|
from __future__ import annotations |
|
|
|
from collections.abc import ( |
|
Hashable, |
|
Iterable, |
|
Mapping, |
|
Sequence, |
|
) |
|
import datetime |
|
from functools import partial |
|
from io import BytesIO |
|
import os |
|
from textwrap import fill |
|
from typing import ( |
|
IO, |
|
TYPE_CHECKING, |
|
Any, |
|
Callable, |
|
Generic, |
|
Literal, |
|
TypeVar, |
|
Union, |
|
cast, |
|
overload, |
|
) |
|
import warnings |
|
import zipfile |
|
|
|
from pandas._config import config |
|
|
|
from pandas._libs import lib |
|
from pandas._libs.parsers import STR_NA_VALUES |
|
from pandas.compat._optional import ( |
|
get_version, |
|
import_optional_dependency, |
|
) |
|
from pandas.errors import EmptyDataError |
|
from pandas.util._decorators import ( |
|
Appender, |
|
doc, |
|
) |
|
from pandas.util._exceptions import find_stack_level |
|
from pandas.util._validators import check_dtype_backend |
|
|
|
from pandas.core.dtypes.common import ( |
|
is_bool, |
|
is_float, |
|
is_integer, |
|
is_list_like, |
|
) |
|
|
|
from pandas.core.frame import DataFrame |
|
from pandas.core.shared_docs import _shared_docs |
|
from pandas.util.version import Version |
|
|
|
from pandas.io.common import ( |
|
IOHandles, |
|
get_handle, |
|
stringify_path, |
|
validate_header_arg, |
|
) |
|
from pandas.io.excel._util import ( |
|
fill_mi_header, |
|
get_default_engine, |
|
get_writer, |
|
maybe_convert_usecols, |
|
pop_header_name, |
|
) |
|
from pandas.io.parsers import TextParser |
|
from pandas.io.parsers.readers import validate_integer |
|
|
|
if TYPE_CHECKING: |
|
from types import TracebackType |
|
|
|
from pandas._typing import ( |
|
DtypeArg, |
|
DtypeBackend, |
|
ExcelWriterIfSheetExists, |
|
FilePath, |
|
IntStrT, |
|
ReadBuffer, |
|
Self, |
|
SequenceNotStr, |
|
StorageOptions, |
|
WriteExcelBuffer, |
|
) |
|
_read_excel_doc = ( |
|
""" |
|
Read an Excel file into a ``pandas`` ``DataFrame``. |
|
|
|
Supports `xls`, `xlsx`, `xlsm`, `xlsb`, `odf`, `ods` and `odt` file extensions |
|
read from a local filesystem or URL. Supports an option to read |
|
a single sheet or a list of sheets. |
|
|
|
Parameters |
|
---------- |
|
io : str, bytes, ExcelFile, xlrd.Book, path object, or file-like object |
|
Any valid string path is acceptable. The string could be a URL. Valid |
|
URL schemes include http, ftp, s3, and file. For file URLs, a host is |
|
expected. A local file could be: ``file://localhost/path/to/table.xlsx``. |
|
|
|
If you want to pass in a path object, pandas accepts any ``os.PathLike``. |
|
|
|
By file-like object, we refer to objects with a ``read()`` method, |
|
such as a file handle (e.g. via builtin ``open`` function) |
|
or ``StringIO``. |
|
|
|
.. deprecated:: 2.1.0 |
|
Passing byte strings is deprecated. To read from a |
|
byte string, wrap it in a ``BytesIO`` object. |
|
sheet_name : str, int, list, or None, default 0 |
|
Strings are used for sheet names. Integers are used in zero-indexed |
|
sheet positions (chart sheets do not count as a sheet position). |
|
Lists of strings/integers are used to request multiple sheets. |
|
Specify ``None`` to get all worksheets. |
|
|
|
Available cases: |
|
|
|
* Defaults to ``0``: 1st sheet as a `DataFrame` |
|
* ``1``: 2nd sheet as a `DataFrame` |
|
* ``"Sheet1"``: Load sheet with name "Sheet1" |
|
* ``[0, 1, "Sheet5"]``: Load first, second and sheet named "Sheet5" |
|
as a dict of `DataFrame` |
|
* ``None``: All worksheets. |
|
|
|
header : int, list of int, default 0 |
|
Row (0-indexed) to use for the column labels of the parsed |
|
DataFrame. If a list of integers is passed those row positions will |
|
be combined into a ``MultiIndex``. Use None if there is no header. |
|
names : array-like, default None |
|
List of column names to use. If file contains no header row, |
|
then you should explicitly pass header=None. |
|
index_col : int, str, list of int, default None |
|
Column (0-indexed) to use as the row labels of the DataFrame. |
|
Pass None if there is no such column. If a list is passed, |
|
those columns will be combined into a ``MultiIndex``. If a |
|
subset of data is selected with ``usecols``, index_col |
|
is based on the subset. |
|
|
|
Missing values will be forward filled to allow roundtripping with |
|
``to_excel`` for ``merged_cells=True``. To avoid forward filling the |
|
missing values use ``set_index`` after reading the data instead of |
|
``index_col``. |
|
usecols : str, list-like, or callable, default None |
|
* If None, then parse all columns. |
|
* If str, then indicates comma separated list of Excel column letters |
|
and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of |
|
both sides. |
|
* If list of int, then indicates list of column numbers to be parsed |
|
(0-indexed). |
|
* If list of string, then indicates list of column names to be parsed. |
|
* If callable, then evaluate each column name against it and parse the |
|
column if the callable returns ``True``. |
|
|
|
Returns a subset of the columns according to behavior above. |
|
dtype : Type name or dict of column -> type, default None |
|
Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32}} |
|
Use ``object`` to preserve data as stored in Excel and not interpret dtype, |
|
which will necessarily result in ``object`` dtype. |
|
If converters are specified, they will be applied INSTEAD |
|
of dtype conversion. |
|
If you use ``None``, it will infer the dtype of each column based on the data. |
|
