INTEGER, |
|
name TEXT |
|
); |
|
""" |
|
insert_into = """ |
|
INSERT INTO groups VALUES |
|
(1, 'name'); |
|
""" |
|
create_view = """ |
|
CREATE VIEW group_view |
|
AS |
|
SELECT * FROM groups; |
|
""" |
|
sqlite_buildin.execute(create_table) |
|
sqlite_buildin.execute(insert_into) |
|
sqlite_buildin.execute(create_view) |
|
result = pd.read_sql("SELECT * FROM group_view", sqlite_buildin) |
|
expected = DataFrame({"group_id": [1], "name": "name"}) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_execute_typeerror(sqlite_engine_iris): |
|
with pytest.raises(TypeError, match="pandas.io.sql.execute requires a connection"): |
|
with tm.assert_produces_warning( |
|
FutureWarning, |
|
match="`pandas.io.sql.execute` is deprecated and " |
|
"will be removed in the future version.", |
|
): |
|
sql.execute("select * from iris", sqlite_engine_iris) |
|
|
|
|
|
def test_execute_deprecated(sqlite_conn_iris): |
|
|
|
with tm.assert_produces_warning( |
|
FutureWarning, |
|
match="`pandas.io.sql.execute` is deprecated and " |
|
"will be removed in the future version.", |
|
): |
|
sql.execute("select * from iris", sqlite_conn_iris) |
|
|
|
|
|
def flavor(conn_name): |
|
if "postgresql" in conn_name: |
|
return "postgresql" |
|
elif "sqlite" in conn_name: |
|
return "sqlite" |
|
elif "mysql" in conn_name: |
|
return "mysql" |
|
|
|
raise ValueError(f"unsupported connection: {conn_name}") |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_iris) |
|
def test_read_sql_iris_parameter(conn, request, sql_strings): |
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="'params' not implemented for ADBC drivers", |
|
strict=True, |
|
) |
|
) |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
query = sql_strings["read_parameters"][flavor(conn_name)] |
|
params = ("Iris-setosa", 5.1) |
|
with pandasSQL_builder(conn) as pandasSQL: |
|
with pandasSQL.run_transaction(): |
|
iris_frame = pandasSQL.read_query(query, params=params) |
|
check_iris_frame(iris_frame) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_iris) |
|
def test_read_sql_iris_named_parameter(conn, request, sql_strings): |
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="'params' not implemented for ADBC drivers", |
|
strict=True, |
|
) |
|
) |
|
|
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
query = sql_strings["read_named_parameters"][flavor(conn_name)] |
|
params = {"name": "Iris-setosa", "length": 5.1} |
|
with pandasSQL_builder(conn) as pandasSQL: |
|
with pandasSQL.run_transaction(): |
|
iris_frame = pandasSQL.read_query(query, params=params) |
|
check_iris_frame(iris_frame) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_iris) |
|
def test_read_sql_iris_no_parameter_with_percent(conn, request, sql_strings): |
|
if "mysql" in conn or ("postgresql" in conn and "adbc" not in conn): |
|
request.applymarker(pytest.mark.xfail(reason="broken test")) |
|
|
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
|
|
query = sql_strings["read_no_parameters_with_percent"][flavor(conn_name)] |
|
with pandasSQL_builder(conn) as pandasSQL: |
|
with pandasSQL.run_transaction(): |
|
iris_frame = pandasSQL.read_query(query, params=None) |
|
check_iris_frame(iris_frame) |
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_iris) |
|
def test_api_read_sql_view(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
iris_frame = sql.read_sql_query("SELECT * FROM iris_view", conn) |
|
check_iris_frame(iris_frame) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_iris) |
|
def test_api_read_sql_with_chunksize_no_result(conn, request): |
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail(reason="chunksize argument NotImplemented with ADBC") |
|
) |
|
conn = request.getfixturevalue(conn) |
|
query = 'SELECT * FROM iris_view WHERE "SepalLength" < 0.0' |
|
with_batch = sql.read_sql_query(query, conn, chunksize=5) |
|
without_batch = sql.read_sql_query(query, conn) |
|
tm.assert_frame_equal(concat(with_batch), without_batch) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_to_sql(conn, request, test_frame1): |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_frame1", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_frame1") |
|
|
|
sql.to_sql(test_frame1, "test_frame1", conn) |
|
assert sql.has_table("test_frame1", conn) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_to_sql_fail(conn, request, test_frame1): |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_frame2", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_frame2") |
|
|
|
sql.to_sql(test_frame1, "test_frame2", conn, if_exists="fail") |
|
assert sql.has_table("test_frame2", conn) |
|
|
|
msg = "Table 'test_frame2' already exists" |
|
with pytest.raises(ValueError, match=msg): |
|
sql.to_sql(test_frame1, "test_frame2", conn, if_exists="fail") |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_to_sql_replace(conn, request, test_frame1): |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_frame3", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_frame3") |
|
|
|
sql.to_sql(test_frame1, "test_frame3", conn, if_exists="fail") |
|
|
|
sql.to_sql(test_frame1, "test_frame3", conn, if_exists="replace") |
|
assert sql.has_table("test_frame3", conn) |
|
|
|
num_entries = len(test_frame1) |
|
num_rows = count_rows(conn, "test_frame3") |
|
|
|
assert num_rows == num_entries |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_to_sql_append(conn, request, test_frame1): |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_frame4", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_frame4") |
|
|
|
assert sql.to_sql(test_frame1, "test_frame4", conn, if_exists="fail") == 4 |
|
|
|
|
|
assert sql.to_sql(test_frame1, "test_frame4", conn, if_exists="append") == 4 |
|
assert sql.has_table("test_frame4", conn) |
|
|
|
num_entries = 2 * len(test_frame1) |
|
num_rows = count_rows(conn, "test_frame4") |
|
|
|
assert num_rows == num_entries |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_to_sql_type_mapping(conn, request, test_frame3): |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_frame5", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_frame5") |
|
|
|
sql.to_sql(test_frame3, "test_frame5", conn, index=False) |
|
result = sql.read_sql("SELECT * FROM test_frame5", conn) |
|
|
|
tm.assert_frame_equal(test_frame3, result) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_to_sql_series(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_series", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_series") |
|
|
|
s = Series(np.arange(5, dtype="int64"), name="series") |
|
sql.to_sql(s, "test_series", conn, index=False) |
|
s2 = sql.read_sql_query("SELECT * FROM test_series", conn) |
|
tm.assert_frame_equal(s.to_frame(), s2) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_roundtrip(conn, request, test_frame1): |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_frame_roundtrip", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_frame_roundtrip") |
|
|
|
sql.to_sql(test_frame1, "test_frame_roundtrip", con=conn) |
|
result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=conn) |
|
|
|
|
|
if "adbc" in conn_name: |
|
result = result.rename(columns={"__index_level_0__": "level_0"}) |
|
result.index = test_frame1.index |
|
result.set_index("level_0", inplace=True) |
|
result.index.astype(int) |
|
result.index.name = None |
|
tm.assert_frame_equal(result, test_frame1) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_roundtrip_chunksize(conn, request, test_frame1): |
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail(reason="chunksize argument NotImplemented with ADBC") |
|
) |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_frame_roundtrip", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_frame_roundtrip") |
|
|
|
sql.to_sql( |
|
test_frame1, |
|
"test_frame_roundtrip", |
|
con=conn, |
|
index=False, |
|
chunksize=2, |
|
) |
|
result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=conn) |
|
tm.assert_frame_equal(result, test_frame1) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_iris) |
|
def test_api_execute_sql(conn, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
with sql.pandasSQL_builder(conn) as pandas_sql: |
|
iris_results = pandas_sql.execute("SELECT * FROM iris") |
|
row = iris_results.fetchone() |
|
iris_results.close() |
|
assert list(row) == [5.1, 3.5, 1.4, 0.2, "Iris-setosa"] |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_types) |
|
def test_api_date_parsing(conn, request): |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
|
|
|
|
df = sql.read_sql_query("SELECT * FROM types", conn) |
|
if not ("mysql" in conn_name or "postgres" in conn_name): |
|
assert not issubclass(df.DateCol.dtype.type, np.datetime64) |
|
|
|
df = sql.read_sql_query("SELECT * FROM types", conn, parse_dates=["DateCol"]) |
|
assert issubclass(df.DateCol.dtype.type, np.datetime64) |
|
assert df.DateCol.tolist() == [ |
|
Timestamp(2000, 1, 3, 0, 0, 0), |
|
Timestamp(2000, 1, 4, 0, 0, 0), |
|
] |
|
|
|
df = sql.read_sql_query( |
|
"SELECT * FROM types", |
|
conn, |
|
parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}, |
|
) |
|
assert issubclass(df.DateCol.dtype.type, np.datetime64) |
|
assert df.DateCol.tolist() == [ |
|
Timestamp(2000, 1, 3, 0, 0, 0), |
|
Timestamp(2000, 1, 4, 0, 0, 0), |
|
] |
|
|
|
df = sql.read_sql_query("SELECT * FROM types", conn, parse_dates=["IntDateCol"]) |
|
assert issubclass(df.IntDateCol.dtype.type, np.datetime64) |
|
assert df.IntDateCol.tolist() == [ |
|
Timestamp(1986, 12, 25, 0, 0, 0), |
|
Timestamp(2013, 1, 1, 0, 0, 0), |
|
] |
|
|
|
df = sql.read_sql_query( |
|
"SELECT * FROM types", conn, parse_dates={"IntDateCol": "s"} |
|
) |
|
assert issubclass(df.IntDateCol.dtype.type, np.datetime64) |
|
assert df.IntDateCol.tolist() == [ |
|
Timestamp(1986, 12, 25, 0, 0, 0), |
|
Timestamp(2013, 1, 1, 0, 0, 0), |
|
] |
|
|
|
df = sql.read_sql_query( |
|
"SELECT * FROM types", |
|
conn, |
|
parse_dates={"IntDateOnlyCol": "%Y%m%d"}, |
|
) |
|
assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64) |
|
assert df.IntDateOnlyCol.tolist() == [ |
|
Timestamp("2010-10-10"), |
|
Timestamp("2010-12-12"), |
|
] |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_types) |
|
@pytest.mark.parametrize("error", ["ignore", "raise", "coerce"]) |
|
@pytest.mark.parametrize( |
|
"read_sql, text, mode", |
|
[ |
|
(sql.read_sql, "SELECT * FROM types", ("sqlalchemy", "fallback")), |
|
(sql.read_sql, "types", ("sqlalchemy")), |
|
( |
|
sql.read_sql_query, |
|
"SELECT * FROM types", |
|
("sqlalchemy", "fallback"), |
|
), |
|
(sql.read_sql_table, "types", ("sqlalchemy")), |
|
], |
|
) |
|
def test_api_custom_dateparsing_error( |
|
conn, request, read_sql, text, mode, error, types_data_frame |
|
): |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
