|
import numpy as np |
|
import pytest |
|
|
|
from pandas._config import using_pyarrow_string_dtype |
|
|
|
import pandas as pd |
|
import pandas._testing as tm |
|
from pandas.tests.base.common import allow_na_ops |
|
|
|
|
|
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning") |
|
def test_unique(index_or_series_obj): |
|
obj = index_or_series_obj |
|
obj = np.repeat(obj, range(1, len(obj) + 1)) |
|
result = obj.unique() |
|
|
|
|
|
unique_values = list(dict.fromkeys(obj.values)) |
|
if isinstance(obj, pd.MultiIndex): |
|
expected = pd.MultiIndex.from_tuples(unique_values) |
|
expected.names = obj.names |
|
tm.assert_index_equal(result, expected, exact=True) |
|
elif isinstance(obj, pd.Index): |
|
expected = pd.Index(unique_values, dtype=obj.dtype) |
|
if isinstance(obj.dtype, pd.DatetimeTZDtype): |
|
expected = expected.normalize() |
|
tm.assert_index_equal(result, expected, exact=True) |
|
else: |
|
expected = np.array(unique_values) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning") |
|
@pytest.mark.parametrize("null_obj", [np.nan, None]) |
|
def test_unique_null(null_obj, index_or_series_obj): |
|
obj = index_or_series_obj |
|
|
|
if not allow_na_ops(obj): |
|
pytest.skip("type doesn't allow for NA operations") |
|
elif len(obj) < 1: |
|
pytest.skip("Test doesn't make sense on empty data") |
|
elif isinstance(obj, pd.MultiIndex): |
|
pytest.skip(f"MultiIndex can't hold '{null_obj}'") |
|
|
|
values = obj._values |
|
values[0:2] = null_obj |
|
|
|
klass = type(obj) |
|
repeated_values = np.repeat(values, range(1, len(values) + 1)) |
|
obj = klass(repeated_values, dtype=obj.dtype) |
|
result = obj.unique() |
|
|
|
unique_values_raw = dict.fromkeys(obj.values) |
|
|
|
|
|
unique_values_not_null = [val for val in unique_values_raw if not pd.isnull(val)] |
|
unique_values = [null_obj] + unique_values_not_null |
|
|
|
if isinstance(obj, pd.Index): |
|
expected = pd.Index(unique_values, dtype=obj.dtype) |
|
if isinstance(obj.dtype, pd.DatetimeTZDtype): |
|
result = result.normalize() |
|
expected = expected.normalize() |
|
tm.assert_index_equal(result, expected, exact=True) |
|
else: |
|
expected = np.array(unique_values, dtype=obj.dtype) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
def test_nunique(index_or_series_obj): |
|
obj = index_or_series_obj |
|
obj = np.repeat(obj, range(1, len(obj) + 1)) |
|
expected = len(obj.unique()) |
|
assert obj.nunique(dropna=False) == expected |
|
|
|
|
|
@pytest.mark.parametrize("null_obj", [np.nan, None]) |
|
def test_nunique_null(null_obj, index_or_series_obj): |
|
obj = index_or_series_obj |
|
|
|
if not allow_na_ops(obj): |
|
pytest.skip("type doesn't allow for NA operations") |
|
elif isinstance(obj, pd.MultiIndex): |
|
pytest.skip(f"MultiIndex can't hold '{null_obj}'") |
|
|
|
values = obj._values |
|
values[0:2] = null_obj |
|
|
|
klass = type(obj) |
|
repeated_values = np.repeat(values, range(1, len(values) + 1)) |
|
obj = klass(repeated_values, dtype=obj.dtype) |
|
|
|
if isinstance(obj, pd.CategoricalIndex): |
|
assert obj.nunique() == len(obj.categories) |
|
assert obj.nunique(dropna=False) == len(obj.categories) + 1 |
|
else: |
|
num_unique_values = len(obj.unique()) |
|
assert obj.nunique() == max(0, num_unique_values - 1) |
|
assert obj.nunique(dropna=False) == max(0, num_unique_values) |
|
|
|
|
|
@pytest.mark.single_cpu |
|
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="decoding fails") |
|
def test_unique_bad_unicode(index_or_series): |
|
|
|
uval = "\ud83d" |
|
|
|
obj = index_or_series([uval] * 2) |
|
result = obj.unique() |
|
|
|
if isinstance(obj, pd.Index): |
|
expected = pd.Index(["\ud83d"], dtype=object) |
|
tm.assert_index_equal(result, expected, exact=True) |
|
else: |
|
expected = np.array(["\ud83d"], dtype=object) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("dropna", [True, False]) |
|
def test_nunique_dropna(dropna): |
|
|
|
ser = pd.Series(["yes", "yes", pd.NA, np.nan, None, pd.NaT]) |
|
res = ser.nunique(dropna) |
|
assert res == 1 if dropna else 5 |
|
|