engine : {{'openpyxl', 'calamine', 'odf', 'pyxlsb', 'xlrd'}}, default None |
|
If io is not a buffer or path, this must be set to identify io. |
|
Engine compatibility : |
|
|
|
- ``openpyxl`` supports newer Excel file formats. |
|
- ``calamine`` supports Excel (.xls, .xlsx, .xlsm, .xlsb) |
|
and OpenDocument (.ods) file formats. |
|
- ``odf`` supports OpenDocument file formats (.odf, .ods, .odt). |
|
- ``pyxlsb`` supports Binary Excel files. |
|
- ``xlrd`` supports old-style Excel files (.xls). |
|
|
|
When ``engine=None``, the following logic will be used to determine the engine: |
|
|
|
- If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt), |
|
then `odf <https://pypi.org/project/odfpy/>`_ will be used. |
|
- Otherwise if ``path_or_buffer`` is an xls format, ``xlrd`` will be used. |
|
- Otherwise if ``path_or_buffer`` is in xlsb format, ``pyxlsb`` will be used. |
|
- Otherwise ``openpyxl`` will be used. |
|
converters : dict, default None |
|
Dict of functions for converting values in certain columns. Keys can |
|
either be integers or column labels, values are functions that take one |
|
input argument, the Excel cell content, and return the transformed |
|
content. |
|
true_values : list, default None |
|
Values to consider as True. |
|
false_values : list, default None |
|
Values to consider as False. |
|
skiprows : list-like, int, or callable, optional |
|
Line numbers to skip (0-indexed) or number of lines to skip (int) at the |
|
start of the file. If callable, the callable function will be evaluated |
|
against the row indices, returning True if the row should be skipped and |
|
False otherwise. An example of a valid callable argument would be ``lambda |
|
x: x in [0, 2]``. |
|
nrows : int, default None |
|
Number of rows to parse. |
|
na_values : scalar, str, list-like, or dict, default None |
|
Additional strings to recognize as NA/NaN. If dict passed, specific |
|
per-column NA values. By default the following values are interpreted |
|
as NaN: '""" |
|
+ fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ") |
|
+ """'. |
|
keep_default_na : bool, default True |
|
Whether or not to include the default NaN values when parsing the data. |
|
Depending on whether ``na_values`` is passed in, the behavior is as follows: |
|
|
|
* If ``keep_default_na`` is True, and ``na_values`` are specified, |
|
``na_values`` is appended to the default NaN values used for parsing. |
|
* If ``keep_default_na`` is True, and ``na_values`` are not specified, only |
|
the default NaN values are used for parsing. |
|
* If ``keep_default_na`` is False, and ``na_values`` are specified, only |
|
the NaN values specified ``na_values`` are used for parsing. |
|
* If ``keep_default_na`` is False, and ``na_values`` are not specified, no |
|
strings will be parsed as NaN. |
|
|
|
Note that if `na_filter` is passed in as False, the ``keep_default_na`` and |
|
``na_values`` parameters will be ignored. |
|
na_filter : bool, default True |
|
Detect missing value markers (empty strings and the value of na_values). In |
|
data without any NAs, passing ``na_filter=False`` can improve the |
|
performance of reading a large file. |
|
verbose : bool, default False |
|
Indicate number of NA values placed in non-numeric columns. |
|
parse_dates : bool, list-like, or dict, default False |
|
The behavior is as follows: |
|
|
|
* ``bool``. If True -> try parsing the index. |
|
* ``list`` of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 |
|
each as a separate date column. |
|
* ``list`` of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as |
|
a single date column. |
|
* ``dict``, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call |
|
result 'foo' |
|
|
|
If a column or index contains an unparsable date, the entire column or |
|
index will be returned unaltered as an object data type. If you don`t want to |
|
parse some cells as date just change their type in Excel to "Text". |
|
For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_excel``. |
|
|
|
Note: A fast-path exists for iso8601-formatted dates. |
|
date_parser : function, optional |
|
Function to use for converting a sequence of string columns to an array of |
|
datetime instances. The default uses ``dateutil.parser.parser`` to do the |
|
conversion. Pandas will try to call `date_parser` in three different ways, |
|
advancing to the next if an exception occurs: 1) Pass one or more arrays |
|
(as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the |
|
string values from the columns defined by `parse_dates` into a single array |
|
and pass that; and 3) call `date_parser` once for each row using one or |
|
more strings (corresponding to the columns defined by `parse_dates`) as |
|
arguments. |
|
|
|
.. deprecated:: 2.0.0 |
|
Use ``date_format`` instead, or read in as ``object`` and then apply |
|
:func:`to_datetime` as-needed. |
|
date_format : str or dict of column -> format, default ``None`` |
|
If used in conjunction with ``parse_dates``, will parse dates according to this |
|
format. For anything more complex, |
|
please read in as ``object`` and then apply :func:`to_datetime` as-needed. |
|
|
|
.. versionadded:: 2.0.0 |
|
thousands : str, default None |
|
Thousands separator for parsing string columns to numeric. Note that |
|
this parameter is only necessary for columns stored as TEXT in Excel, |
|
any numeric columns will automatically be parsed, regardless of display |
|
format. |
|
decimal : str, default '.' |
|