if text == "types" and conn_name == "sqlite_buildin_types": |
|
request.applymarker( |
|
pytest.mark.xfail(reason="failing combination of arguments") |
|
) |
|
|
|
expected = types_data_frame.astype({"DateCol": "datetime64[ns]"}) |
|
|
|
result = read_sql( |
|
text, |
|
con=conn, |
|
parse_dates={ |
|
"DateCol": {"errors": error}, |
|
}, |
|
) |
|
if "postgres" in conn_name: |
|
|
|
result["BoolCol"] = result["BoolCol"].astype(int) |
|
result["BoolColWithNull"] = result["BoolColWithNull"].astype(float) |
|
|
|
if conn_name == "postgresql_adbc_types": |
|
expected = expected.astype( |
|
{ |
|
"IntDateCol": "int32", |
|
"IntDateOnlyCol": "int32", |
|
"IntCol": "int32", |
|
} |
|
) |
|
|
|
if not pa_version_under13p0: |
|
|
|
expected["DateCol"] = expected["DateCol"].astype("datetime64[us]") |
|
|
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_types) |
|
def test_api_date_and_index(conn, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
df = sql.read_sql_query( |
|
"SELECT * FROM types", |
|
conn, |
|
index_col="DateCol", |
|
parse_dates=["DateCol", "IntDateCol"], |
|
) |
|
|
|
assert issubclass(df.index.dtype.type, np.datetime64) |
|
assert issubclass(df.IntDateCol.dtype.type, np.datetime64) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_timedelta(conn, request): |
|
|
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_timedelta", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_timedelta") |
|
|
|
df = to_timedelta(Series(["00:00:01", "00:00:03"], name="foo")).to_frame() |
|
|
|
if conn_name == "sqlite_adbc_conn": |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="sqlite ADBC driver doesn't implement timedelta", |
|
) |
|
) |
|
|
|
if "adbc" in conn_name: |
|
if pa_version_under14p1: |
|
exp_warning = DeprecationWarning |
|
else: |
|
exp_warning = None |
|
else: |
|
exp_warning = UserWarning |
|
|
|
with tm.assert_produces_warning(exp_warning, check_stacklevel=False): |
|
result_count = df.to_sql(name="test_timedelta", con=conn) |
|
assert result_count == 2 |
|
result = sql.read_sql_query("SELECT * FROM test_timedelta", conn) |
|
|
|
if conn_name == "postgresql_adbc_conn": |
|
|
|
|
|
|
|
expected = Series( |
|
[ |
|
pd.DateOffset(months=0, days=0, microseconds=1000000, nanoseconds=0), |
|
pd.DateOffset(months=0, days=0, microseconds=3000000, nanoseconds=0), |
|
], |
|
name="foo", |
|
) |
|
else: |
|
expected = df["foo"].astype("int64") |
|
tm.assert_series_equal(result["foo"], expected) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_complex_raises(conn, request): |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
df = DataFrame({"a": [1 + 1j, 2j]}) |
|
|
|
if "adbc" in conn_name: |
|
msg = "datatypes not supported" |
|
else: |
|
msg = "Complex datatypes not supported" |
|
with pytest.raises(ValueError, match=msg): |
|
assert df.to_sql("test_complex", con=conn) is None |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
@pytest.mark.parametrize( |
|
"index_name,index_label,expected", |
|
[ |
|
|
|
(None, None, "index"), |
|
|
|
(None, "other_label", "other_label"), |
|
|
|
("index_name", None, "index_name"), |
|
|
|
("index_name", "other_label", "other_label"), |
|
|
|
(0, None, "0"), |
|
|
|
(None, 0, "0"), |
|
], |
|
) |
|
def test_api_to_sql_index_label(conn, request, index_name, index_label, expected): |
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail(reason="index_label argument NotImplemented with ADBC") |
|
) |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_index_label", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_index_label") |
|
|
|
temp_frame = DataFrame({"col1": range(4)}) |
|
temp_frame.index.name = index_name |
|
query = "SELECT * FROM test_index_label" |
|
sql.to_sql(temp_frame, "test_index_label", conn, index_label=index_label) |
|
frame = sql.read_sql_query(query, conn) |
|
assert frame.columns[0] == expected |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_to_sql_index_label_multiindex(conn, request): |
|
conn_name = conn |
|
if "mysql" in conn_name: |
|
request.applymarker( |
|
pytest.mark.xfail( |
|
reason="MySQL can fail using TEXT without length as key", strict=False |
|
) |
|
) |
|
elif "adbc" in conn_name: |
|
request.node.add_marker( |
|
pytest.mark.xfail(reason="index_label argument NotImplemented with ADBC") |
|
) |
|
|
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_index_label", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_index_label") |
|
|
|
expected_row_count = 4 |
|
temp_frame = DataFrame( |
|
{"col1": range(4)}, |
|
index=MultiIndex.from_product([("A0", "A1"), ("B0", "B1")]), |
|
) |
|
|
|
|
|
result = sql.to_sql(temp_frame, "test_index_label", conn) |
|
assert result == expected_row_count |
|
frame = sql.read_sql_query("SELECT * FROM test_index_label", conn) |
|
assert frame.columns[0] == "level_0" |
|
assert frame.columns[1] == "level_1" |
|
|
|
|
|
result = sql.to_sql( |
|
temp_frame, |
|
"test_index_label", |
|
conn, |
|
if_exists="replace", |
|
index_label=["A", "B"], |
|
) |
|
assert result == expected_row_count |
|
frame = sql.read_sql_query("SELECT * FROM test_index_label", conn) |
|
assert frame.columns[:2].tolist() == ["A", "B"] |
|
|
|
|
|
temp_frame.index.names = ["A", "B"] |
|
result = sql.to_sql(temp_frame, "test_index_label", conn, if_exists="replace") |
|
assert result == expected_row_count |
|
frame = sql.read_sql_query("SELECT * FROM test_index_label", conn) |
|
assert frame.columns[:2].tolist() == ["A", "B"] |
|
|
|
|
|
result = sql.to_sql( |
|
temp_frame, |
|
"test_index_label", |
|
conn, |
|
if_exists="replace", |
|
index_label=["C", "D"], |
|
) |
|
assert result == expected_row_count |
|
frame = sql.read_sql_query("SELECT * FROM test_index_label", conn) |
|
assert frame.columns[:2].tolist() == ["C", "D"] |
|
|
|
msg = "Length of 'index_label' should match number of levels, which is 2" |
|
with pytest.raises(ValueError, match=msg): |
|
sql.to_sql( |
|
temp_frame, |
|
"test_index_label", |
|
conn, |
|
if_exists="replace", |
|
index_label="C", |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_multiindex_roundtrip(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_multiindex_roundtrip", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_multiindex_roundtrip") |
|
|
|
df = DataFrame.from_records( |
|
[(1, 2.1, "line1"), (2, 1.5, "line2")], |
|
columns=["A", "B", "C"], |
|
index=["A", "B"], |
|
) |
|
|
|
df.to_sql(name="test_multiindex_roundtrip", con=conn) |
|
result = sql.read_sql_query( |
|
"SELECT * FROM test_multiindex_roundtrip", conn, index_col=["A", "B"] |
|
) |
|
tm.assert_frame_equal(df, result, check_index_type=True) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
@pytest.mark.parametrize( |
|
"dtype", |
|
[ |
|
None, |
|
int, |
|
float, |
|
{"A": int, "B": float}, |
|
], |
|
) |
|
def test_api_dtype_argument(conn, request, dtype): |
|
|
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_dtype_argument", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_dtype_argument") |
|
|
|
df = DataFrame([[1.2, 3.4], [5.6, 7.8]], columns=["A", "B"]) |
|
assert df.to_sql(name="test_dtype_argument", con=conn) == 2 |
|
|
|
expected = df.astype(dtype) |
|
|
|
if "postgres" in conn_name: |
|
query = 'SELECT "A", "B" FROM test_dtype_argument' |
|
else: |
|
query = "SELECT A, B FROM test_dtype_argument" |
|
result = sql.read_sql_query(query, con=conn, dtype=dtype) |
|
|
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_integer_col_names(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) |
|
sql.to_sql(df, "test_frame_integer_col_names", conn, if_exists="replace") |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_get_schema(conn, request, test_frame1): |
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="'get_schema' not implemented for ADBC drivers", |
|
strict=True, |
|
) |
|
) |
|
conn = request.getfixturevalue(conn) |
|
create_sql = sql.get_schema(test_frame1, "test", con=conn) |
|
assert "CREATE" in create_sql |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_get_schema_with_schema(conn, request, test_frame1): |
|
|
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="'get_schema' not implemented for ADBC drivers", |
|
strict=True, |
|
) |
|
) |
|
conn = request.getfixturevalue(conn) |
|
create_sql = sql.get_schema(test_frame1, "test", con=conn, schema="pypi") |
|
assert "CREATE TABLE pypi." in create_sql |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_get_schema_dtypes(conn, request): |
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="'get_schema' not implemented for ADBC drivers", |
|
strict=True, |
|
) |
|
) |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
float_frame = DataFrame({"a": [1.1, 1.2], "b": [2.1, 2.2]}) |
|
|
|
if conn_name == "sqlite_buildin": |
|
dtype = "INTEGER" |
|
else: |
|
from sqlalchemy import Integer |
|
|
|
dtype = Integer |
|
create_sql = sql.get_schema(float_frame, "test", con=conn, dtype={"b": dtype}) |
|
assert "CREATE" in create_sql |
|
assert "INTEGER" in create_sql |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_get_schema_keys(conn, request, test_frame1): |
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="'get_schema' not implemented for ADBC drivers", |
|
strict=True, |
|
) |
|
) |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
frame = DataFrame({"Col1": [1.1, 1.2], "Col2": [2.1, 2.2]}) |
|
create_sql = sql.get_schema(frame, "test", con=conn, keys="Col1") |
|
|
|
if "mysql" in conn_name: |
|
constraint_sentence = "CONSTRAINT test_pk PRIMARY KEY (`Col1`)" |
|
else: |
|
constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' |
|
assert constraint_sentence in create_sql |
|
|
|
|
|
create_sql = sql.get_schema(test_frame1, "test", con=conn, keys=["A", "B"]) |
|
if "mysql" in conn_name: |
|
constraint_sentence = "CONSTRAINT test_pk PRIMARY KEY (`A`, `B`)" |
|
else: |
|
constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' |
|
assert constraint_sentence in create_sql |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_chunksize_read(conn, request): |
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail(reason="chunksize argument NotImplemented with ADBC") |
|
) |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_chunksize", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_chunksize") |
|
|
|
df = DataFrame( |
|
np.random.default_rng(2).standard_normal((22, 5)), columns=list("abcde") |
|
) |
|
df.to_sql(name="test_chunksize", con=conn, index=False) |
|
|
|
|
|
res1 = sql.read_sql_query("select * from test_chunksize", conn) |
|
|
|
|
|
res2 = DataFrame() |
|
i = 0 |
|
sizes = [5, 5, 5, 5, 2] |
|
|
|
for chunk in sql.read_sql_query("select * from test_chunksize", conn, chunksize=5): |
|
res2 = concat([res2, chunk], ignore_index=True) |
|
assert len(chunk) == sizes[i] |
|
i += 1 |
