|
import numpy as np |
|
import pytest |
|
|
|
from pandas.core.dtypes.dtypes import DatetimeTZDtype |
|
|
|
import pandas as pd |
|
from pandas import ( |
|
CategoricalIndex, |
|
Series, |
|
Timedelta, |
|
Timestamp, |
|
date_range, |
|
) |
|
import pandas._testing as tm |
|
from pandas.core.arrays import ( |
|
DatetimeArray, |
|
IntervalArray, |
|
NumpyExtensionArray, |
|
PeriodArray, |
|
SparseArray, |
|
TimedeltaArray, |
|
) |
|
from pandas.core.arrays.string_arrow import ArrowStringArrayNumpySemantics |
|
|
|
|
|
class TestToIterable: |
|
|
|
|
|
dtypes = [ |
|
("int8", int), |
|
("int16", int), |
|
("int32", int), |
|
("int64", int), |
|
("uint8", int), |
|
("uint16", int), |
|
("uint32", int), |
|
("uint64", int), |
|
("float16", float), |
|
("float32", float), |
|
("float64", float), |
|
("datetime64[ns]", Timestamp), |
|
("datetime64[ns, US/Eastern]", Timestamp), |
|
("timedelta64[ns]", Timedelta), |
|
] |
|
|
|
@pytest.mark.parametrize("dtype, rdtype", dtypes) |
|
@pytest.mark.parametrize( |
|
"method", |
|
[ |
|
lambda x: x.tolist(), |
|
lambda x: x.to_list(), |
|
lambda x: list(x), |
|
lambda x: list(x.__iter__()), |
|
], |
|
ids=["tolist", "to_list", "list", "iter"], |
|
) |
|
def test_iterable(self, index_or_series, method, dtype, rdtype): |
|
|
|
|
|
|
|
typ = index_or_series |
|
if dtype == "float16" and issubclass(typ, pd.Index): |
|
with pytest.raises(NotImplementedError, match="float16 indexes are not "): |
|
typ([1], dtype=dtype) |
|
return |
|
s = typ([1], dtype=dtype) |
|
result = method(s)[0] |
|
assert isinstance(result, rdtype) |
|
|
|
@pytest.mark.parametrize( |
|
"dtype, rdtype, obj", |
|
[ |
|
("object", object, "a"), |
|
("object", int, 1), |
|
("category", object, "a"), |
|
("category", int, 1), |
|
], |
|
) |
|
@pytest.mark.parametrize( |
|
"method", |
|
[ |
|
lambda x: x.tolist(), |
|
lambda x: x.to_list(), |
|
lambda x: list(x), |
|
lambda x: list(x.__iter__()), |
|
], |
|
ids=["tolist", "to_list", "list", "iter"], |
|
) |
|
def test_iterable_object_and_category( |
|
self, index_or_series, method, dtype, rdtype, obj |
|
): |
|
|
|
|
|
|
|
typ = index_or_series |
|
s = typ([obj], dtype=dtype) |
|
result = method(s)[0] |
|
assert isinstance(result, rdtype) |
|
|
|
@pytest.mark.parametrize("dtype, rdtype", dtypes) |
|
def test_iterable_items(self, dtype, rdtype): |
|
|
|
|
|
|
|
s = Series([1], dtype=dtype) |
|
_, result = next(iter(s.items())) |
|
assert isinstance(result, rdtype) |
|
|
|
_, result = next(iter(s.items())) |
|
assert isinstance(result, rdtype) |
|
|
|
@pytest.mark.parametrize( |
|
"dtype, rdtype", dtypes + [("object", int), ("category", int)] |
|
) |
|
def test_iterable_map(self, index_or_series, dtype, rdtype): |
|
|
|
|
|
typ = index_or_series |
|
if dtype == "float16" and issubclass(typ, pd.Index): |
|
with pytest.raises(NotImplementedError, match="float16 indexes are not "): |
|
typ([1], dtype=dtype) |
|
return |
|
s = typ([1], dtype=dtype) |
|
result = s.map(type)[0] |
|
if not isinstance(rdtype, tuple): |
|
rdtype = (rdtype,) |
|
assert result in rdtype |