Character to recognize as decimal point for parsing string columns to numeric. |
|
Note that this parameter is only necessary for columns stored as TEXT in Excel, |
|
any numeric columns will automatically be parsed, regardless of display |
|
format.(e.g. use ',' for European data). |
|
|
|
.. versionadded:: 1.4.0 |
|
|
|
comment : str, default None |
|
Comments out remainder of line. Pass a character or characters to this |
|
argument to indicate comments in the input file. Any data between the |
|
comment string and the end of the current line is ignored. |
|
skipfooter : int, default 0 |
|
Rows at the end to skip (0-indexed). |
|
{storage_options} |
|
|
|
dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable' |
|
Back-end data type applied to the resultant :class:`DataFrame` |
|
(still experimental). Behaviour is as follows: |
|
|
|
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` |
|
(default). |
|
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` |
|
DataFrame. |
|
|
|
.. versionadded:: 2.0 |
|
|
|
engine_kwargs : dict, optional |
|
Arbitrary keyword arguments passed to excel engine. |
|
|
|
Returns |
|
------- |
|
DataFrame or dict of DataFrames |
|
DataFrame from the passed in Excel file. See notes in sheet_name |
|
argument for more information on when a dict of DataFrames is returned. |
|
|
|
See Also |
|
-------- |
|
DataFrame.to_excel : Write DataFrame to an Excel file. |
|
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. |
|
read_csv : Read a comma-separated values (csv) file into DataFrame. |
|
read_fwf : Read a table of fixed-width formatted lines into DataFrame. |
|
|
|
Notes |
|
----- |
|
For specific information on the methods used for each Excel engine, refer to the pandas |
|
:ref:`user guide <io.excel_reader>` |
|
|
|
Examples |
|
-------- |
|
The file can be read using the file name as string or an open file object: |
|
|
|
>>> pd.read_excel('tmp.xlsx', index_col=0) # doctest: +SKIP |
|
Name Value |
|
0 string1 1 |
|
1 string2 2 |
|
2 #Comment 3 |
|
|
|
>>> pd.read_excel(open('tmp.xlsx', 'rb'), |
|
... sheet_name='Sheet3') # doctest: +SKIP |
|
Unnamed: 0 Name Value |
|
0 0 string1 1 |
|
1 1 string2 2 |
|
2 2 #Comment 3 |
|
|
|
Index and header can be specified via the `index_col` and `header` arguments |
|
|
|
>>> pd.read_excel('tmp.xlsx', index_col=None, header=None) # doctest: +SKIP |
|
0 1 2 |
|
0 NaN Name Value |
|
1 0.0 string1 1 |
|
2 1.0 string2 2 |
|
3 2.0 #Comment 3 |
|
|
|
Column types are inferred but can be explicitly specified |
|
|
|
>>> pd.read_excel('tmp.xlsx', index_col=0, |
|
... dtype={{'Name': str, 'Value': float}}) # doctest: +SKIP |
|
Name Value |
|
0 string1 1.0 |
|
1 string2 2.0 |
|
2 #Comment 3.0 |
|
|
|
True, False, and NA values, and thousands separators have defaults, |
|
but can be explicitly specified, too. Supply the values you would like |
|
as strings or lists of strings! |
|
|
|
>>> pd.read_excel('tmp.xlsx', index_col=0, |
|
... na_values=['string1', 'string2']) # doctest: +SKIP |
|
Name Value |
|
0 NaN 1 |
|
1 NaN 2 |
|
2 #Comment 3 |
|
|
|
Comment lines in the excel input file can be skipped using the |
|
``comment`` kwarg. |
|
|
|
>>> pd.read_excel('tmp.xlsx', index_col=0, comment='#') # doctest: +SKIP |
|
Name Value |
|
0 string1 1.0 |
|
1 string2 2.0 |
|
2 None NaN |
|
""" |
|
) |
|
|
|
|
|
@overload |
|
def read_excel( |
|
io, |
|
|
|
sheet_name: str | int = ..., |
|
*, |
|
header: int | Sequence[int] | None = ..., |
|
names: SequenceNotStr[Hashable] | range | None = ..., |
|
index_col: int | str | Sequence[int] | None = ..., |
|
usecols: int |
|
| str |
|
| Sequence[int] |
|
| Sequence[str] |
|
| Callable[[str], bool] |
|
| None = ..., |
|
dtype: DtypeArg | None = ..., |
|
engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = ..., |
|
converters: dict[str, Callable] | dict[int, Callable] | None = ..., |
|
true_values: Iterable[Hashable] | None = ..., |
|
false_values: Iterable[Hashable] | None = ..., |
|
skiprows: Sequence[int] | int | Callable[[int], object] | None = ..., |
|
nrows: int | None = ..., |
|
na_values=..., |
|
keep_default_na: bool = ..., |
|
na_filter: bool = ..., |
|
verbose: bool = ..., |
|
parse_dates: list | dict | bool = ..., |
|
date_parser: Callable | lib.NoDefault = ..., |
|
date_format: dict[Hashable, str] | str | None = ..., |
|
thousands: str | None = ..., |
|
decimal: str = ..., |
|
comment: str | None = ..., |
|
skipfooter: int = ..., |
|
storage_options: StorageOptions = ..., |
|
dtype_backend: DtypeBackend | lib.NoDefault = ..., |
|
) -> DataFrame: |
|
... |
|
|
|
|
|
@overload |
|
def read_excel( |
|
io, |
|
|
|
sheet_name: list[IntStrT] | None, |
|
*, |
|
header: int | Sequence[int] | None = ..., |
|
names: SequenceNotStr[Hashable] | range | None = ..., |
|
index_col: int | str | Sequence[int] | None = ..., |
|
usecols: int |
|
| str |
|
| Sequence[int] |
|
| Sequence[str] |
|
| Callable[[str], bool] |
|
| None = ..., |
|
dtype: DtypeArg | None = ..., |
|
engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = ..., |
|
converters: dict[str, Callable] | dict[int, Callable] | None = ..., |
|
true_values: Iterable[Hashable] | None = ..., |
|
false_values: Iterable[Hashable] | None = ..., |
|
skiprows: Sequence[int] | int | Callable[[int], object] | None = ..., |
|
nrows: int | None = ..., |
|
na_values=..., |
|
keep_default_na: bool = ..., |
|
na_filter: bool = ..., |
|
verbose: bool = ..., |
|
parse_dates: list | dict | bool = ..., |
|