|
|
|
tm.assert_frame_equal(res1, res2) |
|
|
|
|
|
if conn_name == "sqlite_buildin": |
|
with pytest.raises(NotImplementedError, match=""): |
|
sql.read_sql_table("test_chunksize", conn, chunksize=5) |
|
else: |
|
res3 = DataFrame() |
|
i = 0 |
|
sizes = [5, 5, 5, 5, 2] |
|
|
|
for chunk in sql.read_sql_table("test_chunksize", conn, chunksize=5): |
|
res3 = concat([res3, chunk], ignore_index=True) |
|
assert len(chunk) == sizes[i] |
|
i += 1 |
|
|
|
tm.assert_frame_equal(res1, res3) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_categorical(conn, request): |
|
if conn == "postgresql_adbc_conn": |
|
adbc = import_optional_dependency("adbc_driver_postgresql", errors="ignore") |
|
if adbc is not None and Version(adbc.__version__) < Version("0.9.0"): |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="categorical dtype not implemented for ADBC postgres driver", |
|
strict=True, |
|
) |
|
) |
|
|
|
|
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_categorical", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_categorical") |
|
|
|
df = DataFrame( |
|
{ |
|
"person_id": [1, 2, 3], |
|
"person_name": ["John P. Doe", "Jane Dove", "John P. Doe"], |
|
} |
|
) |
|
df2 = df.copy() |
|
df2["person_name"] = df2["person_name"].astype("category") |
|
|
|
df2.to_sql(name="test_categorical", con=conn, index=False) |
|
res = sql.read_sql_query("SELECT * FROM test_categorical", conn) |
|
|
|
tm.assert_frame_equal(res, df) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_unicode_column_name(conn, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_unicode", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_unicode") |
|
|
|
df = DataFrame([[1, 2], [3, 4]], columns=["\xe9", "b"]) |
|
df.to_sql(name="test_unicode", con=conn, index=False) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_escaped_table_name(conn, request): |
|
|
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("d1187b08-4943-4c8d-a7f6", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("d1187b08-4943-4c8d-a7f6") |
|
|
|
df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) |
|
df.to_sql(name="d1187b08-4943-4c8d-a7f6", con=conn, index=False) |
|
|
|
if "postgres" in conn_name: |
|
query = 'SELECT * FROM "d1187b08-4943-4c8d-a7f6"' |
|
else: |
|
query = "SELECT * FROM `d1187b08-4943-4c8d-a7f6`" |
|
res = sql.read_sql_query(query, conn) |
|
|
|
tm.assert_frame_equal(res, df) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_api_read_sql_duplicate_columns(conn, request): |
|
|
|
if "adbc" in conn: |
|
pa = pytest.importorskip("pyarrow") |
|
if not ( |
|
Version(pa.__version__) >= Version("16.0") |
|
and conn in ["sqlite_adbc_conn", "postgresql_adbc_conn"] |
|
): |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="pyarrow->pandas throws ValueError", strict=True |
|
) |
|
) |
|
conn = request.getfixturevalue(conn) |
|
if sql.has_table("test_table", conn): |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("test_table") |
|
|
|
df = DataFrame({"a": [1, 2, 3], "b": [0.1, 0.2, 0.3], "c": 1}) |
|
df.to_sql(name="test_table", con=conn, index=False) |
|
|
|
result = pd.read_sql("SELECT a, b, a +1 as a, c FROM test_table", conn) |
|
expected = DataFrame( |
|
[[1, 0.1, 2, 1], [2, 0.2, 3, 1], [3, 0.3, 4, 1]], |
|
columns=["a", "b", "a", "c"], |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_read_table_columns(conn, request, test_frame1): |
|
|
|
conn_name = conn |
|
if conn_name == "sqlite_buildin": |
|
request.applymarker(pytest.mark.xfail(reason="Not Implemented")) |
|
|
|
conn = request.getfixturevalue(conn) |
|
sql.to_sql(test_frame1, "test_frame", conn) |
|
|
|
cols = ["A", "B"] |
|
|
|
result = sql.read_sql_table("test_frame", conn, columns=cols) |
|
assert result.columns.tolist() == cols |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_read_table_index_col(conn, request, test_frame1): |
|
|
|
conn_name = conn |
|
if conn_name == "sqlite_buildin": |
|
request.applymarker(pytest.mark.xfail(reason="Not Implemented")) |
|
|
|
conn = request.getfixturevalue(conn) |
|
sql.to_sql(test_frame1, "test_frame", conn) |
|
|
|
result = sql.read_sql_table("test_frame", conn, index_col="index") |
|
assert result.index.names == ["index"] |
|
|
|
result = sql.read_sql_table("test_frame", conn, index_col=["A", "B"]) |
|
assert result.index.names == ["A", "B"] |
|
|
|
result = sql.read_sql_table( |
|
"test_frame", conn, index_col=["A", "B"], columns=["C", "D"] |
|
) |
|
assert result.index.names == ["A", "B"] |
|
assert result.columns.tolist() == ["C", "D"] |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_iris) |
|
def test_read_sql_delegate(conn, request): |
|
if conn == "sqlite_buildin_iris": |
|
request.applymarker( |
|
pytest.mark.xfail( |
|
reason="sqlite_buildin connection does not implement read_sql_table" |
|
) |
|
) |
|
|
|
conn = request.getfixturevalue(conn) |
|
iris_frame1 = sql.read_sql_query("SELECT * FROM iris", conn) |
|
iris_frame2 = sql.read_sql("SELECT * FROM iris", conn) |
|
tm.assert_frame_equal(iris_frame1, iris_frame2) |
|
|
|
iris_frame1 = sql.read_sql_table("iris", conn) |
|
iris_frame2 = sql.read_sql("iris", conn) |
|
tm.assert_frame_equal(iris_frame1, iris_frame2) |
|
|
|
|
|
def test_not_reflect_all_tables(sqlite_conn): |
|
conn = sqlite_conn |
|
from sqlalchemy import text |
|
from sqlalchemy.engine import Engine |
|
|
|
|
|
query_list = [ |
|
text("CREATE TABLE invalid (x INTEGER, y UNKNOWN);"), |
|
text("CREATE TABLE other_table (x INTEGER, y INTEGER);"), |
|
] |
|
|
|
for query in query_list: |
|
if isinstance(conn, Engine): |
|
with conn.connect() as conn: |
|
with conn.begin(): |
|
conn.execute(query) |
|
else: |
|
with conn.begin(): |
|
conn.execute(query) |
|
|
|
with tm.assert_produces_warning(None): |
|
sql.read_sql_table("other_table", conn) |
|
sql.read_sql_query("SELECT * FROM other_table", conn) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_warning_case_insensitive_table_name(conn, request, test_frame1): |
|
conn_name = conn |
|
if conn_name == "sqlite_buildin" or "adbc" in conn_name: |
|
request.applymarker(pytest.mark.xfail(reason="Does not raise warning")) |
|
|
|
conn = request.getfixturevalue(conn) |
|
|
|
with tm.assert_produces_warning( |
|
UserWarning, |
|
match=( |
|
r"The provided table name 'TABLE1' is not found exactly as such in " |
|
r"the database after writing the table, possibly due to case " |
|
r"sensitivity issues. Consider using lower case table names." |
|
), |
|
): |
|
with sql.SQLDatabase(conn) as db: |
|
db.check_case_sensitive("TABLE1", "") |
|
|
|
|
|
with tm.assert_produces_warning(None): |
|
test_frame1.to_sql(name="CaseSensitive", con=conn) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_sqlalchemy_type_mapping(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
from sqlalchemy import TIMESTAMP |
|
|
|
|
|
df = DataFrame( |
|
{"time": to_datetime(["2014-12-12 01:54", "2014-12-11 02:54"], utc=True)} |
|
) |
|
with sql.SQLDatabase(conn) as db: |
|
table = sql.SQLTable("test_type", db, frame=df) |
|
|
|
assert isinstance(table.table.c["time"].type, TIMESTAMP) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
@pytest.mark.parametrize( |
|
"integer, expected", |
|
[ |
|
("int8", "SMALLINT"), |
|
("Int8", "SMALLINT"), |
|
("uint8", "SMALLINT"), |
|
("UInt8", "SMALLINT"), |
|
("int16", "SMALLINT"), |
|
("Int16", "SMALLINT"), |
|
("uint16", "INTEGER"), |
|
("UInt16", "INTEGER"), |
|
("int32", "INTEGER"), |
|
("Int32", "INTEGER"), |
|
("uint32", "BIGINT"), |
|
("UInt32", "BIGINT"), |
|
("int64", "BIGINT"), |
|
("Int64", "BIGINT"), |
|
(int, "BIGINT" if np.dtype(int).name == "int64" else "INTEGER"), |
|
], |
|
) |
|
def test_sqlalchemy_integer_mapping(conn, request, integer, expected): |
|
|
|
conn = request.getfixturevalue(conn) |
|
df = DataFrame([0, 1], columns=["a"], dtype=integer) |
|
with sql.SQLDatabase(conn) as db: |
|
table = sql.SQLTable("test_type", db, frame=df) |
|
|
|
result = str(table.table.c.a.type) |
|
assert result == expected |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
@pytest.mark.parametrize("integer", ["uint64", "UInt64"]) |
|
def test_sqlalchemy_integer_overload_mapping(conn, request, integer): |
|
conn = request.getfixturevalue(conn) |
|
|
|
df = DataFrame([0, 1], columns=["a"], dtype=integer) |
|
with sql.SQLDatabase(conn) as db: |
|
with pytest.raises( |
|
ValueError, match="Unsigned 64 bit integer datatype is not supported" |
|
): |
|
sql.SQLTable("test_type", db, frame=df) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_database_uri_string(conn, request, test_frame1): |
|
pytest.importorskip("sqlalchemy") |
|
conn = request.getfixturevalue(conn) |
|
|
|
|
|
|
|
|
|
with tm.ensure_clean() as name: |
|
db_uri = "sqlite:///" + name |
|
table = "iris" |
|
test_frame1.to_sql(name=table, con=db_uri, if_exists="replace", index=False) |
|
test_frame2 = sql.read_sql(table, db_uri) |
|
test_frame3 = sql.read_sql_table(table, db_uri) |
|
query = "SELECT * FROM iris" |
|
test_frame4 = sql.read_sql_query(query, db_uri) |
|
tm.assert_frame_equal(test_frame1, test_frame2) |
|
tm.assert_frame_equal(test_frame1, test_frame3) |
|
tm.assert_frame_equal(test_frame1, test_frame4) |
|
|
|
|
|
@td.skip_if_installed("pg8000") |
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_pg8000_sqlalchemy_passthrough_error(conn, request): |
|
pytest.importorskip("sqlalchemy") |
|
conn = request.getfixturevalue(conn) |
|
|
|
|
|
db_uri = "postgresql+pg8000://user:pass@host/dbname" |
|
with pytest.raises(ImportError, match="pg8000"): |
|
sql.read_sql("select * from table", db_uri) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable_iris) |
|
def test_query_by_text_obj(conn, request): |
|
|
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
from sqlalchemy import text |
|
|
|
if "postgres" in conn_name: |
|
name_text = text('select * from iris where "Name"=:name') |
|
else: |
|
name_text = text("select * from iris where name=:name") |
|
iris_df = sql.read_sql(name_text, conn, params={"name": "Iris-versicolor"}) |
|
all_names = set(iris_df["Name"]) |
|
assert all_names == {"Iris-versicolor"} |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable_iris) |
|
def test_query_by_select_obj(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
|
|
from sqlalchemy import ( |
|
bindparam, |
|
select, |
|
) |
|
|
|
iris = iris_table_metadata() |
|
name_select = select(iris).where(iris.c.Name == bindparam("name")) |
|
iris_df = sql.read_sql(name_select, conn, params={"name": "Iris-setosa"}) |
|
all_names = set(iris_df["Name"]) |
|
assert all_names == {"Iris-setosa"} |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_column_with_percentage(conn, request): |
|
|
|
conn_name = conn |
|
if conn_name == "sqlite_buildin": |
|
request.applymarker(pytest.mark.xfail(reason="Not Implemented")) |
