|
from datetime import ( |
|
datetime, |
|
timezone, |
|
) |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from pandas._libs.tslibs import iNaT |
|
from pandas.compat import ( |
|
is_ci_environment, |
|
is_platform_windows, |
|
) |
|
from pandas.compat.numpy import np_version_lt1p23 |
|
|
|
import pandas as pd |
|
import pandas._testing as tm |
|
from pandas.core.interchange.column import PandasColumn |
|
from pandas.core.interchange.dataframe_protocol import ( |
|
ColumnNullType, |
|
DtypeKind, |
|
) |
|
from pandas.core.interchange.from_dataframe import from_dataframe |
|
from pandas.core.interchange.utils import ArrowCTypes |
|
|
|
|
|
@pytest.fixture |
|
def data_categorical(): |
|
return { |
|
"ordered": pd.Categorical(list("testdata") * 30, ordered=True), |
|
"unordered": pd.Categorical(list("testdata") * 30, ordered=False), |
|
} |
|
|
|
|
|
@pytest.fixture |
|
def string_data(): |
|
return { |
|
"separator data": [ |
|
"abC|DeF,Hik", |
|
"234,3245.67", |
|
"gSaf,qWer|Gre", |
|
"asd3,4sad|", |
|
np.nan, |
|
] |
|
} |
|
|
|
|
|
@pytest.mark.parametrize("data", [("ordered", True), ("unordered", False)]) |
|
def test_categorical_dtype(data, data_categorical): |
|
df = pd.DataFrame({"A": (data_categorical[data[0]])}) |
|
|
|
col = df.__dataframe__().get_column_by_name("A") |
|
assert col.dtype[0] == DtypeKind.CATEGORICAL |
|
assert col.null_count == 0 |
|
assert col.describe_null == (ColumnNullType.USE_SENTINEL, -1) |
|
assert col.num_chunks() == 1 |
|
desc_cat = col.describe_categorical |
|
assert desc_cat["is_ordered"] == data[1] |
|
assert desc_cat["is_dictionary"] is True |
|
assert isinstance(desc_cat["categories"], PandasColumn) |
|
tm.assert_series_equal( |
|
desc_cat["categories"]._col, pd.Series(["a", "d", "e", "s", "t"]) |
|
) |
|
|
|
tm.assert_frame_equal(df, from_dataframe(df.__dataframe__())) |
|
|
|
|
|
def test_categorical_pyarrow(): |
|
|
|
pa = pytest.importorskip("pyarrow", "11.0.0") |
|
|
|
arr = ["Mon", "Tue", "Mon", "Wed", "Mon", "Thu", "Fri", "Sat", "Sun"] |
|
table = pa.table({"weekday": pa.array(arr).dictionary_encode()}) |
|
exchange_df = table.__dataframe__() |
|
result = from_dataframe(exchange_df) |
|
weekday = pd.Categorical( |
|
arr, categories=["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] |
|
) |
|
expected = pd.DataFrame({"weekday": weekday}) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_empty_categorical_pyarrow(): |
|
|
|
pa = pytest.importorskip("pyarrow", "11.0.0") |
|
|
|
arr = [None] |
|
table = pa.table({"arr": pa.array(arr, "float64").dictionary_encode()}) |
|
exchange_df = table.__dataframe__() |
|
result = pd.api.interchange.from_dataframe(exchange_df) |
|
expected = pd.DataFrame({"arr": pd.Categorical([np.nan])}) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_large_string_pyarrow(): |
|
|
|
pa = pytest.importorskip("pyarrow", "11.0.0") |
|
|
|
arr = ["Mon", "Tue"] |
|
table = pa.table({"weekday": pa.array(arr, "large_string")}) |
|
exchange_df = table.__dataframe__() |
|
result = from_dataframe(exchange_df) |
|