date_parser: Callable | lib.NoDefault = ..., |
|
date_format: dict[Hashable, str] | str | None = ..., |
|
thousands: str | None = ..., |
|
decimal: str = ..., |
|
comment: str | None = ..., |
|
skipfooter: int = ..., |
|
storage_options: StorageOptions = ..., |
|
dtype_backend: DtypeBackend | lib.NoDefault = ..., |
|
) -> dict[IntStrT, DataFrame]: |
|
... |
|
|
|
|
|
@doc(storage_options=_shared_docs["storage_options"]) |
|
@Appender(_read_excel_doc) |
|
def read_excel( |
|
io, |
|
sheet_name: str | int | list[IntStrT] | None = 0, |
|
*, |
|
header: int | Sequence[int] | None = 0, |
|
names: SequenceNotStr[Hashable] | range | None = None, |
|
index_col: int | str | Sequence[int] | None = None, |
|
usecols: int |
|
| str |
|
| Sequence[int] |
|
| Sequence[str] |
|
| Callable[[str], bool] |
|
| None = None, |
|
dtype: DtypeArg | None = None, |
|
engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb", "calamine"] | None = None, |
|
converters: dict[str, Callable] | dict[int, Callable] | None = None, |
|
true_values: Iterable[Hashable] | None = None, |
|
false_values: Iterable[Hashable] | None = None, |
|
skiprows: Sequence[int] | int | Callable[[int], object] | None = None, |
|
nrows: int | None = None, |
|
na_values=None, |
|
keep_default_na: bool = True, |
|
na_filter: bool = True, |
|
verbose: bool = False, |
|
parse_dates: list | dict | bool = False, |
|
date_parser: Callable | lib.NoDefault = lib.no_default, |
|
date_format: dict[Hashable, str] | str | None = None, |
|
thousands: str | None = None, |
|
decimal: str = ".", |
|
comment: str | None = None, |
|
skipfooter: int = 0, |
|
storage_options: StorageOptions | None = None, |
|
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, |
|
engine_kwargs: dict | None = None, |
|
) -> DataFrame | dict[IntStrT, DataFrame]: |
|
check_dtype_backend(dtype_backend) |
|
should_close = False |
|
if engine_kwargs is None: |
|
engine_kwargs = {} |
|
|
|
if not isinstance(io, ExcelFile): |
|
should_close = True |
|
io = ExcelFile( |
|
io, |
|
storage_options=storage_options, |
|
engine=engine, |
|
engine_kwargs=engine_kwargs, |
|
) |
|
elif engine and engine != io.engine: |
|
raise ValueError( |
|
"Engine should not be specified when passing " |
|
"an ExcelFile - ExcelFile already has the engine set" |
|
) |
|
|
|
try: |
|
data = io.parse( |
|
sheet_name=sheet_name, |
|
header=header, |
|
names=names, |
|
index_col=index_col, |
|
usecols=usecols, |
|
dtype=dtype, |
|
converters=converters, |
|
true_values=true_values, |
|
false_values=false_values, |
|
skiprows=skiprows, |
|
nrows=nrows, |
|
na_values=na_values, |
|
keep_default_na=keep_default_na, |
|
na_filter=na_filter, |
|
verbose=verbose, |
|
parse_dates=parse_dates, |
|
date_parser=date_parser, |
|
date_format=date_format, |
|
thousands=thousands, |
|
decimal=decimal, |
|
comment=comment, |
|
skipfooter=skipfooter, |
|
dtype_backend=dtype_backend, |
|
) |
|
finally: |
|
|
|
if should_close: |
|
io.close() |
|
return data |
|
|
|
|
|
_WorkbookT = TypeVar("_WorkbookT") |
|
|
|
|
|
class BaseExcelReader(Generic[_WorkbookT]): |
|
book: _WorkbookT |
|
|
|
def __init__( |
|
self, |
|
filepath_or_buffer, |
|
storage_options: StorageOptions | None = None, |
|
engine_kwargs: dict | None = None, |
|
) -> None: |
|
if engine_kwargs is None: |
|
engine_kwargs = {} |
|
|
|
|
|
if isinstance(filepath_or_buffer, bytes): |
|
filepath_or_buffer = BytesIO(filepath_or_buffer) |
|
|
|
self.handles = IOHandles( |
|
handle=filepath_or_buffer, compression={"method": None} |
|
) |
|
if not isinstance(filepath_or_buffer, (ExcelFile, self._workbook_class)): |
|
self.handles = get_handle( |
|
filepath_or_buffer, "rb", storage_options=storage_options, is_text=False |
|
) |
|
|
|
if isinstance(self.handles.handle, self._workbook_class): |
|
self.book = self.handles.handle |
|
elif hasattr(self.handles.handle, "read"): |
|
|
|
self.handles.handle.seek(0) |
|
try: |
|
self.book = self.load_workbook(self.handles.handle, engine_kwargs) |
|
except Exception: |
|
self.close() |
|
raise |
|
else: |
|
raise ValueError( |
|
"Must explicitly set engine if not passing in buffer or path for io." |
|
) |
|
|
|
@property |
|
def _workbook_class(self) -> type[_WorkbookT]: |
|
raise NotImplementedError |
|
|
|
def load_workbook(self, filepath_or_buffer, engine_kwargs) -> _WorkbookT: |
|
raise NotImplementedError |
|
|
|
def close(self) -> None: |
|
if hasattr(self, "book"): |
|
if hasattr(self.book, "close"): |
|
|
|
|
|
|
|
self.book.close() |
|
elif hasattr(self.book, "release_resources"): |
|
|
|
|
|
self.book.release_resources() |
|
self.handles.close() |
|
|
|
@property |
|
def sheet_names(self) -> list[str]: |
|
raise NotImplementedError |
|
|
|
def get_sheet_by_name(self, name: str): |
|
raise NotImplementedError |
|
|
|
def get_sheet_by_index(self, index: int): |
|
raise NotImplementedError |
|
|
|
def get_sheet_data(self, sheet, rows: int | None = None): |
|
raise NotImplementedError |
|
|
|
def raise_if_bad_sheet_by_index(self, index: int) -> None: |
|
n_sheets = len(self.sheet_names) |
|
if index >= n_sheets: |
|
raise ValueError( |
|
f"Worksheet index {index} is invalid, {n_sheets} worksheets found" |
|
) |
|
|
|
def raise_if_bad_sheet_by_name(self, name: str) -> None: |
|
if name not in self.sheet_names: |
|
raise ValueError(f"Worksheet named '{name}' not found") |
|
|
|
def _check_skiprows_func( |
|
self, |
|
skiprows: Callable, |
|
rows_to_use: int, |
|
) -> int: |
|
""" |
|