|
|
|
conn = request.getfixturevalue(conn) |
|
df = DataFrame({"A": [0, 1, 2], "%_variation": [3, 4, 5]}) |
|
df.to_sql(name="test_column_percentage", con=conn, index=False) |
|
|
|
res = sql.read_sql_table("test_column_percentage", conn) |
|
|
|
tm.assert_frame_equal(res, df) |
|
|
|
|
|
def test_sql_open_close(test_frame3): |
|
|
|
|
|
|
|
with tm.ensure_clean() as name: |
|
with closing(sqlite3.connect(name)) as conn: |
|
assert sql.to_sql(test_frame3, "test_frame3_legacy", conn, index=False) == 4 |
|
|
|
with closing(sqlite3.connect(name)) as conn: |
|
result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn) |
|
|
|
tm.assert_frame_equal(test_frame3, result) |
|
|
|
|
|
@td.skip_if_installed("sqlalchemy") |
|
def test_con_string_import_error(): |
|
conn = "mysql://root@localhost/pandas" |
|
msg = "Using URI string without sqlalchemy installed" |
|
with pytest.raises(ImportError, match=msg): |
|
sql.read_sql("SELECT * FROM iris", conn) |
|
|
|
|
|
@td.skip_if_installed("sqlalchemy") |
|
def test_con_unknown_dbapi2_class_does_not_error_without_sql_alchemy_installed(): |
|
class MockSqliteConnection: |
|
def __init__(self, *args, **kwargs) -> None: |
|
self.conn = sqlite3.Connection(*args, **kwargs) |
|
|
|
def __getattr__(self, name): |
|
return getattr(self.conn, name) |
|
|
|
def close(self): |
|
self.conn.close() |
|
|
|
with contextlib.closing(MockSqliteConnection(":memory:")) as conn: |
|
with tm.assert_produces_warning(UserWarning): |
|
sql.read_sql("SELECT 1", conn) |
|
|
|
|
|
def test_sqlite_read_sql_delegate(sqlite_buildin_iris): |
|
conn = sqlite_buildin_iris |
|
iris_frame1 = sql.read_sql_query("SELECT * FROM iris", conn) |
|
iris_frame2 = sql.read_sql("SELECT * FROM iris", conn) |
|
tm.assert_frame_equal(iris_frame1, iris_frame2) |
|
|
|
msg = "Execution failed on sql 'iris': near \"iris\": syntax error" |
|
with pytest.raises(sql.DatabaseError, match=msg): |
|
sql.read_sql("iris", conn) |
|
|
|
|
|
def test_get_schema2(test_frame1): |
|
|
|
create_sql = sql.get_schema(test_frame1, "test") |
|
assert "CREATE" in create_sql |
|
|
|
|
|
def test_sqlite_type_mapping(sqlite_buildin): |
|
|
|
conn = sqlite_buildin |
|
df = DataFrame( |
|
{"time": to_datetime(["2014-12-12 01:54", "2014-12-11 02:54"], utc=True)} |
|
) |
|
db = sql.SQLiteDatabase(conn) |
|
table = sql.SQLiteTable("test_type", db, frame=df) |
|
schema = table.sql_schema() |
|
for col in schema.split("\n"): |
|
if col.split()[0].strip('"') == "time": |
|
assert col.split()[1] == "TIMESTAMP" |
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_create_table(conn, request): |
|
if conn == "sqlite_str": |
|
pytest.skip("sqlite_str has no inspection system") |
|
|
|
conn = request.getfixturevalue(conn) |
|
|
|
from sqlalchemy import inspect |
|
|
|
temp_frame = DataFrame({"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]}) |
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
assert pandasSQL.to_sql(temp_frame, "temp_frame") == 4 |
|
|
|
insp = inspect(conn) |
|
assert insp.has_table("temp_frame") |
|
|
|
|
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("temp_frame") |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_drop_table(conn, request): |
|
if conn == "sqlite_str": |
|
pytest.skip("sqlite_str has no inspection system") |
|
|
|
conn = request.getfixturevalue(conn) |
|
|
|
from sqlalchemy import inspect |
|
|
|
temp_frame = DataFrame({"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]}) |
|
with sql.SQLDatabase(conn) as pandasSQL: |
|
with pandasSQL.run_transaction(): |
|
assert pandasSQL.to_sql(temp_frame, "temp_frame") == 4 |
|
|
|
insp = inspect(conn) |
|
assert insp.has_table("temp_frame") |
|
|
|
with pandasSQL.run_transaction(): |
|
pandasSQL.drop_table("temp_frame") |
|
try: |
|
insp.clear_cache() |
|
except AttributeError: |
|
pass |
|
assert not insp.has_table("temp_frame") |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_roundtrip(conn, request, test_frame1): |
|
if conn == "sqlite_str": |
|
pytest.skip("sqlite_str has no inspection system") |
|
|
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
pandasSQL = pandasSQL_builder(conn) |
|
with pandasSQL.run_transaction(): |
|
assert pandasSQL.to_sql(test_frame1, "test_frame_roundtrip") == 4 |
|
result = pandasSQL.read_query("SELECT * FROM test_frame_roundtrip") |
|
|
|
if "adbc" in conn_name: |
|
result = result.rename(columns={"__index_level_0__": "level_0"}) |
|
result.set_index("level_0", inplace=True) |
|
|
|
|
|
result.index.name = None |
|
|
|
tm.assert_frame_equal(result, test_frame1) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable_iris) |
|
def test_execute_sql(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
with pandasSQL_builder(conn) as pandasSQL: |
|
with pandasSQL.run_transaction(): |
|
iris_results = pandasSQL.execute("SELECT * FROM iris") |
|
row = iris_results.fetchone() |
|
iris_results.close() |
|
assert list(row) == [5.1, 3.5, 1.4, 0.2, "Iris-setosa"] |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable_iris) |
|
def test_sqlalchemy_read_table(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
iris_frame = sql.read_sql_table("iris", con=conn) |
|
check_iris_frame(iris_frame) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable_iris) |
|
def test_sqlalchemy_read_table_columns(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
iris_frame = sql.read_sql_table( |
|
"iris", con=conn, columns=["SepalLength", "SepalLength"] |
|
) |
|
tm.assert_index_equal(iris_frame.columns, Index(["SepalLength", "SepalLength__1"])) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable_iris) |
|
def test_read_table_absent_raises(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
msg = "Table this_doesnt_exist not found" |
|
with pytest.raises(ValueError, match=msg): |
|
sql.read_sql_table("this_doesnt_exist", con=conn) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable_types) |
|
def test_sqlalchemy_default_type_conversion(conn, request): |
|
conn_name = conn |
|
if conn_name == "sqlite_str": |
|
pytest.skip("types tables not created in sqlite_str fixture") |
|
elif "mysql" in conn_name or "sqlite" in conn_name: |
|
request.applymarker( |
|
pytest.mark.xfail(reason="boolean dtype not inferred properly") |
|
) |
|
|
|
conn = request.getfixturevalue(conn) |
|
df = sql.read_sql_table("types", conn) |
|
|
|
assert issubclass(df.FloatCol.dtype.type, np.floating) |
|
assert issubclass(df.IntCol.dtype.type, np.integer) |
|
assert issubclass(df.BoolCol.dtype.type, np.bool_) |
|
|
|
|
|
assert issubclass(df.IntColWithNull.dtype.type, np.floating) |
|
|
|
assert issubclass(df.BoolColWithNull.dtype.type, object) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_bigint(conn, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
df = DataFrame(data={"i64": [2**62]}) |
|
assert df.to_sql(name="test_bigint", con=conn, index=False) == 1 |
|
result = sql.read_sql_table("test_bigint", conn) |
|
|
|
tm.assert_frame_equal(df, result) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable_types) |
|
def test_default_date_load(conn, request): |
|
conn_name = conn |
|
if conn_name == "sqlite_str": |
|
pytest.skip("types tables not created in sqlite_str fixture") |
|
elif "sqlite" in conn_name: |
|
request.applymarker( |
|
pytest.mark.xfail(reason="sqlite does not read date properly") |
|
) |
|
|
|
conn = request.getfixturevalue(conn) |
|
df = sql.read_sql_table("types", conn) |
|
|
|
assert issubclass(df.DateCol.dtype.type, np.datetime64) |
|
|
|
|
|
@pytest.mark.parametrize("conn", postgresql_connectable) |
|
@pytest.mark.parametrize("parse_dates", [None, ["DateColWithTz"]]) |
|
def test_datetime_with_timezone_query(conn, request, parse_dates): |
|
|
|
|
|
|
|
conn = request.getfixturevalue(conn) |
|
expected = create_and_load_postgres_datetz(conn) |
|
|
|
|
|
df = read_sql_query("select * from datetz", conn, parse_dates=parse_dates) |
|
col = df.DateColWithTz |
|
tm.assert_series_equal(col, expected) |
|
|
|
|
|
@pytest.mark.parametrize("conn", postgresql_connectable) |
|
def test_datetime_with_timezone_query_chunksize(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
expected = create_and_load_postgres_datetz(conn) |
|
|
|
df = concat( |
|
list(read_sql_query("select * from datetz", conn, chunksize=1)), |
|
ignore_index=True, |
|
) |
|
col = df.DateColWithTz |
|
tm.assert_series_equal(col, expected) |
|
|
|
|
|
@pytest.mark.parametrize("conn", postgresql_connectable) |
|
def test_datetime_with_timezone_table(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
expected = create_and_load_postgres_datetz(conn) |
|
result = sql.read_sql_table("datetz", conn) |
|
tm.assert_frame_equal(result, expected.to_frame()) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_datetime_with_timezone_roundtrip(conn, request): |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
|
|
|
|
|
|
|
|
expected = DataFrame( |
|
{"A": date_range("2013-01-01 09:00:00", periods=3, tz="US/Pacific")} |
|
) |
|
assert expected.to_sql(name="test_datetime_tz", con=conn, index=False) == 3 |
|
|
|
if "postgresql" in conn_name: |
|
|
|
expected["A"] = expected["A"].dt.tz_convert("UTC") |
|
else: |
|
|
|
expected["A"] = expected["A"].dt.tz_localize(None) |
|
|
|
result = sql.read_sql_table("test_datetime_tz", conn) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
result = sql.read_sql_query("SELECT * FROM test_datetime_tz", conn) |
|
if "sqlite" in conn_name: |
|
|
|
assert isinstance(result.loc[0, "A"], str) |
|
result["A"] = to_datetime(result["A"]) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_out_of_bounds_datetime(conn, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
data = DataFrame({"date": datetime(9999, 1, 1)}, index=[0]) |
|
assert data.to_sql(name="test_datetime_obb", con=conn, index=False) == 1 |
|
result = sql.read_sql_table("test_datetime_obb", conn) |
|
expected = DataFrame([pd.NaT], columns=["date"]) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_naive_datetimeindex_roundtrip(conn, request): |
|
|
|
|
|
conn = request.getfixturevalue(conn) |
|
dates = date_range("2018-01-01", periods=5, freq="6h")._with_freq(None) |
|
expected = DataFrame({"nums": range(5)}, index=dates) |
|
assert expected.to_sql(name="foo_table", con=conn, index_label="info_date") == 5 |
|
result = sql.read_sql_table("foo_table", conn, index_col="info_date") |
|
|
|
tm.assert_frame_equal(result, expected, check_names=False) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable_types) |
|
def test_date_parsing(conn, request): |
|
|
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
df = sql.read_sql_table("types", conn) |
|
expected_type = object if "sqlite" in conn_name else np.datetime64 |
|
assert issubclass(df.DateCol.dtype.type, expected_type) |
|
|
|