|
|
|
@pytest.mark.parametrize( |
|
"method", |
|
[ |
|
lambda x: x.tolist(), |
|
lambda x: x.to_list(), |
|
lambda x: list(x), |
|
lambda x: list(x.__iter__()), |
|
], |
|
ids=["tolist", "to_list", "list", "iter"], |
|
) |
|
def test_categorial_datetimelike(self, method): |
|
i = CategoricalIndex([Timestamp("1999-12-31"), Timestamp("2000-12-31")]) |
|
|
|
result = method(i)[0] |
|
assert isinstance(result, Timestamp) |
|
|
|
def test_iter_box_dt64(self, unit): |
|
vals = [Timestamp("2011-01-01"), Timestamp("2011-01-02")] |
|
ser = Series(vals).dt.as_unit(unit) |
|
assert ser.dtype == f"datetime64[{unit}]" |
|
for res, exp in zip(ser, vals): |
|
assert isinstance(res, Timestamp) |
|
assert res.tz is None |
|
assert res == exp |
|
assert res.unit == unit |
|
|
|
def test_iter_box_dt64tz(self, unit): |
|
vals = [ |
|
Timestamp("2011-01-01", tz="US/Eastern"), |
|
Timestamp("2011-01-02", tz="US/Eastern"), |
|
] |
|
ser = Series(vals).dt.as_unit(unit) |
|
|
|
assert ser.dtype == f"datetime64[{unit}, US/Eastern]" |
|
for res, exp in zip(ser, vals): |
|
assert isinstance(res, Timestamp) |
|
assert res.tz == exp.tz |
|
assert res == exp |
|
assert res.unit == unit |
|
|
|
def test_iter_box_timedelta64(self, unit): |
|
|
|
vals = [Timedelta("1 days"), Timedelta("2 days")] |
|
ser = Series(vals).dt.as_unit(unit) |
|
assert ser.dtype == f"timedelta64[{unit}]" |
|
for res, exp in zip(ser, vals): |
|
assert isinstance(res, Timedelta) |
|
assert res == exp |
|
assert res.unit == unit |
|
|
|
def test_iter_box_period(self): |
|
|
|
vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")] |
|
s = Series(vals) |
|
assert s.dtype == "Period[M]" |
|
for res, exp in zip(s, vals): |
|
assert isinstance(res, pd.Period) |
|
assert res.freq == "ME" |
|
assert res == exp |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"arr, expected_type, dtype", |
|
[ |
|
(np.array([0, 1], dtype=np.int64), np.ndarray, "int64"), |
|
(np.array(["a", "b"]), np.ndarray, "object"), |
|
(pd.Categorical(["a", "b"]), pd.Categorical, "category"), |
|
( |
|
pd.DatetimeIndex(["2017", "2018"], tz="US/Central"), |
|
DatetimeArray, |
|
"datetime64[ns, US/Central]", |
|
), |
|
( |
|
pd.PeriodIndex([2018, 2019], freq="Y"), |
|
PeriodArray, |
|
pd.core.dtypes.dtypes.PeriodDtype("Y-DEC"), |
|
), |
|
(pd.IntervalIndex.from_breaks([0, 1, 2]), IntervalArray, "interval"), |
|
( |
|
pd.DatetimeIndex(["2017", "2018"]), |
|
DatetimeArray, |
|
"datetime64[ns]", |
|
), |
|
( |
|
pd.TimedeltaIndex([10**10]), |
|
TimedeltaArray, |
|
"m8[ns]", |
|
), |
|
], |
|
) |
|
def test_values_consistent(arr, expected_type, dtype, using_infer_string): |
|
if using_infer_string and dtype == "object": |
|
expected_type = ArrowStringArrayNumpySemantics |
|
l_values = Series(arr)._values |
|
r_values = pd.Index(arr)._values |
|
assert type(l_values) is expected_type |
|
assert type(l_values) is type(r_values) |
|
|
|
tm.assert_equal(l_values, r_values) |
|
|
|
|
|
@pytest.mark.parametrize("arr", [np.array([1, 2, 3])]) |
|
def test_numpy_array(arr): |
|
ser = Series(arr) |