Determine how many file rows are required to obtain `nrows` data |
|
rows when `skiprows` is a function. |
|
|
|
Parameters |
|
---------- |
|
skiprows : function |
|
The function passed to read_excel by the user. |
|
rows_to_use : int |
|
The number of rows that will be needed for the header and |
|
the data. |
|
|
|
Returns |
|
------- |
|
int |
|
""" |
|
i = 0 |
|
rows_used_so_far = 0 |
|
while rows_used_so_far < rows_to_use: |
|
if not skiprows(i): |
|
rows_used_so_far += 1 |
|
i += 1 |
|
return i |
|
|
|
def _calc_rows( |
|
self, |
|
header: int | Sequence[int] | None, |
|
index_col: int | Sequence[int] | None, |
|
skiprows: Sequence[int] | int | Callable[[int], object] | None, |
|
nrows: int | None, |
|
) -> int | None: |
|
""" |
|
If nrows specified, find the number of rows needed from the |
|
file, otherwise return None. |
|
|
|
|
|
Parameters |
|
---------- |
|
header : int, list of int, or None |
|
See read_excel docstring. |
|
index_col : int, str, list of int, or None |
|
See read_excel docstring. |
|
skiprows : list-like, int, callable, or None |
|
See read_excel docstring. |
|
nrows : int or None |
|
See read_excel docstring. |
|
|
|
Returns |
|
------- |
|
int or None |
|
""" |
|
if nrows is None: |
|
return None |
|
if header is None: |
|
header_rows = 1 |
|
elif is_integer(header): |
|
header = cast(int, header) |
|
header_rows = 1 + header |
|
else: |
|
header = cast(Sequence, header) |
|
header_rows = 1 + header[-1] |
|
|
|
|
|
if is_list_like(header) and index_col is not None: |
|
header = cast(Sequence, header) |
|
if len(header) > 1: |
|
header_rows += 1 |
|
if skiprows is None: |
|
return header_rows + nrows |
|
if is_integer(skiprows): |
|
skiprows = cast(int, skiprows) |
|
return header_rows + nrows + skiprows |
|
if is_list_like(skiprows): |
|
|
|
def f(skiprows: Sequence, x: int) -> bool: |
|
return x in skiprows |
|
|
|
skiprows = cast(Sequence, skiprows) |
|
return self._check_skiprows_func(partial(f, skiprows), header_rows + nrows) |
|
if callable(skiprows): |
|
return self._check_skiprows_func( |
|
skiprows, |
|
header_rows + nrows, |
|
) |
|
|
|
|
|
return None |
|
|
|
def parse( |
|
self, |
|
sheet_name: str | int | list[int] | list[str] | None = 0, |
|
header: int | Sequence[int] | None = 0, |
|
names: SequenceNotStr[Hashable] | range | None = None, |
|
index_col: int | Sequence[int] | None = None, |
|
usecols=None, |
|
dtype: DtypeArg | None = None, |
|
true_values: Iterable[Hashable] | None = None, |
|
false_values: Iterable[Hashable] | None = None, |
|
skiprows: Sequence[int] | int | Callable[[int], object] | None = None, |
|
nrows: int | None = None, |
|
na_values=None, |
|
verbose: bool = False, |
|
parse_dates: list | dict | bool = False, |
|
date_parser: Callable | lib.NoDefault = lib.no_default, |
|
date_format: dict[Hashable, str] | str | None = None, |
|
thousands: str | None = None, |
|
decimal: str = ".", |
|
comment: str | None = None, |
|
skipfooter: int = 0, |
|
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, |
|
**kwds, |
|
): |
|
validate_header_arg(header) |
|
validate_integer("nrows", nrows) |
|
|
|
ret_dict = False |
|
|
|
|
|
sheets: list[int] | list[str] |
|
if isinstance(sheet_name, list): |
|
sheets = sheet_name |
|
ret_dict = True |
|
elif sheet_name is None: |
|
sheets = self.sheet_names |
|
ret_dict = True |
|
elif isinstance(sheet_name, str): |
|
sheets = [sheet_name] |
|
else: |
|
sheets = [sheet_name] |
|
|
|
|
|
sheets = cast(Union[list[int], list[str]], list(dict.fromkeys(sheets).keys())) |
|
|
|
output = {} |
|
|
|
last_sheetname = None |
|
for asheetname in sheets: |
|
last_sheetname = asheetname |
|
if verbose: |
|
print(f"Reading sheet {asheetname}") |
|
|
|
if isinstance(asheetname, str): |
|
sheet = self.get_sheet_by_name(asheetname) |
|
else: |
|
sheet = self.get_sheet_by_index(asheetname) |
|
|
|
file_rows_needed = self._calc_rows(header, index_col, skiprows, nrows) |
|
data = self.get_sheet_data(sheet, file_rows_needed) |
|
if hasattr(sheet, "close"): |
|
|
|
sheet.close() |
|
usecols = maybe_convert_usecols(usecols) |
|
|
|
if not data: |
|
output[asheetname] = DataFrame() |
|
continue |
|
|
|
is_list_header = False |
|
is_len_one_list_header = False |
|
if is_list_like(header): |
|
assert isinstance(header, Sequence) |
|
is_list_header = True |
|
if len(header) == 1: |
|
is_len_one_list_header = True |
|
|
|
if is_len_one_list_header: |
|
header = cast(Sequence[int], header)[0] |
|
|
|
|
|
header_names = None |
|
if header is not None and is_list_like(header): |
|
assert isinstance(header, Sequence) |
|
|
|
header_names = [] |
|
control_row = [True] * len(data[0]) |
|
|
|
for row in header: |
|
if is_integer(skiprows): |
|
assert isinstance(skiprows, int) |
|
row += skiprows |
|
|
|
if row > len(data) - 1: |
|
raise ValueError( |
|
f"header index {row} exceeds maximum index " |
|
f"{len(data) - 1} of data.", |
|
) |
|
|
|
data[row], control_row = fill_mi_header(data[row], control_row) |
|
|
|
if index_col is not None: |
|
header_name, _ = pop_header_name(data[row], index_col) |
|
header_names.append(header_name) |
|
|
|
|
|
|
|
has_index_names = False |
|
if is_list_header and not is_len_one_list_header and index_col is not None: |
|
index_col_list: Sequence[int] |
|
if isinstance(index_col, int): |
|
index_col_list = [index_col] |
|
else: |
|
assert isinstance(index_col, Sequence) |
|
index_col_list = index_col |
|
|
|
|
|
|
|
assert isinstance(header, Sequence) |
|
if len(header) < len(data): |
|