df = sql.read_sql_table("types", conn, parse_dates=["DateCol"]) |
|
assert issubclass(df.DateCol.dtype.type, np.datetime64) |
|
|
|
df = sql.read_sql_table("types", conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}) |
|
assert issubclass(df.DateCol.dtype.type, np.datetime64) |
|
|
|
df = sql.read_sql_table( |
|
"types", |
|
conn, |
|
parse_dates={"DateCol": {"format": "%Y-%m-%d %H:%M:%S"}}, |
|
) |
|
assert issubclass(df.DateCol.dtype.type, np.datetime64) |
|
|
|
df = sql.read_sql_table("types", conn, parse_dates=["IntDateCol"]) |
|
assert issubclass(df.IntDateCol.dtype.type, np.datetime64) |
|
|
|
df = sql.read_sql_table("types", conn, parse_dates={"IntDateCol": "s"}) |
|
assert issubclass(df.IntDateCol.dtype.type, np.datetime64) |
|
|
|
df = sql.read_sql_table("types", conn, parse_dates={"IntDateCol": {"unit": "s"}}) |
|
assert issubclass(df.IntDateCol.dtype.type, np.datetime64) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_datetime(conn, request): |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
df = DataFrame( |
|
{"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} |
|
) |
|
assert df.to_sql(name="test_datetime", con=conn) == 3 |
|
|
|
|
|
result = sql.read_sql_table("test_datetime", conn) |
|
result = result.drop("index", axis=1) |
|
tm.assert_frame_equal(result, df) |
|
|
|
|
|
result = sql.read_sql_query("SELECT * FROM test_datetime", conn) |
|
result = result.drop("index", axis=1) |
|
if "sqlite" in conn_name: |
|
assert isinstance(result.loc[0, "A"], str) |
|
result["A"] = to_datetime(result["A"]) |
|
tm.assert_frame_equal(result, df) |
|
else: |
|
tm.assert_frame_equal(result, df) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_datetime_NaT(conn, request): |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
df = DataFrame( |
|
{"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} |
|
) |
|
df.loc[1, "A"] = np.nan |
|
assert df.to_sql(name="test_datetime", con=conn, index=False) == 3 |
|
|
|
|
|
result = sql.read_sql_table("test_datetime", conn) |
|
tm.assert_frame_equal(result, df) |
|
|
|
|
|
result = sql.read_sql_query("SELECT * FROM test_datetime", conn) |
|
if "sqlite" in conn_name: |
|
assert isinstance(result.loc[0, "A"], str) |
|
result["A"] = to_datetime(result["A"], errors="coerce") |
|
tm.assert_frame_equal(result, df) |
|
else: |
|
tm.assert_frame_equal(result, df) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_datetime_date(conn, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) |
|
assert df.to_sql(name="test_date", con=conn, index=False) == 2 |
|
res = read_sql_table("test_date", conn) |
|
result = res["a"] |
|
expected = to_datetime(df["a"]) |
|
|
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_datetime_time(conn, request, sqlite_buildin): |
|
|
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) |
|
assert df.to_sql(name="test_time", con=conn, index=False) == 2 |
|
res = read_sql_table("test_time", conn) |
|
tm.assert_frame_equal(res, df) |
|
|
|
|
|
|
|
sqlite_conn = sqlite_buildin |
|
assert sql.to_sql(df, "test_time2", sqlite_conn, index=False) == 2 |
|
res = sql.read_sql_query("SELECT * FROM test_time2", sqlite_conn) |
|
ref = df.map(lambda _: _.strftime("%H:%M:%S.%f")) |
|
tm.assert_frame_equal(ref, res) |
|
|
|
assert sql.to_sql(df, "test_time3", conn, index=False) == 2 |
|
if "sqlite" in conn_name: |
|
res = sql.read_sql_query("SELECT * FROM test_time3", conn) |
|
ref = df.map(lambda _: _.strftime("%H:%M:%S.%f")) |
|
tm.assert_frame_equal(ref, res) |
|
res = sql.read_sql_table("test_time3", conn) |
|
tm.assert_frame_equal(df, res) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_mixed_dtype_insert(conn, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
s1 = Series(2**25 + 1, dtype=np.int32) |
|
s2 = Series(0.0, dtype=np.float32) |
|
df = DataFrame({"s1": s1, "s2": s2}) |
|
|
|
|
|
assert df.to_sql(name="test_read_write", con=conn, index=False) == 1 |
|
df2 = sql.read_sql_table("test_read_write", conn) |
|
|
|
tm.assert_frame_equal(df, df2, check_dtype=False, check_exact=True) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_nan_numeric(conn, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) |
|
assert df.to_sql(name="test_nan", con=conn, index=False) == 3 |
|
|
|
|
|
result = sql.read_sql_table("test_nan", conn) |
|
tm.assert_frame_equal(result, df) |
|
|
|
|
|
result = sql.read_sql_query("SELECT * FROM test_nan", conn) |
|
tm.assert_frame_equal(result, df) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_nan_fullcolumn(conn, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
df = DataFrame({"A": [0, 1, 2], "B": [np.nan, np.nan, np.nan]}) |
|
assert df.to_sql(name="test_nan", con=conn, index=False) == 3 |
|
|
|
|
|
result = sql.read_sql_table("test_nan", conn) |
|
tm.assert_frame_equal(result, df) |
|
|
|
|
|
df["B"] = df["B"].astype("object") |
|
df["B"] = None |
|
result = sql.read_sql_query("SELECT * FROM test_nan", conn) |
|
tm.assert_frame_equal(result, df) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_nan_string(conn, request): |
|
|
|
conn = request.getfixturevalue(conn) |
|
df = DataFrame({"A": [0, 1, 2], "B": ["a", "b", np.nan]}) |
|
assert df.to_sql(name="test_nan", con=conn, index=False) == 3 |
|
|
|
|
|
df.loc[2, "B"] = None |
|
|
|
|
|
result = sql.read_sql_table("test_nan", conn) |
|
tm.assert_frame_equal(result, df) |
|
|
|
|
|
result = sql.read_sql_query("SELECT * FROM test_nan", conn) |
|
tm.assert_frame_equal(result, df) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_to_sql_save_index(conn, request): |
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail( |
|
reason="ADBC implementation does not create index", strict=True |
|
) |
|
) |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
df = DataFrame.from_records( |
|
[(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"] |
|
) |
|
|
|
tbl_name = "test_to_sql_saves_index" |
|
with pandasSQL_builder(conn) as pandasSQL: |
|
with pandasSQL.run_transaction(): |
|
assert pandasSQL.to_sql(df, tbl_name) == 2 |
|
|
|
if conn_name in {"sqlite_buildin", "sqlite_str"}: |
|
ixs = sql.read_sql_query( |
|
"SELECT * FROM sqlite_master WHERE type = 'index' " |
|
f"AND tbl_name = '{tbl_name}'", |
|
conn, |
|
) |
|
ix_cols = [] |
|
for ix_name in ixs.name: |
|
ix_info = sql.read_sql_query(f"PRAGMA index_info({ix_name})", conn) |
|
ix_cols.append(ix_info.name.tolist()) |
|
else: |
|
from sqlalchemy import inspect |
|
|
|
insp = inspect(conn) |
|
|
|
ixs = insp.get_indexes(tbl_name) |
|
ix_cols = [i["column_names"] for i in ixs] |
|
|
|
assert ix_cols == [["A"]] |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_transactions(conn, request): |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
|
|
stmt = "CREATE TABLE test_trans (A INT, B TEXT)" |
|
if conn_name != "sqlite_buildin" and "adbc" not in conn_name: |
|
from sqlalchemy import text |
|
|
|
stmt = text(stmt) |
|
|
|
with pandasSQL_builder(conn) as pandasSQL: |
|
with pandasSQL.run_transaction() as trans: |
|
trans.execute(stmt) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_transaction_rollback(conn, request): |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
with pandasSQL_builder(conn) as pandasSQL: |
|
with pandasSQL.run_transaction() as trans: |
|
stmt = "CREATE TABLE test_trans (A INT, B TEXT)" |
|
if "adbc" in conn_name or isinstance(pandasSQL, SQLiteDatabase): |
|
trans.execute(stmt) |
|
else: |
|
from sqlalchemy import text |
|
|
|
stmt = text(stmt) |
|
trans.execute(stmt) |
|
|
|
class DummyException(Exception): |
|
pass |
|
|
|
|
|
ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" |
|
if isinstance(pandasSQL, SQLDatabase): |
|
from sqlalchemy import text |
|
|
|
ins_sql = text(ins_sql) |
|
try: |
|
with pandasSQL.run_transaction() as trans: |
|
trans.execute(ins_sql) |
|
raise DummyException("error") |
|
except DummyException: |
|
|
|
pass |
|
with pandasSQL.run_transaction(): |
|
res = pandasSQL.read_query("SELECT * FROM test_trans") |
|
assert len(res) == 0 |
|
|
|
|
|
with pandasSQL.run_transaction() as trans: |
|
trans.execute(ins_sql) |
|
res2 = pandasSQL.read_query("SELECT * FROM test_trans") |
|
assert len(res2) == 1 |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_get_schema_create_table(conn, request, test_frame3): |
|
|
|
|
|
|
|
if conn == "sqlite_str": |
|
request.applymarker( |
|
pytest.mark.xfail(reason="test does not support sqlite_str fixture") |
|
) |
|
|
|
conn = request.getfixturevalue(conn) |
|
|
|
from sqlalchemy import text |
|
from sqlalchemy.engine import Engine |
|
|
|
tbl = "test_get_schema_create_table" |
|
create_sql = sql.get_schema(test_frame3, tbl, con=conn) |
|
blank_test_df = test_frame3.iloc[:0] |
|
|
|
create_sql = text(create_sql) |
|
if isinstance(conn, Engine): |
|
with conn.connect() as newcon: |
|
with newcon.begin(): |
|
newcon.execute(create_sql) |
|
else: |
|
conn.execute(create_sql) |
|
returned_df = sql.read_sql_table(tbl, conn) |
|
tm.assert_frame_equal(returned_df, blank_test_df, check_index_type=False) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_dtype(conn, request): |
|
if conn == "sqlite_str": |
|
pytest.skip("sqlite_str has no inspection system") |
|
|
|
conn = request.getfixturevalue(conn) |
|
|
|
from sqlalchemy import ( |
|
TEXT, |
|
String, |
|
) |
|
from sqlalchemy.schema import MetaData |
|
|
|
cols = ["A", "B"] |
|
data = [(0.8, True), (0.9, None)] |
|
df = DataFrame(data, columns=cols) |
|
assert df.to_sql(name="dtype_test", con=conn) == 2 |
|
assert df.to_sql(name="dtype_test2", con=conn, dtype={"B": TEXT}) == 2 |
|
meta = MetaData() |
|
meta.reflect(bind=conn) |
|
sqltype = meta.tables["dtype_test2"].columns["B"].type |
|
assert isinstance(sqltype, TEXT) |
|
msg = "The type of B is not a SQLAlchemy type" |
|
with pytest.raises(ValueError, match=msg): |
|
df.to_sql(name="error", con=conn, dtype={"B": str}) |
|
|
|
|
|
assert df.to_sql(name="dtype_test3", con=conn, dtype={"B": String(10)}) == 2 |
|
meta.reflect(bind=conn) |
|
sqltype = meta.tables["dtype_test3"].columns["B"].type |
|
assert isinstance(sqltype, String) |
|
assert sqltype.length == 10 |
|
|
|
|
|
assert df.to_sql(name="single_dtype_test", con=conn, dtype=TEXT) == 2 |
|
meta.reflect(bind=conn) |
|
sqltypea = meta.tables["single_dtype_test"].columns["A"].type |
|
sqltypeb = meta.tables["single_dtype_test"].columns["B"].type |
|
assert isinstance(sqltypea, TEXT) |
|
assert isinstance(sqltypeb, TEXT) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_notna_dtype(conn, request): |
|
if conn == "sqlite_str": |
|
pytest.skip("sqlite_str has no inspection system") |
|
|
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
|
|
from sqlalchemy import ( |
|
Boolean, |
|
DateTime, |
|
Float, |
|
Integer, |
|
) |
|
from sqlalchemy.schema import MetaData |
|
|
|