|
result = ser.array |
|
expected = NumpyExtensionArray(arr) |
|
tm.assert_extension_array_equal(result, expected) |
|
|
|
|
|
def test_numpy_array_all_dtypes(any_numpy_dtype): |
|
ser = Series(dtype=any_numpy_dtype) |
|
result = ser.array |
|
if np.dtype(any_numpy_dtype).kind == "M": |
|
assert isinstance(result, DatetimeArray) |
|
elif np.dtype(any_numpy_dtype).kind == "m": |
|
assert isinstance(result, TimedeltaArray) |
|
else: |
|
assert isinstance(result, NumpyExtensionArray) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"arr, attr", |
|
[ |
|
(pd.Categorical(["a", "b"]), "_codes"), |
|
(PeriodArray._from_sequence(["2000", "2001"], dtype="period[D]"), "_ndarray"), |
|
(pd.array([0, np.nan], dtype="Int64"), "_data"), |
|
(IntervalArray.from_breaks([0, 1]), "_left"), |
|
(SparseArray([0, 1]), "_sparse_values"), |
|
( |
|
DatetimeArray._from_sequence(np.array([1, 2], dtype="datetime64[ns]")), |
|
"_ndarray", |
|
), |
|
|
|
( |
|
DatetimeArray._from_sequence( |
|
np.array( |
|
["2000-01-01T12:00:00", "2000-01-02T12:00:00"], dtype="M8[ns]" |
|
), |
|
dtype=DatetimeTZDtype(tz="US/Central"), |
|
), |
|
"_ndarray", |
|
), |
|
], |
|
) |
|
def test_array(arr, attr, index_or_series, request): |
|
box = index_or_series |
|
|
|
result = box(arr, copy=False).array |
|
|
|
if attr: |
|
arr = getattr(arr, attr) |
|
result = getattr(result, attr) |
|
|
|
assert result is arr |
|
|
|
|
|
def test_array_multiindex_raises(): |
|
idx = pd.MultiIndex.from_product([["A"], ["a", "b"]]) |
|
msg = "MultiIndex has no single backing array" |
|
with pytest.raises(ValueError, match=msg): |
|
idx.array |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"arr, expected", |
|
[ |
|
(np.array([1, 2], dtype=np.int64), np.array([1, 2], dtype=np.int64)), |
|
(pd.Categorical(["a", "b"]), np.array(["a", "b"], dtype=object)), |
|
( |
|
pd.core.arrays.period_array(["2000", "2001"], freq="D"), |
|
np.array([pd.Period("2000", freq="D"), pd.Period("2001", freq="D")]), |
|
), |
|
(pd.array([0, np.nan], dtype="Int64"), np.array([0, np.nan])), |
|
( |
|
IntervalArray.from_breaks([0, 1, 2]), |
|
np.array([pd.Interval(0, 1), pd.Interval(1, 2)], dtype=object), |
|
), |
|
(SparseArray([0, 1]), np.array([0, 1], dtype=np.int64)), |
|
|
|
( |
|
DatetimeArray._from_sequence(np.array(["2000", "2001"], dtype="M8[ns]")), |
|
np.array(["2000", "2001"], dtype="M8[ns]"), |
|
), |
|
|
|
( |
|
DatetimeArray._from_sequence( |
|
np.array(["2000-01-01T06:00:00", "2000-01-02T06:00:00"], dtype="M8[ns]") |
|
) |
|
.tz_localize("UTC") |
|
.tz_convert("US/Central"), |
|
np.array( |
|
[ |
|
Timestamp("2000-01-01", tz="US/Central"), |
|
Timestamp("2000-01-02", tz="US/Central"), |
|
] |
|
), |
|
), |
|
|
|
( |
|
TimedeltaArray._from_sequence( |
|
np.array([0, 3600000000000], dtype="i8").view("m8[ns]") |
|
), |
|
np.array([0, 3600000000000], dtype="m8[ns]"), |
|
), |
|
|
|
( |
|
pd.Categorical(date_range("2016-01-01", periods=2, tz="US/Pacific")), |
|
np.array( |
|
[ |
|
Timestamp("2016-01-01", tz="US/Pacific"), |
|
Timestamp("2016-01-02", tz="US/Pacific"), |