potential_index_names = data[len(header)] |
|
potential_data = [ |
|
x |
|
for i, x in enumerate(potential_index_names) |
|
if not control_row[i] and i not in index_col_list |
|
] |
|
has_index_names = all(x == "" or x is None for x in potential_data) |
|
|
|
if is_list_like(index_col): |
|
|
|
if header is None: |
|
offset = 0 |
|
elif isinstance(header, int): |
|
offset = 1 + header |
|
else: |
|
offset = 1 + max(header) |
|
|
|
|
|
|
|
|
|
if has_index_names: |
|
offset += 1 |
|
|
|
|
|
|
|
if offset < len(data): |
|
assert isinstance(index_col, Sequence) |
|
|
|
for col in index_col: |
|
last = data[offset][col] |
|
|
|
for row in range(offset + 1, len(data)): |
|
if data[row][col] == "" or data[row][col] is None: |
|
data[row][col] = last |
|
else: |
|
last = data[row][col] |
|
|
|
|
|
try: |
|
parser = TextParser( |
|
data, |
|
names=names, |
|
header=header, |
|
index_col=index_col, |
|
has_index_names=has_index_names, |
|
dtype=dtype, |
|
true_values=true_values, |
|
false_values=false_values, |
|
skiprows=skiprows, |
|
nrows=nrows, |
|
na_values=na_values, |
|
skip_blank_lines=False, |
|
parse_dates=parse_dates, |
|
date_parser=date_parser, |
|
date_format=date_format, |
|
thousands=thousands, |
|
decimal=decimal, |
|
comment=comment, |
|
skipfooter=skipfooter, |
|
usecols=usecols, |
|
dtype_backend=dtype_backend, |
|
**kwds, |
|
) |
|
|
|
output[asheetname] = parser.read(nrows=nrows) |
|
|
|
if header_names: |
|
output[asheetname].columns = output[asheetname].columns.set_names( |
|
header_names |
|
) |
|
|
|
except EmptyDataError: |
|
|
|
output[asheetname] = DataFrame() |
|
|
|
except Exception as err: |
|
err.args = (f"{err.args[0]} (sheet: {asheetname})", *err.args[1:]) |
|
raise err |
|
|
|
if last_sheetname is None: |
|
raise ValueError("Sheet name is an empty list") |
|
|
|
if ret_dict: |
|
return output |
|
else: |
|
return output[last_sheetname] |
|
|
|
|
|
@doc(storage_options=_shared_docs["storage_options"]) |
|
class ExcelWriter(Generic[_WorkbookT]): |
|
""" |
|
Class for writing DataFrame objects into excel sheets. |
|
|
|
Default is to use: |
|
|
|
* `xlsxwriter <https://pypi.org/project/XlsxWriter/>`__ for xlsx files if xlsxwriter |
|
is installed otherwise `openpyxl <https://pypi.org/project/openpyxl/>`__ |
|
* `odswriter <https://pypi.org/project/odswriter/>`__ for ods files |
|
|
|
See ``DataFrame.to_excel`` for typical usage. |
|
|
|
The writer should be used as a context manager. Otherwise, call `close()` to save |
|
and close any opened file handles. |
|
|
|
Parameters |
|
---------- |
|
path : str or typing.BinaryIO |
|
Path to xls or xlsx or ods file. |
|
engine : str (optional) |
|
Engine to use for writing. If None, defaults to |
|
``io.excel.<extension>.writer``. NOTE: can only be passed as a keyword |
|
argument. |
|
date_format : str, default None |
|
Format string for dates written into Excel files (e.g. 'YYYY-MM-DD'). |
|
datetime_format : str, default None |
|
Format string for datetime objects written into Excel files. |
|
(e.g. 'YYYY-MM-DD HH:MM:SS'). |
|
mode : {{'w', 'a'}}, default 'w' |
|
File mode to use (write or append). Append does not work with fsspec URLs. |
|
{storage_options} |
|
|
|
if_sheet_exists : {{'error', 'new', 'replace', 'overlay'}}, default 'error' |
|
How to behave when trying to write to a sheet that already |
|
exists (append mode only). |
|
|
|
* error: raise a ValueError. |
|
* new: Create a new sheet, with a name determined by the engine. |
|
* replace: Delete the contents of the sheet before writing to it. |
|
* overlay: Write contents to the existing sheet without first removing, |
|
but possibly over top of, the existing contents. |
|
|
|
.. versionadded:: 1.3.0 |
|
|
|
.. versionchanged:: 1.4.0 |
|
|
|
Added ``overlay`` option |
|
|
|
engine_kwargs : dict, optional |
|
Keyword arguments to be passed into the engine. These will be passed to |
|
the following functions of the respective engines: |
|
|
|
* xlsxwriter: ``xlsxwriter.Workbook(file, **engine_kwargs)`` |
|
* openpyxl (write mode): ``openpyxl.Workbook(**engine_kwargs)`` |
|
* openpyxl (append mode): ``openpyxl.load_workbook(file, **engine_kwargs)`` |
|
* odswriter: ``odf.opendocument.OpenDocumentSpreadsheet(**engine_kwargs)`` |
|
|
|
.. versionadded:: 1.3.0 |
|
|
|
Notes |
|
----- |
|
For compatibility with CSV writers, ExcelWriter serializes lists |
|
and dicts to strings before writing. |
|
|
|
Examples |
|
-------- |
|
Default usage: |
|
|
|
>>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"]) # doctest: +SKIP |
|
>>> with pd.ExcelWriter("path_to_file.xlsx") as writer: |
|
... df.to_excel(writer) # doctest: +SKIP |
|
|
|
To write to separate sheets in a single file: |
|
|
|
>>> df1 = pd.DataFrame([["AAA", "BBB"]], columns=["Spam", "Egg"]) # doctest: +SKIP |
|
>>> df2 = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"]) # doctest: +SKIP |
|
>>> with pd.ExcelWriter("path_to_file.xlsx") as writer: |
|
... df1.to_excel(writer, sheet_name="Sheet1") # doctest: +SKIP |
|
... df2.to_excel(writer, sheet_name="Sheet2") # doctest: +SKIP |
|
|
|
You can set the date format or datetime format: |
|
|
|
>>> from datetime import date, datetime # doctest: +SKIP |
|
>>> df = pd.DataFrame( |
|
... [ |
|
... [date(2014, 1, 31), date(1999, 9, 24)], |
|
... [datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)], |
|
... ], |
|
... index=["Date", "Datetime"], |
|
... columns=["X", "Y"], |
|
... ) # doctest: +SKIP |
|
>>> with pd.ExcelWriter( |