cols = { |
|
"Bool": Series([True, None]), |
|
"Date": Series([datetime(2012, 5, 1), None]), |
|
"Int": Series([1, None], dtype="object"), |
|
"Float": Series([1.1, None]), |
|
} |
|
df = DataFrame(cols) |
|
|
|
tbl = "notna_dtype_test" |
|
assert df.to_sql(name=tbl, con=conn) == 2 |
|
_ = sql.read_sql_table(tbl, conn) |
|
meta = MetaData() |
|
meta.reflect(bind=conn) |
|
my_type = Integer if "mysql" in conn_name else Boolean |
|
col_dict = meta.tables[tbl].columns |
|
assert isinstance(col_dict["Bool"].type, my_type) |
|
assert isinstance(col_dict["Date"].type, DateTime) |
|
assert isinstance(col_dict["Int"].type, Integer) |
|
assert isinstance(col_dict["Float"].type, Float) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_double_precision(conn, request): |
|
if conn == "sqlite_str": |
|
pytest.skip("sqlite_str has no inspection system") |
|
|
|
conn = request.getfixturevalue(conn) |
|
|
|
from sqlalchemy import ( |
|
BigInteger, |
|
Float, |
|
Integer, |
|
) |
|
from sqlalchemy.schema import MetaData |
|
|
|
V = 1.23456789101112131415 |
|
|
|
df = DataFrame( |
|
{ |
|
"f32": Series([V], dtype="float32"), |
|
"f64": Series([V], dtype="float64"), |
|
"f64_as_f32": Series([V], dtype="float64"), |
|
"i32": Series([5], dtype="int32"), |
|
"i64": Series([5], dtype="int64"), |
|
} |
|
) |
|
|
|
assert ( |
|
df.to_sql( |
|
name="test_dtypes", |
|
con=conn, |
|
index=False, |
|
if_exists="replace", |
|
dtype={"f64_as_f32": Float(precision=23)}, |
|
) |
|
== 1 |
|
) |
|
res = sql.read_sql_table("test_dtypes", conn) |
|
|
|
|
|
assert np.round(df["f64"].iloc[0], 14) == np.round(res["f64"].iloc[0], 14) |
|
|
|
|
|
meta = MetaData() |
|
meta.reflect(bind=conn) |
|
col_dict = meta.tables["test_dtypes"].columns |
|
assert str(col_dict["f32"].type) == str(col_dict["f64_as_f32"].type) |
|
assert isinstance(col_dict["f32"].type, Float) |
|
assert isinstance(col_dict["f64"].type, Float) |
|
assert isinstance(col_dict["i32"].type, Integer) |
|
assert isinstance(col_dict["i64"].type, BigInteger) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_connectable_issue_example(conn, request): |
|
conn = request.getfixturevalue(conn) |
|
|
|
|
|
|
|
from sqlalchemy.engine import Engine |
|
|
|
def test_select(connection): |
|
query = "SELECT test_foo_data FROM test_foo_data" |
|
return sql.read_sql_query(query, con=connection) |
|
|
|
def test_append(connection, data): |
|
data.to_sql(name="test_foo_data", con=connection, if_exists="append") |
|
|
|
def test_connectable(conn): |
|
|
|
|
|
foo_data = test_select(conn) |
|
test_append(conn, foo_data) |
|
|
|
def main(connectable): |
|
if isinstance(connectable, Engine): |
|
with connectable.connect() as conn: |
|
with conn.begin(): |
|
test_connectable(conn) |
|
else: |
|
test_connectable(connectable) |
|
|
|
assert ( |
|
DataFrame({"test_foo_data": [0, 1, 2]}).to_sql(name="test_foo_data", con=conn) |
|
== 3 |
|
) |
|
main(conn) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
@pytest.mark.parametrize( |
|
"input", |
|
[{"foo": [np.inf]}, {"foo": [-np.inf]}, {"foo": [-np.inf], "infe0": ["bar"]}], |
|
) |
|
def test_to_sql_with_negative_npinf(conn, request, input): |
|
|
|
|
|
df = DataFrame(input) |
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
|
|
if "mysql" in conn_name: |
|
|
|
|
|
|
|
|
|
pymysql = pytest.importorskip("pymysql") |
|
|
|
if Version(pymysql.__version__) < Version("1.0.3") and "infe0" in df.columns: |
|
mark = pytest.mark.xfail(reason="GH 36465") |
|
request.applymarker(mark) |
|
|
|
msg = "inf cannot be used with MySQL" |
|
with pytest.raises(ValueError, match=msg): |
|
df.to_sql(name="foobar", con=conn, index=False) |
|
else: |
|
assert df.to_sql(name="foobar", con=conn, index=False) == 1 |
|
res = sql.read_sql_table("foobar", conn) |
|
tm.assert_equal(df, res) |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_temporary_table(conn, request): |
|
if conn == "sqlite_str": |
|
pytest.skip("test does not work with str connection") |
|
|
|
conn = request.getfixturevalue(conn) |
|
|
|
from sqlalchemy import ( |
|
Column, |
|
Integer, |
|
Unicode, |
|
select, |
|
) |
|
from sqlalchemy.orm import ( |
|
Session, |
|
declarative_base, |
|
) |
|
|
|
test_data = "Hello, World!" |
|
expected = DataFrame({"spam": [test_data]}) |
|
Base = declarative_base() |
|
|
|
class Temporary(Base): |
|
__tablename__ = "temp_test" |
|
__table_args__ = {"prefixes": ["TEMPORARY"]} |
|
id = Column(Integer, primary_key=True) |
|
spam = Column(Unicode(30), nullable=False) |
|
|
|
with Session(conn) as session: |
|
with session.begin(): |
|
conn = session.connection() |
|
Temporary.__table__.create(conn) |
|
session.add(Temporary(spam=test_data)) |
|
session.flush() |
|
df = sql.read_sql_query(sql=select(Temporary.spam), con=conn) |
|
tm.assert_frame_equal(df, expected) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_invalid_engine(conn, request, test_frame1): |
|
if conn == "sqlite_buildin" or "adbc" in conn: |
|
request.applymarker( |
|
pytest.mark.xfail( |
|
reason="SQLiteDatabase/ADBCDatabase does not raise for bad engine" |
|
) |
|
) |
|
|
|
conn = request.getfixturevalue(conn) |
|
msg = "engine must be one of 'auto', 'sqlalchemy'" |
|
with pandasSQL_builder(conn) as pandasSQL: |
|
with pytest.raises(ValueError, match=msg): |
|
pandasSQL.to_sql(test_frame1, "test_frame1", engine="bad_engine") |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_to_sql_with_sql_engine(conn, request, test_frame1): |
|
"""`to_sql` with the `engine` param""" |
|
|
|
conn = request.getfixturevalue(conn) |
|
with pandasSQL_builder(conn) as pandasSQL: |
|
with pandasSQL.run_transaction(): |
|
assert pandasSQL.to_sql(test_frame1, "test_frame1", engine="auto") == 4 |
|
assert pandasSQL.has_table("test_frame1") |
|
|
|
num_entries = len(test_frame1) |
|
num_rows = count_rows(conn, "test_frame1") |
|
assert num_rows == num_entries |
|
|
|
|
|
@pytest.mark.parametrize("conn", sqlalchemy_connectable) |
|
def test_options_sqlalchemy(conn, request, test_frame1): |
|
|
|
conn = request.getfixturevalue(conn) |
|
with pd.option_context("io.sql.engine", "sqlalchemy"): |
|
with pandasSQL_builder(conn) as pandasSQL: |
|
with pandasSQL.run_transaction(): |
|
assert pandasSQL.to_sql(test_frame1, "test_frame1") == 4 |
|
assert pandasSQL.has_table("test_frame1") |
|
|
|
num_entries = len(test_frame1) |
|
num_rows = count_rows(conn, "test_frame1") |
|
assert num_rows == num_entries |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_options_auto(conn, request, test_frame1): |
|
|
|
conn = request.getfixturevalue(conn) |
|
with pd.option_context("io.sql.engine", "auto"): |
|
with pandasSQL_builder(conn) as pandasSQL: |
|
with pandasSQL.run_transaction(): |
|
assert pandasSQL.to_sql(test_frame1, "test_frame1") == 4 |
|
assert pandasSQL.has_table("test_frame1") |
|
|
|
num_entries = len(test_frame1) |
|
num_rows = count_rows(conn, "test_frame1") |
|
assert num_rows == num_entries |
|
|
|
|
|
def test_options_get_engine(): |
|
pytest.importorskip("sqlalchemy") |
|
assert isinstance(get_engine("sqlalchemy"), SQLAlchemyEngine) |
|
|
|
with pd.option_context("io.sql.engine", "sqlalchemy"): |
|
assert isinstance(get_engine("auto"), SQLAlchemyEngine) |
|
assert isinstance(get_engine("sqlalchemy"), SQLAlchemyEngine) |
|
|
|
with pd.option_context("io.sql.engine", "auto"): |
|
assert isinstance(get_engine("auto"), SQLAlchemyEngine) |
|
assert isinstance(get_engine("sqlalchemy"), SQLAlchemyEngine) |
|
|
|
|
|
def test_get_engine_auto_error_message(): |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
@pytest.mark.parametrize("func", ["read_sql", "read_sql_query"]) |
|
def test_read_sql_dtype_backend( |
|
conn, |
|
request, |
|
string_storage, |
|
func, |
|
dtype_backend, |
|
dtype_backend_data, |
|
dtype_backend_expected, |
|
): |
|
|
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
table = "test" |
|
df = dtype_backend_data |
|
df.to_sql(name=table, con=conn, index=False, if_exists="replace") |
|
|
|
with pd.option_context("mode.string_storage", string_storage): |
|
result = getattr(pd, func)( |
|
f"Select * from {table}", conn, dtype_backend=dtype_backend |
|
) |
|
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
if "adbc" in conn_name: |
|
|
|
request.applymarker( |
|
pytest.mark.xfail(reason="adbc does not support chunksize argument") |
|
) |
|
|
|
with pd.option_context("mode.string_storage", string_storage): |
|
iterator = getattr(pd, func)( |
|
f"Select * from {table}", |
|
con=conn, |
|
dtype_backend=dtype_backend, |
|
chunksize=3, |
|
) |
|
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name) |
|
for result in iterator: |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
@pytest.mark.parametrize("func", ["read_sql", "read_sql_table"]) |
|
def test_read_sql_dtype_backend_table( |
|
conn, |
|
request, |
|
string_storage, |
|
func, |
|
dtype_backend, |
|
dtype_backend_data, |
|
dtype_backend_expected, |
|
): |
|
if "sqlite" in conn and "adbc" not in conn: |
|
request.applymarker( |
|
pytest.mark.xfail( |
|
reason=( |
|
"SQLite actually returns proper boolean values via " |
|
"read_sql_table, but before pytest refactor was skipped" |
|
) |
|
) |
|
) |
|
|
|
conn_name = conn |
|
conn = request.getfixturevalue(conn) |
|
table = "test" |
|
df = dtype_backend_data |
|
df.to_sql(name=table, con=conn, index=False, if_exists="replace") |
|
|
|
with pd.option_context("mode.string_storage", string_storage): |
|
result = getattr(pd, func)(table, conn, dtype_backend=dtype_backend) |
|
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
if "adbc" in conn_name: |
|
|
|
return |
|
|
|
with pd.option_context("mode.string_storage", string_storage): |
|
iterator = getattr(pd, func)( |
|
table, |
|
conn, |
|
dtype_backend=dtype_backend, |
|
chunksize=3, |
|
) |
|
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name) |
|
for result in iterator: |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
@pytest.mark.parametrize("func", ["read_sql", "read_sql_table", "read_sql_query"]) |
|
def test_read_sql_invalid_dtype_backend_table(conn, request, func, dtype_backend_data): |
|
conn = request.getfixturevalue(conn) |
|
table = "test" |
|
df = dtype_backend_data |
|
df.to_sql(name=table, con=conn, index=False, if_exists="replace") |
|
|
|
msg = ( |
|
"dtype_backend numpy is invalid, only 'numpy_nullable' and " |
|
"'pyarrow' are allowed." |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
getattr(pd, func)(table, conn, dtype_backend="numpy") |
|
|
|
|
|
@pytest.fixture |
|
def dtype_backend_data() -> DataFrame: |
|
return DataFrame( |
|
{ |
|
"a": Series([1, np.nan, 3], dtype="Int64"), |
|
"b": Series([1, 2, 3], dtype="Int64"), |
|
"c": Series([1.5, np.nan, 2.5], dtype="Float64"), |
|
"d": Series([1.5, 2.0, 2.5], dtype="Float64"), |
|