|
] |
|
), |
|
), |
|
], |
|
) |
|
def test_to_numpy(arr, expected, index_or_series_or_array, request): |
|
box = index_or_series_or_array |
|
|
|
with tm.assert_produces_warning(None): |
|
thing = box(arr) |
|
|
|
result = thing.to_numpy() |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = np.asarray(thing) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("as_series", [True, False]) |
|
@pytest.mark.parametrize( |
|
"arr", [np.array([1, 2, 3], dtype="int64"), np.array(["a", "b", "c"], dtype=object)] |
|
) |
|
def test_to_numpy_copy(arr, as_series, using_infer_string): |
|
obj = pd.Index(arr, copy=False) |
|
if as_series: |
|
obj = Series(obj.values, copy=False) |
|
|
|
|
|
result = obj.to_numpy() |
|
if using_infer_string and arr.dtype == object: |
|
assert np.shares_memory(arr, result) is False |
|
else: |
|
assert np.shares_memory(arr, result) is True |
|
|
|
result = obj.to_numpy(copy=False) |
|
if using_infer_string and arr.dtype == object: |
|
assert np.shares_memory(arr, result) is False |
|
else: |
|
assert np.shares_memory(arr, result) is True |
|
|
|
|
|
result = obj.to_numpy(copy=True) |
|
assert np.shares_memory(arr, result) is False |
|
|
|
|
|
@pytest.mark.parametrize("as_series", [True, False]) |
|
def test_to_numpy_dtype(as_series, unit): |
|
tz = "US/Eastern" |
|
obj = pd.DatetimeIndex(["2000", "2001"], tz=tz) |
|
if as_series: |
|
obj = Series(obj) |
|
|
|
|
|
result = obj.to_numpy() |
|
expected = np.array( |
|
[Timestamp("2000", tz=tz), Timestamp("2001", tz=tz)], dtype=object |
|
) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = obj.to_numpy(dtype="object") |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = obj.to_numpy(dtype="M8[ns]") |
|
expected = np.array(["2000-01-01T05", "2001-01-01T05"], dtype="M8[ns]") |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"values, dtype, na_value, expected", |
|
[ |
|
([1, 2, None], "float64", 0, [1.0, 2.0, 0.0]), |
|
( |
|
[Timestamp("2000"), Timestamp("2000"), pd.NaT], |
|
None, |
|
Timestamp("2000"), |
|
[np.datetime64("2000-01-01T00:00:00.000000000")] * 3, |
|
), |
|
], |
|
) |
|
def test_to_numpy_na_value_numpy_dtype( |
|
index_or_series, values, dtype, na_value, expected |
|
): |
|
obj = index_or_series(values) |
|
result = obj.to_numpy(dtype=dtype, na_value=na_value) |
|
expected = np.array(expected) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"data, multiindex, dtype, na_value, expected", |
|
[ |
|
( |
|
[1, 2, None, 4], |
|
[(0, "a"), (0, "b"), (1, "b"), (1, "c")], |
|
float, |
|
None, |
|
[1.0, 2.0, np.nan, 4.0], |
|
), |
|
( |
|
[1, 2, None, 4], |
|
[(0, "a"), (0, "b"), (1, "b"), (1, "c")], |
|
float, |
|
np.nan, |
|
[1.0, 2.0, np.nan, 4.0], |
|
), |
|
( |
|
[1.0, 2.0, np.nan, 4.0], |
|
[("a", 0), ("a", 1), ("a", 2), ("b", 0)], |
|
int, |
|
0, |
|
[1, 2, 0, 4], |
|
), |
|
( |
|
[Timestamp("2000"), Timestamp("2000"), pd.NaT], |
|
[(0, Timestamp("2021")), (0, Timestamp("2022")), (1, Timestamp("2000"))], |
|
None, |
|
Timestamp("2000"), |
|
[np.datetime64("2000-01-01T00:00:00.000000000")] * 3, |
|
), |