|
... "path_to_file.xlsx", |
|
... date_format="YYYY-MM-DD", |
|
... datetime_format="YYYY-MM-DD HH:MM:SS" |
|
... ) as writer: |
|
... df.to_excel(writer) # doctest: +SKIP |
|
|
|
You can also append to an existing Excel file: |
|
|
|
>>> with pd.ExcelWriter("path_to_file.xlsx", mode="a", engine="openpyxl") as writer: |
|
... df.to_excel(writer, sheet_name="Sheet3") # doctest: +SKIP |
|
|
|
Here, the `if_sheet_exists` parameter can be set to replace a sheet if it |
|
already exists: |
|
|
|
>>> with ExcelWriter( |
|
... "path_to_file.xlsx", |
|
... mode="a", |
|
... engine="openpyxl", |
|
... if_sheet_exists="replace", |
|
... ) as writer: |
|
... df.to_excel(writer, sheet_name="Sheet1") # doctest: +SKIP |
|
|
|
You can also write multiple DataFrames to a single sheet. Note that the |
|
``if_sheet_exists`` parameter needs to be set to ``overlay``: |
|
|
|
>>> with ExcelWriter("path_to_file.xlsx", |
|
... mode="a", |
|
... engine="openpyxl", |
|
... if_sheet_exists="overlay", |
|
... ) as writer: |
|
... df1.to_excel(writer, sheet_name="Sheet1") |
|
... df2.to_excel(writer, sheet_name="Sheet1", startcol=3) # doctest: +SKIP |
|
|
|
You can store Excel file in RAM: |
|
|
|
>>> import io |
|
>>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"]) |
|
>>> buffer = io.BytesIO() |
|
>>> with pd.ExcelWriter(buffer) as writer: |
|
... df.to_excel(writer) |
|
|
|
You can pack Excel file into zip archive: |
|
|
|
>>> import zipfile # doctest: +SKIP |
|
>>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"]) # doctest: +SKIP |
|
>>> with zipfile.ZipFile("path_to_file.zip", "w") as zf: |
|
... with zf.open("filename.xlsx", "w") as buffer: |
|
... with pd.ExcelWriter(buffer) as writer: |
|
... df.to_excel(writer) # doctest: +SKIP |
|
|
|
You can specify additional arguments to the underlying engine: |
|
|
|
>>> with pd.ExcelWriter( |
|
... "path_to_file.xlsx", |
|
... engine="xlsxwriter", |
|
... engine_kwargs={{"options": {{"nan_inf_to_errors": True}}}} |
|
... ) as writer: |
|
... df.to_excel(writer) # doctest: +SKIP |
|
|
|
In append mode, ``engine_kwargs`` are passed through to |
|
openpyxl's ``load_workbook``: |
|
|
|
>>> with pd.ExcelWriter( |
|
... "path_to_file.xlsx", |
|
... engine="openpyxl", |
|
... mode="a", |
|
... engine_kwargs={{"keep_vba": True}} |
|
... ) as writer: |
|
... df.to_excel(writer, sheet_name="Sheet2") # doctest: +SKIP |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_engine: str |
|
_supported_extensions: tuple[str, ...] |
|
|
|
def __new__( |
|
cls, |
|
path: FilePath | WriteExcelBuffer | ExcelWriter, |
|
engine: str | None = None, |
|
date_format: str | None = None, |
|
datetime_format: str | None = None, |
|
mode: str = "w", |
|
storage_options: StorageOptions | None = None, |
|
if_sheet_exists: ExcelWriterIfSheetExists | None = None, |
|
engine_kwargs: dict | None = None, |
|
) -> Self: |
|
|
|
if cls is ExcelWriter: |
|
if engine is None or (isinstance(engine, str) and engine == "auto"): |
|
if isinstance(path, str): |
|
ext = os.path.splitext(path)[-1][1:] |
|
else: |
|
ext = "xlsx" |
|
|
|
try: |
|
engine = config.get_option(f"io.excel.{ext}.writer", silent=True) |
|
if engine == "auto": |
|
engine = get_default_engine(ext, mode="writer") |
|
except KeyError as err: |
|
raise ValueError(f"No engine for filetype: '{ext}'") from err |
|
|
|
|
|
assert engine is not None |
|
|
|
|
|
cls = get_writer(engine) |
|
|
|
return object.__new__(cls) |
|
|
|
|
|
_path = None |
|
|
|
@property |
|
def supported_extensions(self) -> tuple[str, ...]: |
|
"""Extensions that writer engine supports.""" |
|
return self._supported_extensions |
|
|
|
@property |
|
def engine(self) -> str: |
|
"""Name of engine.""" |
|
return self._engine |
|
|
|
@property |
|
def sheets(self) -> dict[str, Any]: |
|
"""Mapping of sheet names to sheet objects.""" |
|
raise NotImplementedError |
|
|
|
@property |
|
def book(self) -> _WorkbookT: |
|
""" |
|
Book instance. Class type will depend on the engine used. |
|
|
|
This attribute can be used to access engine-specific features. |
|
""" |
|
raise NotImplementedError |
|
|
|
def _write_cells( |
|
self, |
|
cells, |
|
sheet_name: str | None = None, |
|
startrow: int = 0, |
|
startcol: int = 0, |
|
freeze_panes: tuple[int, int] | None = None, |
|
) -> None: |
|
""" |
|
Write given formatted cells into Excel an excel sheet |
|
|
|
Parameters |
|
---------- |
|
cells : generator |
|
cell of formatted data to save to Excel sheet |
|
sheet_name : str, default None |
|
Name of Excel sheet, if None, then use self.cur_sheet |
|
startrow : upper left cell row to dump data frame |
|
startcol : upper left cell column to dump data frame |
|
freeze_panes: int tuple of length 2 |
|
contains the bottom-most row and right-most column to freeze |
|
""" |
|
raise NotImplementedError |
|
|
|
def _save(self) -> None: |
|
""" |
|
Save workbook to disk. |
|
""" |
|
raise NotImplementedError |
|
|
|
def __init__( |
|
self, |
|
path: FilePath | WriteExcelBuffer | ExcelWriter, |
|
engine: str | None = None, |
|
date_format: str | None = None, |
|
datetime_format: str | None = None, |
|
mode: str = "w", |
|
storage_options: StorageOptions | None = None, |
|
if_sheet_exists: ExcelWriterIfSheetExists | None = None, |
|
engine_kwargs: dict[str, Any] | None = None, |
|
) -> None: |
|
|
|
if isinstance(path, str): |
|
ext = os.path.splitext(path)[-1] |
|
self.check_extension(ext) |
|
|
|
|
|
if "b" not in mode: |
|
mode += "b" |
|
|
|