"e": [True, False, None], |
|
"f": [True, False, True], |
|
"g": ["a", "b", "c"], |
|
"h": ["a", "b", None], |
|
} |
|
) |
|
|
|
|
|
@pytest.fixture |
|
def dtype_backend_expected(): |
|
def func(storage, dtype_backend, conn_name) -> DataFrame: |
|
string_array: StringArray | ArrowStringArray |
|
string_array_na: StringArray | ArrowStringArray |
|
if storage == "python": |
|
string_array = StringArray(np.array(["a", "b", "c"], dtype=np.object_)) |
|
string_array_na = StringArray(np.array(["a", "b", pd.NA], dtype=np.object_)) |
|
|
|
elif dtype_backend == "pyarrow": |
|
pa = pytest.importorskip("pyarrow") |
|
from pandas.arrays import ArrowExtensionArray |
|
|
|
string_array = ArrowExtensionArray(pa.array(["a", "b", "c"])) |
|
string_array_na = ArrowExtensionArray(pa.array(["a", "b", None])) |
|
|
|
else: |
|
pa = pytest.importorskip("pyarrow") |
|
string_array = ArrowStringArray(pa.array(["a", "b", "c"])) |
|
string_array_na = ArrowStringArray(pa.array(["a", "b", None])) |
|
|
|
df = DataFrame( |
|
{ |
|
"a": Series([1, np.nan, 3], dtype="Int64"), |
|
"b": Series([1, 2, 3], dtype="Int64"), |
|
"c": Series([1.5, np.nan, 2.5], dtype="Float64"), |
|
"d": Series([1.5, 2.0, 2.5], dtype="Float64"), |
|
"e": Series([True, False, pd.NA], dtype="boolean"), |
|
"f": Series([True, False, True], dtype="boolean"), |
|
"g": string_array, |
|
"h": string_array_na, |
|
} |
|
) |
|
if dtype_backend == "pyarrow": |
|
pa = pytest.importorskip("pyarrow") |
|
|
|
from pandas.arrays import ArrowExtensionArray |
|
|
|
df = DataFrame( |
|
{ |
|
col: ArrowExtensionArray(pa.array(df[col], from_pandas=True)) |
|
for col in df.columns |
|
} |
|
) |
|
|
|
if "mysql" in conn_name or "sqlite" in conn_name: |
|
if dtype_backend == "numpy_nullable": |
|
df = df.astype({"e": "Int64", "f": "Int64"}) |
|
else: |
|
df = df.astype({"e": "int64[pyarrow]", "f": "int64[pyarrow]"}) |
|
|
|
return df |
|
|
|
return func |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
def test_chunksize_empty_dtypes(conn, request): |
|
|
|
if "adbc" in conn: |
|
request.node.add_marker( |
|
pytest.mark.xfail(reason="chunksize argument NotImplemented with ADBC") |
|
) |
|
conn = request.getfixturevalue(conn) |
|
dtypes = {"a": "int64", "b": "object"} |
|
df = DataFrame(columns=["a", "b"]).astype(dtypes) |
|
expected = df.copy() |
|
df.to_sql(name="test", con=conn, index=False, if_exists="replace") |
|
|
|
for result in read_sql_query( |
|
"SELECT * FROM test", |
|
conn, |
|
dtype=dtypes, |
|
chunksize=1, |
|
): |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("conn", all_connectable) |
|
@pytest.mark.parametrize("dtype_backend", [lib.no_default, "numpy_nullable"]) |
|
@pytest.mark.parametrize("func", ["read_sql", "read_sql_query"]) |
|
def test_read_sql_dtype(conn, request, func, dtype_backend): |
|
|
|
conn = request.getfixturevalue(conn) |
|
table = "test" |
|
df = DataFrame({"a": [1, 2, 3], "b": 5}) |
|
df.to_sql(name=table, con=conn, index=False, if_exists="replace") |
|
|
|
result = getattr(pd, func)( |
|
f"Select * from {table}", |
|
conn, |
|
dtype={"a": np.float64}, |
|
dtype_backend=dtype_backend, |
|
) |
|
expected = DataFrame( |
|
{ |
|
"a": Series([1, 2, 3], dtype=np.float64), |
|
"b": Series( |
|
[5, 5, 5], |
|
dtype="int64" if not dtype_backend == "numpy_nullable" else "Int64", |
|
), |
|
} |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_keyword_deprecation(sqlite_engine): |
|
conn = sqlite_engine |
|
|
|
msg = ( |
|
"Starting with pandas version 3.0 all arguments of to_sql except for the " |
|
"arguments 'name' and 'con' will be keyword-only." |
|
) |
|
df = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 1, "B": 2, "C": 3}]) |
|
df.to_sql("example", conn) |
|
|
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
df.to_sql("example", conn, None, if_exists="replace") |
|
|
|
|
|
def test_bigint_warning(sqlite_engine): |
|
conn = sqlite_engine |
|
|
|
df = DataFrame({"a": [1, 2]}, dtype="int64") |
|
assert df.to_sql(name="test_bigintwarning", con=conn, index=False) == 2 |
|
|
|
with tm.assert_produces_warning(None): |
|
sql.read_sql_table("test_bigintwarning", conn) |
|
|
|
|
|
def test_valueerror_exception(sqlite_engine): |
|
conn = sqlite_engine |
|
df = DataFrame({"col1": [1, 2], "col2": [3, 4]}) |
|
with pytest.raises(ValueError, match="Empty table name specified"): |
|
df.to_sql(name="", con=conn, if_exists="replace", index=False) |
|
|
|
|
|
def test_row_object_is_named_tuple(sqlite_engine): |
|
conn = sqlite_engine |
|
|
|
|
|
|
|
|
|
from sqlalchemy import ( |
|
Column, |
|
Integer, |
|
String, |
|
) |
|
from sqlalchemy.orm import ( |
|
declarative_base, |
|
sessionmaker, |
|
) |
|
|
|
BaseModel = declarative_base() |
|
|
|
class Test(BaseModel): |
|
__tablename__ = "test_frame" |
|
id = Column(Integer, primary_key=True) |
|
string_column = Column(String(50)) |
|
|
|
with conn.begin(): |
|
BaseModel.metadata.create_all(conn) |
|
Session = sessionmaker(bind=conn) |
|
with Session() as session: |
|
df = DataFrame({"id": [0, 1], "string_column": ["hello", "world"]}) |
|
assert ( |
|
df.to_sql(name="test_frame", con=conn, index=False, if_exists="replace") |
|
== 2 |
|
) |
|
session.commit() |
|
test_query = session.query(Test.id, Test.string_column) |
|
df = DataFrame(test_query) |
|
|
|
assert list(df.columns) == ["id", "string_column"] |
|
|
|
|
|
def test_read_sql_string_inference(sqlite_engine): |
|
conn = sqlite_engine |
|
|
|
pytest.importorskip("pyarrow") |
|
table = "test" |
|
df = DataFrame({"a": ["x", "y"]}) |
|
df.to_sql(table, con=conn, index=False, if_exists="replace") |
|
|
|
with pd.option_context("future.infer_string", True): |
|
result = read_sql_table(table, conn) |
|
|
|
dtype = "string[pyarrow_numpy]" |
|
expected = DataFrame( |
|
{"a": ["x", "y"]}, dtype=dtype, columns=Index(["a"], dtype=dtype) |
|
) |
|
|
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_roundtripping_datetimes(sqlite_engine): |
|
conn = sqlite_engine |
|
|
|
df = DataFrame({"t": [datetime(2020, 12, 31, 12)]}, dtype="datetime64[ns]") |
|
df.to_sql("test", conn, if_exists="replace", index=False) |
|
result = pd.read_sql("select * from test", conn).iloc[0, 0] |
|
assert result == "2020-12-31 12:00:00.000000" |
|
|
|
|
|
@pytest.fixture |
|
def sqlite_builtin_detect_types(): |
|
with contextlib.closing( |
|
sqlite3.connect(":memory:", detect_types=sqlite3.PARSE_DECLTYPES) |
|
) as closing_conn: |
|
with closing_conn as conn: |
|
yield conn |
|
|
|
|
|
def test_roundtripping_datetimes_detect_types(sqlite_builtin_detect_types): |
|
|
|
conn = sqlite_builtin_detect_types |
|
df = DataFrame({"t": [datetime(2020, 12, 31, 12)]}, dtype="datetime64[ns]") |
|
df.to_sql("test", conn, if_exists="replace", index=False) |
|
result = pd.read_sql("select * from test", conn).iloc[0, 0] |
|
assert result == Timestamp("2020-12-31 12:00:00.000000") |
|
|
|
|
|
@pytest.mark.db |
|
def test_psycopg2_schema_support(postgresql_psycopg2_engine): |
|
conn = postgresql_psycopg2_engine |
|
|
|
|
|
|
|
df = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) |
|
|
|
|
|
with conn.connect() as con: |
|
with con.begin(): |
|
con.exec_driver_sql("DROP SCHEMA IF EXISTS other CASCADE;") |
|
con.exec_driver_sql("CREATE SCHEMA other;") |
|
|
|
|
|
assert df.to_sql(name="test_schema_public", con=conn, index=False) == 2 |
|
assert ( |
|
df.to_sql( |
|
name="test_schema_public_explicit", |
|
con=conn, |
|
index=False, |
|
schema="public", |
|
) |
|
== 2 |
|
) |
|
assert ( |
|
df.to_sql(name="test_schema_other", con=conn, index=False, schema="other") == 2 |
|
) |
|
|
|
|
|
res1 = sql.read_sql_table("test_schema_public", conn) |
|
tm.assert_frame_equal(df, res1) |
|
res2 = sql.read_sql_table("test_schema_public_explicit", conn) |
|
tm.assert_frame_equal(df, res2) |
|
res3 = sql.read_sql_table("test_schema_public_explicit", conn, schema="public") |
|
tm.assert_frame_equal(df, res3) |
|
res4 = sql.read_sql_table("test_schema_other", conn, schema="other") |
|
tm.assert_frame_equal(df, res4) |
|
msg = "Table test_schema_other not found" |
|
with pytest.raises(ValueError, match=msg): |
|
sql.read_sql_table("test_schema_other", conn, schema="public") |
|
|
|
|
|
|
|
|
|
with conn.connect() as con: |
|
with con.begin(): |
|
con.exec_driver_sql("DROP SCHEMA IF EXISTS other CASCADE;") |
|
con.exec_driver_sql("CREATE SCHEMA other;") |
|
|
|
|
|
assert ( |
|
df.to_sql(name="test_schema_other", con=conn, schema="other", index=False) == 2 |
|
) |
|
df.to_sql( |
|
name="test_schema_other", |
|
con=conn, |
|
schema="other", |
|
index=False, |
|
if_exists="replace", |
|
) |
|
assert ( |
|
df.to_sql( |
|
name="test_schema_other", |
|
con=conn, |
|
schema="other", |
|
index=False, |
|
if_exists="append", |
|
) |
|
== 2 |
|
) |
|
res = sql.read_sql_table("test_schema_other", conn, schema="other") |
|
tm.assert_frame_equal(concat([df, df], ignore_index=True), res) |
|
|
|
|
|
@pytest.mark.db |
|
def test_self_join_date_columns(postgresql_psycopg2_engine): |
|
|
|
conn = postgresql_psycopg2_engine |
|
from sqlalchemy.sql import text |
|
|
|
create_table = text( |
|
""" |
|
CREATE TABLE person |
|
( |
|
id serial constraint person_pkey primary key, |
|
created_dt timestamp with time zone |
|
); |
|
|
|
INSERT INTO person |
|
VALUES (1, '2021-01-01T00:00:00Z'); |
|
""" |
|
) |
|
with conn.connect() as con: |
|
with con.begin(): |
|
con.execute(create_table) |
|
|
|
sql_query = ( |
|
'SELECT * FROM "person" AS p1 INNER JOIN "person" AS p2 ON p1.id = p2.id;' |
|
) |
|
result = pd.read_sql(sql_query, conn) |
|
expected = DataFrame( |
|
[[1, Timestamp("2021", tz="UTC")] * 2], columns=["id", "created_dt"] * 2 |
|
) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: |
|
pandasSQL.drop_table("person") |
|
|
|
|
|
def test_create_and_drop_table(sqlite_engine): |
|
conn = sqlite_engine |
|
temp_frame = DataFrame({"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]}) |
|
with sql.SQLDatabase(conn) as pandasSQL: |
|
with pandasSQL.run_transaction(): |
|
assert pandasSQL.to_sql(temp_frame, "drop_test_frame") == 4 |
|
|
|
assert pandasSQL.has_table("drop_test_frame") |
|
|
|
with pandasSQL.run_transaction(): |
|
pandasSQL.drop_table("drop_test_frame") |
|
|
|
assert not pandasSQL.has_table("drop_test_frame") |
|
|
|
|
|
def test_sqlite_datetime_date(sqlite_buildin): |
|
conn = sqlite_buildin |
|
df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) |
|
assert df.to_sql(name="test_date", con=conn, index=False) == 2 |
|
res = read_sql_query("SELECT * FROM test_date", conn) |
|
|
|
tm.assert_frame_equal(res, df.astype(str)) |
|
|
|
|
|
@pytest.mark.parametrize("tz_aware", [False, True]) |
|
def test_sqlite_datetime_time(tz_aware, sqlite_buildin): |
|
conn = sqlite_buildin |
|
|
|
if not tz_aware: |
|
tz_times = [time(9, 0, 0), time(9, 1, 30)] |
|