|
], |
|
) |
|
def test_to_numpy_multiindex_series_na_value( |
|
data, multiindex, dtype, na_value, expected |
|
): |
|
index = pd.MultiIndex.from_tuples(multiindex) |
|
series = Series(data, index=index) |
|
result = series.to_numpy(dtype=dtype, na_value=na_value) |
|
expected = np.array(expected) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
def test_to_numpy_kwargs_raises(): |
|
|
|
s = Series([1, 2, 3]) |
|
msg = r"to_numpy\(\) got an unexpected keyword argument 'foo'" |
|
with pytest.raises(TypeError, match=msg): |
|
s.to_numpy(foo=True) |
|
|
|
|
|
s = Series([1, 2, 3], dtype="Int64") |
|
with pytest.raises(TypeError, match=msg): |
|
s.to_numpy(foo=True) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"data", |
|
[ |
|
{"a": [1, 2, 3], "b": [1, 2, None]}, |
|
{"a": np.array([1, 2, 3]), "b": np.array([1, 2, np.nan])}, |
|
{"a": pd.array([1, 2, 3]), "b": pd.array([1, 2, None])}, |
|
], |
|
) |
|
@pytest.mark.parametrize("dtype, na_value", [(float, np.nan), (object, None)]) |
|
def test_to_numpy_dataframe_na_value(data, dtype, na_value): |
|
|
|
df = pd.DataFrame(data) |
|
result = df.to_numpy(dtype=dtype, na_value=na_value) |
|
expected = np.array([[1, 1], [2, 2], [3, na_value]], dtype=dtype) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"data, expected", |
|
[ |
|
( |
|
{"a": pd.array([1, 2, None])}, |
|
np.array([[1.0], [2.0], [np.nan]], dtype=float), |
|
), |
|
( |
|
{"a": [1, 2, 3], "b": [1, 2, 3]}, |
|
np.array([[1, 1], [2, 2], [3, 3]], dtype=float), |
|
), |
|
], |
|
) |
|
def test_to_numpy_dataframe_single_block(data, expected): |
|
|
|
df = pd.DataFrame(data) |
|
result = df.to_numpy(dtype=float, na_value=np.nan) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
def test_to_numpy_dataframe_single_block_no_mutate(): |
|
|
|
result = pd.DataFrame(np.array([1.0, 2.0, np.nan])) |
|
expected = pd.DataFrame(np.array([1.0, 2.0, np.nan])) |
|
result.to_numpy(na_value=0.0) |
|
tm.assert_frame_equal(result, expected) |
|
|
|
|
|
class TestAsArray: |
|
@pytest.mark.parametrize("tz", [None, "US/Central"]) |
|
def test_asarray_object_dt64(self, tz): |
|
ser = Series(date_range("2000", periods=2, tz=tz)) |
|
|
|
with tm.assert_produces_warning(None): |
|
|
|
result = np.asarray(ser, dtype=object) |
|
|
|
expected = np.array( |
|
[Timestamp("2000-01-01", tz=tz), Timestamp("2000-01-02", tz=tz)] |
|
) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
def test_asarray_tz_naive(self): |
|
|
|
ser = Series(date_range("2000", periods=2)) |
|
expected = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]") |
|
result = np.asarray(ser) |
|
|
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
def test_asarray_tz_aware(self): |
|
tz = "US/Central" |
|
ser = Series(date_range("2000", periods=2, tz=tz)) |
|
expected = np.array(["2000-01-01T06", "2000-01-02T06"], dtype="M8[ns]") |
|
result = np.asarray(ser, dtype="datetime64[ns]") |
|
|
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
result = np.asarray(ser, dtype="M8[ns]") |
|
|
|
tm.assert_numpy_array_equal(result, expected) |
|
|