expected = pd.DataFrame({"weekday": ["Mon", "Tue"]}) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
assert pa.Table.equals(pa.interchange.from_dataframe(result), table) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
("offset", "length", "expected_values"), |
|
[ |
|
(0, None, [3.3, float("nan"), 2.1]), |
|
(1, None, [float("nan"), 2.1]), |
|
(2, None, [2.1]), |
|
(0, 2, [3.3, float("nan")]), |
|
(0, 1, [3.3]), |
|
(1, 1, [float("nan")]), |
|
], |
|
) |
|
def test_bitmasks_pyarrow(offset, length, expected_values): |
|
|
|
pa = pytest.importorskip("pyarrow", "11.0.0") |
|
|
|
arr = [3.3, None, 2.1] |
|
table = pa.table({"arr": arr}).slice(offset, length) |
|
exchange_df = table.__dataframe__() |
|
result = from_dataframe(exchange_df) |
|
expected = pd.DataFrame({"arr": expected_values}) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
assert pa.Table.equals(pa.interchange.from_dataframe(result), table) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"data", |
|
[ |
|
lambda: np.random.default_rng(2).integers(-100, 100), |
|
lambda: np.random.default_rng(2).integers(1, 100), |
|
lambda: np.random.default_rng(2).random(), |
|
lambda: np.random.default_rng(2).choice([True, False]), |
|
lambda: datetime( |
|
year=np.random.default_rng(2).integers(1900, 2100), |
|
month=np.random.default_rng(2).integers(1, 12), |
|
day=np.random.default_rng(2).integers(1, 20), |
|
), |
|
], |
|
) |
|
def test_dataframe(data): |
|
NCOLS, NROWS = 10, 20 |
|
data = { |
|
f"col{int((i - NCOLS / 2) % NCOLS + 1)}": [data() for _ in range(NROWS)] |
|
for i in range(NCOLS) |
|
} |
|
df = pd.DataFrame(data) |
|
|
|
df2 = df.__dataframe__() |
|
|
|
assert df2.num_columns() == NCOLS |
|
assert df2.num_rows() == NROWS |
|
|
|
assert list(df2.column_names()) == list(data.keys()) |
|
|
|
indices = (0, 2) |
|
names = tuple(list(data.keys())[idx] for idx in indices) |
|
|
|
result = from_dataframe(df2.select_columns(indices)) |
|
expected = from_dataframe(df2.select_columns_by_name(names)) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
assert isinstance(result.attrs["_INTERCHANGE_PROTOCOL_BUFFERS"], list) |
|
assert isinstance(expected.attrs["_INTERCHANGE_PROTOCOL_BUFFERS"], list) |
|
|
|
|
|
def test_missing_from_masked(): |
|
df = pd.DataFrame( |
|
{ |
|
"x": np.array([1.0, 2.0, 3.0, 4.0, 0.0]), |
|
"y": np.array([1.5, 2.5, 3.5, 4.5, 0]), |
|
"z": np.array([1.0, 0.0, 1.0, 1.0, 1.0]), |
|
} |
|
) |
|
|
|
rng = np.random.default_rng(2) |
|
dict_null = {col: rng.integers(low=0, high=len(df)) for col in df.columns} |
|
for col, num_nulls in dict_null.items(): |
|
null_idx = df.index[ |
|
rng.choice(np.arange(len(df)), size=num_nulls, replace=False) |
|
] |
|
df.loc[null_idx, col] = None |
|
|
|
df2 = df.__dataframe__() |
|
|
|
assert df2.get_column_by_name("x").null_count == dict_null["x"] |
|
assert df2.get_column_by_name("y").null_count == dict_null["y"] |
|
assert df2.get_column_by_name("z").null_count == dict_null["z"] |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"data", |
|
[ |
|
{"x": [1.5, 2.5, 3.5], "y": [9.2, 10.5, 11.8]}, |
|
{"x": [1, 2, 0], "y": [9.2, 10.5, 11.8]}, |