else: |
|
tz_dt = date_range("2013-01-01 09:00:00", periods=2, tz="US/Pacific") |
|
tz_times = Series(tz_dt.to_pydatetime()).map(lambda dt: dt.timetz()) |
|
|
|
df = DataFrame(tz_times, columns=["a"]) |
|
|
|
assert df.to_sql(name="test_time", con=conn, index=False) == 2 |
|
res = read_sql_query("SELECT * FROM test_time", conn) |
|
|
|
expected = df.map(lambda _: _.strftime("%H:%M:%S.%f")) |
|
tm.assert_frame_equal(res, expected) |
|
|
|
|
|
def get_sqlite_column_type(conn, table, column): |
|
recs = conn.execute(f"PRAGMA table_info({table})") |
|
for cid, name, ctype, not_null, default, pk in recs: |
|
if name == column: |
|
return ctype |
|
raise ValueError(f"Table {table}, column {column} not found") |
|
|
|
|
|
def test_sqlite_test_dtype(sqlite_buildin): |
|
conn = sqlite_buildin |
|
cols = ["A", "B"] |
|
data = [(0.8, True), (0.9, None)] |
|
df = DataFrame(data, columns=cols) |
|
assert df.to_sql(name="dtype_test", con=conn) == 2 |
|
assert df.to_sql(name="dtype_test2", con=conn, dtype={"B": "STRING"}) == 2 |
|
|
|
|
|
assert get_sqlite_column_type(conn, "dtype_test", "B") == "INTEGER" |
|
|
|
assert get_sqlite_column_type(conn, "dtype_test2", "B") == "STRING" |
|
msg = r"B \(<class 'bool'>\) not a string" |
|
with pytest.raises(ValueError, match=msg): |
|
df.to_sql(name="error", con=conn, dtype={"B": bool}) |
|
|
|
|
|
assert df.to_sql(name="single_dtype_test", con=conn, dtype="STRING") == 2 |
|
assert get_sqlite_column_type(conn, "single_dtype_test", "A") == "STRING" |
|
assert get_sqlite_column_type(conn, "single_dtype_test", "B") == "STRING" |
|
|
|
|
|
def test_sqlite_notna_dtype(sqlite_buildin): |
|
conn = sqlite_buildin |
|
cols = { |
|
"Bool": Series([True, None]), |
|
"Date": Series([datetime(2012, 5, 1), None]), |
|
"Int": Series([1, None], dtype="object"), |
|
"Float": Series([1.1, None]), |
|
} |
|
df = DataFrame(cols) |
|
|
|
tbl = "notna_dtype_test" |
|
assert df.to_sql(name=tbl, con=conn) == 2 |
|
|
|
assert get_sqlite_column_type(conn, tbl, "Bool") == "INTEGER" |
|
assert get_sqlite_column_type(conn, tbl, "Date") == "TIMESTAMP" |
|
assert get_sqlite_column_type(conn, tbl, "Int") == "INTEGER" |
|
assert get_sqlite_column_type(conn, tbl, "Float") == "REAL" |
|
|
|
|
|
def test_sqlite_illegal_names(sqlite_buildin): |
|
|
|
conn = sqlite_buildin |
|
df = DataFrame([[1, 2], [3, 4]], columns=["a", "b"]) |
|
|
|
msg = "Empty table or column name specified" |
|
with pytest.raises(ValueError, match=msg): |
|
df.to_sql(name="", con=conn) |
|
|
|
for ndx, weird_name in enumerate( |
|
[ |
|
"test_weird_name]", |
|
"test_weird_name[", |
|
"test_weird_name`", |
|
'test_weird_name"', |
|
"test_weird_name'", |
|
"_b.test_weird_name_01-30", |
|
'"_b.test_weird_name_01-30"', |
|
"99beginswithnumber", |
|
"12345", |
|
"\xe9", |
|
] |
|
): |
|
assert df.to_sql(name=weird_name, con=conn) == 2 |
|
sql.table_exists(weird_name, conn) |
|
|
|
df2 = DataFrame([[1, 2], [3, 4]], columns=["a", weird_name]) |
|
c_tbl = f"test_weird_col_name{ndx:d}" |
|
assert df2.to_sql(name=c_tbl, con=conn) == 2 |
|
sql.table_exists(c_tbl, conn) |
|
|
|
|
|
def format_query(sql, *args): |
|
_formatters = { |
|
datetime: "'{}'".format, |
|
str: "'{}'".format, |
|
np.str_: "'{}'".format, |
|
bytes: "'{}'".format, |
|
float: "{:.8f}".format, |
|
int: "{:d}".format, |
|
type(None): lambda x: "NULL", |
|
np.float64: "{:.10f}".format, |
|
bool: "'{!s}'".format, |
|
} |
|
processed_args = [] |
|
for arg in args: |
|
if isinstance(arg, float) and isna(arg): |
|
arg = None |
|
|
|
formatter = _formatters[type(arg)] |
|
processed_args.append(formatter(arg)) |
|
|
|
return sql % tuple(processed_args) |
|
|
|
|
|
def tquery(query, con=None): |
|
"""Replace removed sql.tquery function""" |
|
with sql.pandasSQL_builder(con) as pandas_sql: |
|
res = pandas_sql.execute(query).fetchall() |
|
return None if res is None else list(res) |
|
|
|
|
|
def test_xsqlite_basic(sqlite_buildin): |
|
frame = DataFrame( |
|
np.random.default_rng(2).standard_normal((10, 4)), |
|
columns=Index(list("ABCD"), dtype=object), |
|
index=date_range("2000-01-01", periods=10, freq="B"), |
|
) |
|
assert sql.to_sql(frame, name="test_table", con=sqlite_buildin, index=False) == 10 |
|
result = sql.read_sql("select * from test_table", sqlite_buildin) |
|
|
|
|
|
result.index = frame.index |
|
|
|
expected = frame |
|
tm.assert_frame_equal(result, frame) |
|
|
|
frame["txt"] = ["a"] * len(frame) |
|
frame2 = frame.copy() |
|
new_idx = Index(np.arange(len(frame2)), dtype=np.int64) + 10 |
|
frame2["Idx"] = new_idx.copy() |
|
assert sql.to_sql(frame2, name="test_table2", con=sqlite_buildin, index=False) == 10 |
|
result = sql.read_sql("select * from test_table2", sqlite_buildin, index_col="Idx") |
|
expected = frame.copy() |
|
expected.index = new_idx |
|
expected.index.name = "Idx" |
|
tm.assert_frame_equal(expected, result) |
|
|
|
|
|
def test_xsqlite_write_row_by_row(sqlite_buildin): |
|
frame = DataFrame( |
|
np.random.default_rng(2).standard_normal((10, 4)), |
|
columns=Index(list("ABCD"), dtype=object), |
|
index=date_range("2000-01-01", periods=10, freq="B"), |
|
) |
|
frame.iloc[0, 0] = np.nan |
|
create_sql = sql.get_schema(frame, "test") |
|
cur = sqlite_buildin.cursor() |
|
cur.execute(create_sql) |
|
|
|
ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" |
|
for _, row in frame.iterrows(): |
|
fmt_sql = format_query(ins, *row) |
|
tquery(fmt_sql, con=sqlite_buildin) |
|
|
|
sqlite_buildin.commit() |
|
|
|
result = sql.read_sql("select * from test", con=sqlite_buildin) |
|
result.index = frame.index |
|
tm.assert_frame_equal(result, frame, rtol=1e-3) |
|
|
|
|
|
def test_xsqlite_execute(sqlite_buildin): |
|
frame = DataFrame( |
|
np.random.default_rng(2).standard_normal((10, 4)), |
|
columns=Index(list("ABCD"), dtype=object), |
|
index=date_range("2000-01-01", periods=10, freq="B"), |
|
) |
|
create_sql = sql.get_schema(frame, "test") |
|
cur = sqlite_buildin.cursor() |
|
cur.execute(create_sql) |
|
ins = "INSERT INTO test VALUES (?, ?, ?, ?)" |
|
|
|
row = frame.iloc[0] |
|
with sql.pandasSQL_builder(sqlite_buildin) as pandas_sql: |
|
pandas_sql.execute(ins, tuple(row)) |
|
sqlite_buildin.commit() |
|
|
|
result = sql.read_sql("select * from test", sqlite_buildin) |
|
result.index = frame.index[:1] |
|
tm.assert_frame_equal(result, frame[:1]) |
|
|
|
|
|
def test_xsqlite_schema(sqlite_buildin): |
|
frame = DataFrame( |
|
np.random.default_rng(2).standard_normal((10, 4)), |
|
columns=Index(list("ABCD"), dtype=object), |
|
index=date_range("2000-01-01", periods=10, freq="B"), |
|
) |
|
create_sql = sql.get_schema(frame, "test") |
|
lines = create_sql.splitlines() |
|
for line in lines: |
|
tokens = line.split(" ") |
|
if len(tokens) == 2 and tokens[0] == "A": |
|
assert tokens[1] == "DATETIME" |
|
|
|
create_sql = sql.get_schema(frame, "test", keys=["A", "B"]) |
|
lines = create_sql.splitlines() |
|
assert 'PRIMARY KEY ("A", "B")' in create_sql |
|
cur = sqlite_buildin.cursor() |
|
cur.execute(create_sql) |
|
|
|
|
|
def test_xsqlite_execute_fail(sqlite_buildin): |
|
create_sql = """ |
|
CREATE TABLE test |
|
( |
|
a TEXT, |
|
b TEXT, |
|
c REAL, |
|
PRIMARY KEY (a, b) |
|
); |
|
""" |
|
cur = sqlite_buildin.cursor() |
|
cur.execute(create_sql) |
|
|
|
with sql.pandasSQL_builder(sqlite_buildin) as pandas_sql: |
|
pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)') |
|
pandas_sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)') |
|
|
|
with pytest.raises(sql.DatabaseError, match="Execution failed on sql"): |
|
pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 7)') |
|
|
|
|
|
def test_xsqlite_execute_closed_connection(): |
|
create_sql = """ |
|
CREATE TABLE test |
|
( |
|
a TEXT, |
|
b TEXT, |
|
c REAL, |
|
PRIMARY KEY (a, b) |
|
); |
|
""" |
|
with contextlib.closing(sqlite3.connect(":memory:")) as conn: |
|
cur = conn.cursor() |
|
cur.execute(create_sql) |
|
|
|
with sql.pandasSQL_builder(conn) as pandas_sql: |
|
pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)') |
|
|
|
msg = "Cannot operate on a closed database." |
|
with pytest.raises(sqlite3.ProgrammingError, match=msg): |
|
tquery("select * from test", con=conn) |
|
|
|
|
|
def test_xsqlite_keyword_as_column_names(sqlite_buildin): |
|
df = DataFrame({"From": np.ones(5)}) |
|
assert sql.to_sql(df, con=sqlite_buildin, name="testkeywords", index=False) == 5 |
|
|
|
|
|
def test_xsqlite_onecolumn_of_integer(sqlite_buildin): |
|
|
|
|
|
|
|
mono_df = DataFrame([1, 2], columns=["c0"]) |
|
assert sql.to_sql(mono_df, con=sqlite_buildin, name="mono_df", index=False) == 2 |
|
|
|
con_x = sqlite_buildin |
|
the_sum = sum(my_c0[0] for my_c0 in con_x.execute("select * from mono_df")) |
|
|
|
assert the_sum == 3 |
|
|
|
result = sql.read_sql("select * from mono_df", con_x) |
|
tm.assert_frame_equal(result, mono_df) |
|
|
|
|
|
def test_xsqlite_if_exists(sqlite_buildin): |
|
df_if_exists_1 = DataFrame({"col1": [1, 2], "col2": ["A", "B"]}) |
|
df_if_exists_2 = DataFrame({"col1": [3, 4, 5], "col2": ["C", "D", "E"]}) |
|
table_name = "table_if_exists" |
|
sql_select = f"SELECT * FROM {table_name}" |
|
|
|
msg = "'notvalidvalue' is not valid for if_exists" |
|
with pytest.raises(ValueError, match=msg): |
|
sql.to_sql( |
|
frame=df_if_exists_1, |
|
con=sqlite_buildin, |
|
name=table_name, |
|
if_exists="notvalidvalue", |
|
) |
|
drop_table(table_name, sqlite_buildin) |
|
|
|
|
|
sql.to_sql( |
|
frame=df_if_exists_1, con=sqlite_buildin, name=table_name, if_exists="fail" |
|
) |
|
msg = "Table 'table_if_exists' already exists" |
|
with pytest.raises(ValueError, match=msg): |
|
sql.to_sql( |
|
frame=df_if_exists_1, |
|
con=sqlite_buildin, |
|
name=table_name, |
|
if_exists="fail", |
|
) |
|
|
|
sql.to_sql( |
|
frame=df_if_exists_1, |
|
con=sqlite_buildin, |
|
name=table_name, |
|
if_exists="replace", |
|
index=False, |
|
) |
|
assert tquery(sql_select, con=sqlite_buildin) == [(1, "A"), (2, "B")] |
|
assert ( |
|
sql.to_sql( |
|
frame=df_if_exists_2, |
|
con=sqlite_buildin, |
|
name=table_name, |
|
if_exists="replace", |
|
index=False, |
|
) |
|
== 3 |
|
) |
|
assert tquery(sql_select, con=sqlite_buildin) == [(3, "C"), (4, "D"), (5, "E")] |
|
drop_table(table_name, sqlite_buildin) |
|
|
|
|
|
assert ( |
|
sql.to_sql( |
|
frame=df_if_exists_1, |
|
con=sqlite_buildin, |
|
name=table_name, |
|
if_exists="fail", |
|
index=False, |
|
) |
|
== 2 |
|
) |
|
assert tquery(sql_select, con=sqlite_buildin) == [(1, "A"), (2, "B")] |
|
assert ( |
|
sql.to_sql( |
|
frame=df_if_exists_2, |
|
con=sqlite_buildin, |
|
name=table_name, |
|
if_exists="append", |
|
index=False, |
|
) |
|
== 3 |
|
) |
|
assert tquery(sql_select, con=sqlite_buildin) == [ |
|
(1, "A"), |
|
(2, "B"), |
|
(3, "C"), |
|
(4, "D"), |
|
(5, "E"), |
|
] |
|
drop_table(table_name, sqlite_buildin) |
|
|