|
{ |
|
"x": np.array([True, True, False]), |
|
"y": np.array([1, 2, 0]), |
|
"z": np.array([9.2, 10.5, 11.8]), |
|
}, |
|
], |
|
) |
|
def test_mixed_data(data): |
|
df = pd.DataFrame(data) |
|
df2 = df.__dataframe__() |
|
|
|
for col_name in df.columns: |
|
assert df2.get_column_by_name(col_name).null_count == 0 |
|
|
|
|
|
def test_mixed_missing(): |
|
df = pd.DataFrame( |
|
{ |
|
"x": np.array([True, None, False, None, True]), |
|
"y": np.array([None, 2, None, 1, 2]), |
|
"z": np.array([9.2, 10.5, None, 11.8, None]), |
|
} |
|
) |
|
|
|
df2 = df.__dataframe__() |
|
|
|
for col_name in df.columns: |
|
assert df2.get_column_by_name(col_name).null_count == 2 |
|
|
|
|
|
def test_string(string_data): |
|
test_str_data = string_data["separator data"] + [""] |
|
df = pd.DataFrame({"A": test_str_data}) |
|
col = df.__dataframe__().get_column_by_name("A") |
|
|
|
assert col.size() == 6 |
|
assert col.null_count == 1 |
|
assert col.dtype[0] == DtypeKind.STRING |
|
assert col.describe_null == (ColumnNullType.USE_BYTEMASK, 0) |
|
|
|
df_sliced = df[1:] |
|
col = df_sliced.__dataframe__().get_column_by_name("A") |
|
assert col.size() == 5 |
|
assert col.null_count == 1 |
|
assert col.dtype[0] == DtypeKind.STRING |
|
assert col.describe_null == (ColumnNullType.USE_BYTEMASK, 0) |
|
|
|
|
|
def test_nonstring_object(): |
|
df = pd.DataFrame({"A": ["a", 10, 1.0, ()]}) |
|
col = df.__dataframe__().get_column_by_name("A") |
|
with pytest.raises(NotImplementedError, match="not supported yet"): |
|
col.dtype |
|
|
|
|
|
def test_datetime(): |
|
df = pd.DataFrame({"A": [pd.Timestamp("2022-01-01"), pd.NaT]}) |
|
col = df.__dataframe__().get_column_by_name("A") |
|
|
|
assert col.size() == 2 |
|
assert col.null_count == 1 |
|
assert col.dtype[0] == DtypeKind.DATETIME |
|
assert col.describe_null == (ColumnNullType.USE_SENTINEL, iNaT) |
|
|
|
tm.assert_frame_equal(df, from_dataframe(df.__dataframe__())) |
|
|
|
|
|
@pytest.mark.skipif(np_version_lt1p23, reason="Numpy > 1.23 required") |
|
def test_categorical_to_numpy_dlpack(): |
|
|
|
df = pd.DataFrame({"A": pd.Categorical(["a", "b", "a"])}) |
|
col = df.__dataframe__().get_column_by_name("A") |
|
result = np.from_dlpack(col.get_buffers()["data"][0]) |
|
expected = np.array([0, 1, 0], dtype="int8") |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("data", [{}, {"a": []}]) |
|
def test_empty_pyarrow(data): |
|
|
|
pytest.importorskip("pyarrow", "11.0.0") |
|
from pyarrow.interchange import from_dataframe as pa_from_dataframe |
|
|
|
expected = pd.DataFrame(data) |
|
arrow_df = pa_from_dataframe(expected) |
|
result = from_dataframe(arrow_df) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_multi_chunk_pyarrow() -> None: |
|
pa = pytest.importorskip("pyarrow", "11.0.0") |
|
n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) |
|
names = ["n_legs"] |
|
table = pa.table([n_legs], names=names) |
|
with pytest.raises( |
|
RuntimeError, |
|
match="To join chunks a copy is required which is " |
|
"forbidden by allow_copy=False", |
|
): |
|
pd.api.interchange.from_dataframe(table, allow_copy=False) |
|
|
|
|
|
def test_multi_chunk_column() -> None: |
|
pytest.importorskip("pyarrow", "11.0.0") |
|
ser = pd.Series([1, 2, None], dtype="Int64[pyarrow]") |
|
df = pd.concat([ser, ser], ignore_index=True).to_frame("a") |
|
df_orig = df.copy() |
|
with pytest.raises( |
|
RuntimeError, match="Found multi-chunk pyarrow array, but `allow_copy` is False" |
|
): |
|
pd.api.interchange.from_dataframe(df.__dataframe__(allow_copy=False)) |
|
result = pd.api.interchange.from_dataframe(df.__dataframe__(allow_copy=True)) |
|
|
|
|
|
expected = pd.DataFrame({"a": [1.0, 2.0, None, 1.0, 2.0, None]}, dtype="float64") |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
tm.assert_frame_equal(df, df_orig) |
|
assert len(df["a"].array._pa_array.chunks) == 2 |
|
assert len(df_orig["a"].array._pa_array.chunks) == 2 |
|
|
|
|
|
def test_timestamp_ns_pyarrow(): |
|
|
|
pytest.importorskip("pyarrow", "11.0.0") |
|
timestamp_args = { |
|
"year": 2000, |
|
"month": 1, |
|
"day": 1, |
|
"hour": 1, |
|
"minute": 1, |
|
"second": 1, |
|
} |
|
df = pd.Series( |
|
[datetime(**timestamp_args)], |
|
dtype="timestamp[ns][pyarrow]", |
|
name="col0", |
|
).to_frame() |
|
|
|
dfi = df.__dataframe__() |
|
result = pd.api.interchange.from_dataframe(dfi)["col0"].item() |
|
|
|
expected = pd.Timestamp(**timestamp_args) |
|
assert result == expected |
|
|
|
|
|
@pytest.mark.parametrize("tz", ["UTC", "US/Pacific"]) |
|
@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) |
|
def test_datetimetzdtype(tz, unit): |
|
|
|
tz_data = ( |
|
pd.date_range("2018-01-01", periods=5, freq="D").tz_localize(tz).as_unit(unit) |
|
) |
|
df = pd.DataFrame({"ts_tz": tz_data}) |
|
tm.assert_frame_equal(df, from_dataframe(df.__dataframe__())) |
|
|
|
|
|
def test_interchange_from_non_pandas_tz_aware(request): |
|
|
|
pa = pytest.importorskip("pyarrow", "11.0.0") |
|
import pyarrow.compute as pc |
|
|
|
if is_platform_windows() and is_ci_environment(): |
|
mark = pytest.mark.xfail( |
|
raises=pa.ArrowInvalid, |
|
reason=( |
|
"TODO: Set ARROW_TIMEZONE_DATABASE environment variable " |
|
"on CI to path to the tzdata for pyarrow." |
|
), |
|
) |
|
request.applymarker(mark) |
|
|
|
arr = pa.array([datetime(2020, 1, 1), None, datetime(2020, 1, 2)]) |
|
arr = pc.assume_timezone(arr, "Asia/Kathmandu") |
|
table = pa.table({"arr": arr}) |
|
exchange_df = table.__dataframe__() |
|
result = from_dataframe(exchange_df) |
|
|
|
expected = pd.DataFrame( |
|
["2020-01-01 00:00:00+05:45", "NaT", "2020-01-02 00:00:00+05:45"], |
|
columns=["arr"], |
|
dtype="datetime64[us, Asia/Kathmandu]", |
|
) |
|
tm.assert_frame_equal(expected, result) |
|
|
|
|
|
def test_interchange_from_corrected_buffer_dtypes(monkeypatch) -> None: |
|
|
|
df = pd.DataFrame({"a": ["foo", "bar"]}).__dataframe__() |
|
interchange = df.__dataframe__() |
|
column = interchange.get_column_by_name("a") |
|
buffers = column.get_buffers() |
|
buffers_data = buffers["data"] |
|
buffer_dtype = buffers_data[1] |
|
buffer_dtype = ( |
|
DtypeKind.UINT, |
|
8, |
|
ArrowCTypes.UINT8, |
|
buffer_dtype[3], |
|
) |
|
buffers["data"] = (buffers_data[0], buffer_dtype) |
|
column.get_buffers = lambda: buffers |
|
interchange.get_column_by_name = lambda _: column |
|
monkeypatch.setattr(df, "__dataframe__", lambda allow_copy: interchange) |
|
pd.api.interchange.from_dataframe(df) |
|
|
|
|
|
def test_empty_string_column(): |
|
|
|
df = pd.DataFrame({"a": []}, dtype=str) |
|
df2 = df.__dataframe__() |
|
result = pd.api.interchange.from_dataframe(df2) |
|
tm.assert_frame_equal(df, result) |
|
|
|
|
|
def test_large_string(): |
|
|
|
pytest.importorskip("pyarrow") |
|
df = pd.DataFrame({"a": ["x"]}, dtype="large_string[pyarrow]") |
|
result = pd.api.interchange.from_dataframe(df.__dataframe__()) |
|
expected = pd.DataFrame({"a": ["x"]}, dtype="object") |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
def test_non_str_names(): |
|
|
|
df = pd.Series([1, 2, 3], name=0).to_frame() |
|
names = df.__dataframe__().column_names() |
|
assert names == ["0"] |
|
|
|
|
|
def test_non_str_names_w_duplicates(): |
|
|
|
df = pd.DataFrame({"0": [1, 2, 3], 0: [4, 5, 6]}) |
|
dfi = df.__dataframe__() |
|
with pytest.raises( |
|
TypeError, |
|
match=( |
|
"Expected a Series, got a DataFrame. This likely happened because you " |
|
"called __dataframe__ on a DataFrame which, after converting column " |
|
r"names to string, resulted in duplicated names: Index\(\['0', '0'\], " |
|
r"dtype='object'\). Please rename these columns before using the " |
|
"interchange protocol." |
|
), |
|
): |
|
pd.api.interchange.from_dataframe(dfi, allow_copy=False) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
("data", "dtype", "expected_dtype"), |
|
[ |
|
([1, 2, None], "Int64", "int64"), |
|
([1, 2, None], "Int64[pyarrow]", "int64"), |
|
([1, 2, None], "Int8", "int8"), |
|
([1, 2, None], "Int8[pyarrow]", "int8"), |
|
( |
|
[1, 2, None], |
|
"UInt64", |
|
"uint64", |
|
), |
|
( |
|
[1, 2, None], |
|
"UInt64[pyarrow]", |
|
"uint64", |
|
), |
|
([1.0, 2.25, None], "Float32", "float32"), |
|
([1.0, 2.25, None], "Float32[pyarrow]", "float32"), |
|
([True, False, None], "boolean", "bool"), |
|
([True, False, None], "boolean[pyarrow]", "bool"), |
|
(["much ado", "about", None], "string[pyarrow_numpy]", "large_string"), |
|
(["much ado", "about", None], "string[pyarrow]", "large_string"), |
|
( |
|
[datetime(2020, 1, 1), datetime(2020, 1, 2), None], |
|
"timestamp[ns][pyarrow]", |
|
"timestamp[ns]", |
|
), |
|
( |
|
[datetime(2020, 1, 1), datetime(2020, 1, 2), None], |
|
"timestamp[us][pyarrow]", |
|
"timestamp[us]", |
|
), |
|
( |
|
[ |
|
datetime(2020, 1, 1, tzinfo=timezone.utc), |
|
datetime(2020, 1, 2, tzinfo=timezone.utc), |
|
None, |
|
], |
|
"timestamp[us, Asia/Kathmandu][pyarrow]", |
|
"timestamp[us, tz=Asia/Kathmandu]", |
|
), |
|
], |
|
) |
|
def test_pandas_nullable_with_missing_values( |
|
data: list, dtype: str, expected_dtype: str |
|
) -> None: |
|
|
|
|
|
pa = pytest.importorskip("pyarrow", "11.0.0") |
|
import pyarrow.interchange as pai |
|
|
|
if expected_dtype == "timestamp[us, tz=Asia/Kathmandu]": |
|
expected_dtype = pa.timestamp("us", "Asia/Kathmandu") |
|
|
|
df = pd.DataFrame({"a": data}, dtype=dtype) |
|
result = pai.from_dataframe(df.__dataframe__())["a"] |
|
assert result.type == expected_dtype |
|
assert result[0].as_py() == data[0] |
|
assert result[1].as_py() == data[1] |
|
assert result[2].as_py() is None |
|
|
|
|
|
@pytest.mark.parametrize( |
|
("data", "dtype", "expected_dtype"), |
|
[ |
|
([1, 2, 3], "Int64", "int64"), |
|
([1, 2, 3], "Int64[pyarrow]", "int64"), |
|
([1, 2, 3], "Int8", "int8"), |
|
([1, 2, 3], "Int8[pyarrow]", "int8"), |
|
( |
|
[1, 2, 3], |
|
"UInt64", |
|
"uint64", |
|
), |
|
( |
|
[1, 2, 3], |
|
"UInt64[pyarrow]", |
|
"uint64", |
|
), |
|
([1.0, 2.25, 5.0], "Float32", "float32"), |
|
([1.0, 2.25, 5.0], "Float32[pyarrow]", "float32"), |
|
([True, False, False], "boolean", "bool"), |
|
([True, False, False], "boolean[pyarrow]", "bool"), |
|
(["much ado", "about", "nothing"], "string[pyarrow_numpy]", "large_string"), |
|
(["much ado", "about", "nothing"], "string[pyarrow]", "large_string"), |
|
( |
|
[datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3)], |
|
"timestamp[ns][pyarrow]", |
|
"timestamp[ns]", |
|
), |
|
( |
|
[datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3)], |
|
"timestamp[us][pyarrow]", |
|
"timestamp[us]", |
|
), |
|
( |
|
[ |
|
datetime(2020, 1, 1, tzinfo=timezone.utc), |
|
datetime(2020, 1, 2, tzinfo=timezone.utc), |
|
datetime(2020, 1, 3, tzinfo=timezone.utc), |
|
], |
|
"timestamp[us, Asia/Kathmandu][pyarrow]", |
|
"timestamp[us, tz=Asia/Kathmandu]", |
|
), |
|
], |
|
) |
|
def test_pandas_nullable_without_missing_values( |
|
data: list, dtype: str, expected_dtype: str |
|
) -> None: |
|
|
|
pa = pytest.importorskip("pyarrow", "11.0.0") |
|
import pyarrow.interchange as pai |
|
|
|
if expected_dtype == "timestamp[us, tz=Asia/Kathmandu]": |
|
expected_dtype = pa.timestamp("us", "Asia/Kathmandu") |
|
|
|
df = pd.DataFrame({"a": data}, dtype=dtype) |
|
result = pai.from_dataframe(df.__dataframe__())["a"] |
|
assert result.type == expected_dtype |
|
assert result[0].as_py() == data[0] |
|
assert result[1].as_py() == data[1] |
|
assert result[2].as_py() == data[2] |
|
|
|
|
|
def test_string_validity_buffer() -> None: |
|
|
|
pytest.importorskip("pyarrow", "11.0.0") |
|
df = pd.DataFrame({"a": ["x"]}, dtype="large_string[pyarrow]") |
|
result = df.__dataframe__().get_column_by_name("a").get_buffers()["validity"] |
|
assert result is None |
|
|
|
|
|
def test_string_validity_buffer_no_missing() -> None: |
|
|
|
pytest.importorskip("pyarrow", "11.0.0") |
|
df = pd.DataFrame({"a": ["x", None]}, dtype="large_string[pyarrow]") |
|
validity = df.__dataframe__().get_column_by_name("a").get_buffers()["validity"] |
|
assert validity is not None |
|
result = validity[1] |
|
expected = (DtypeKind.BOOL, 1, ArrowCTypes.BOOL, "=") |
|
assert result == expected |
|
|
|
|
|
def test_empty_dataframe(): |
|
|
|
df = pd.DataFrame({"a": []}, dtype="int8") |
|
dfi = df.__dataframe__() |
|
result = pd.api.interchange.from_dataframe(dfi, allow_copy=False) |
|
expected = pd.DataFrame({"a": []}, dtype="int8") |
|
tm.assert_frame_equal(result, expected) |
|
|