|
|
mode = mode.replace("a", "r+") |
|
|
|
if if_sheet_exists not in (None, "error", "new", "replace", "overlay"): |
|
raise ValueError( |
|
f"'{if_sheet_exists}' is not valid for if_sheet_exists. " |
|
"Valid options are 'error', 'new', 'replace' and 'overlay'." |
|
) |
|
if if_sheet_exists and "r+" not in mode: |
|
raise ValueError("if_sheet_exists is only valid in append mode (mode='a')") |
|
if if_sheet_exists is None: |
|
if_sheet_exists = "error" |
|
self._if_sheet_exists = if_sheet_exists |
|
|
|
|
|
self._handles = IOHandles( |
|
cast(IO[bytes], path), compression={"compression": None} |
|
) |
|
if not isinstance(path, ExcelWriter): |
|
self._handles = get_handle( |
|
path, mode, storage_options=storage_options, is_text=False |
|
) |
|
self._cur_sheet = None |
|
|
|
if date_format is None: |
|
self._date_format = "YYYY-MM-DD" |
|
else: |
|
self._date_format = date_format |
|
if datetime_format is None: |
|
self._datetime_format = "YYYY-MM-DD HH:MM:SS" |
|
else: |
|
self._datetime_format = datetime_format |
|
|
|
self._mode = mode |
|
|
|
@property |
|
def date_format(self) -> str: |
|
""" |
|
Format string for dates written into Excel files (e.g. 'YYYY-MM-DD'). |
|
""" |
|
return self._date_format |
|
|
|
@property |
|
def datetime_format(self) -> str: |
|
""" |
|
Format string for dates written into Excel files (e.g. 'YYYY-MM-DD'). |
|
""" |
|
return self._datetime_format |
|
|
|
@property |
|
def if_sheet_exists(self) -> str: |
|
""" |
|
How to behave when writing to a sheet that already exists in append mode. |
|
""" |
|
return self._if_sheet_exists |
|
|
|
def __fspath__(self) -> str: |
|
return getattr(self._handles.handle, "name", "") |
|
|
|
def _get_sheet_name(self, sheet_name: str | None) -> str: |
|
if sheet_name is None: |
|
sheet_name = self._cur_sheet |
|
if sheet_name is None: |
|
raise ValueError("Must pass explicit sheet_name or set _cur_sheet property") |
|
return sheet_name |
|
|
|
def _value_with_fmt( |
|
self, val |
|
) -> tuple[ |
|
int | float | bool | str | datetime.datetime | datetime.date, str | None |
|
]: |
|
""" |
|
Convert numpy types to Python types for the Excel writers. |
|
|
|
Parameters |
|
---------- |
|
val : object |
|
Value to be written into cells |
|
|
|
Returns |
|
------- |
|
Tuple with the first element being the converted value and the second |
|
being an optional format |
|
""" |
|
fmt = None |
|
|
|
if is_integer(val): |
|
val = int(val) |
|
elif is_float(val): |
|
val = float(val) |
|
elif is_bool(val): |
|
val = bool(val) |
|
elif isinstance(val, datetime.datetime): |
|
fmt = self._datetime_format |
|
elif isinstance(val, datetime.date): |
|
fmt = self._date_format |
|
elif isinstance(val, datetime.timedelta): |
|
val = val.total_seconds() / 86400 |
|
fmt = "0" |
|
else: |
|
val = str(val) |
|
|
|
return val, fmt |
|
|
|
@classmethod |
|
def check_extension(cls, ext: str) -> Literal[True]: |
|
""" |
|
checks that path's extension against the Writer's supported |
|
extensions. If it isn't supported, raises UnsupportedFiletypeError. |
|
""" |
|
if ext.startswith("."): |
|
ext = ext[1:] |
|
if not any(ext in extension for extension in cls._supported_extensions): |
|
raise ValueError(f"Invalid extension for engine '{cls.engine}': '{ext}'") |
|
return True |
|
|
|
|
|
def __enter__(self) -> Self: |
|
return self |
|
|
|
def __exit__( |
|
self, |
|
exc_type: type[BaseException] | None, |
|
exc_value: BaseException | None, |
|
traceback: TracebackType | None, |
|
) -> None: |
|
self.close() |
|
|
|
def close(self) -> None: |
|
"""synonym for save, to make it more file-like""" |
|
self._save() |
|
self._handles.close() |
|
|
|
|
|
XLS_SIGNATURES = ( |
|
b"\x09\x00\x04\x00\x07\x00\x10\x00", |
|
b"\x09\x02\x06\x00\x00\x00\x10\x00", |
|
b"\x09\x04\x06\x00\x00\x00\x10\x00", |
|
b"\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1", |
|
) |
|
ZIP_SIGNATURE = b"PK\x03\x04" |
|
PEEK_SIZE = max(map(len, XLS_SIGNATURES + (ZIP_SIGNATURE,))) |
|
|
|
|
|
@doc(storage_options=_shared_docs["storage_options"]) |
|
def inspect_excel_format( |
|
content_or_path: FilePath | ReadBuffer[bytes], |
|
storage_options: StorageOptions | None = None, |
|
) -> str | None: |
|
""" |
|
Inspect the path or content of an excel file and get its format. |
|
|
|
Adopted from xlrd: https://github.com/python-excel/xlrd. |
|
|
|
Parameters |
|
---------- |
|
content_or_path : str or file-like object |
|
Path to file or content of file to inspect. May be a URL. |
|
{storage_options} |
|
|
|
Returns |
|
------- |
|
str or None |
|
Format of file if it can be determined. |
|
|
|
Raises |
|
------ |
|
ValueError |
|
If resulting stream is empty. |
|
BadZipFile |
|
If resulting stream does not have an XLS signature and is not a valid zipfile. |
|
""" |
|
if isinstance(content_or_path, bytes): |
|
content_or_path = BytesIO(content_or_path) |
|
|
|
with get_handle( |
|
content_or_path, "rb", storage_options=storage_options, is_text=False |
|
) as handle: |
|
stream = handle.handle |
|
stream.seek(0) |
|
buf = stream.read(PEEK_SIZE) |
|
if buf is None: |
|
raise ValueError("stream is empty") |
|
assert isinstance(buf, bytes) |
|
peek = buf |
|
stream.seek(0) |
|
|
|
if any(peek.startswith(sig) for sig in XLS_SIGNATURES): |
|
return "xls" |
|
elif not peek.startswith(ZIP_SIGNATURE): |
|
return None |
|
|
|
with zipfile.ZipFile(stream) as zf: |
|
|
|
|
|
component_names = [ |
|
name.replace("\\", "/").lower() for name in zf.namelist() |
|
] |
|
|
|
if "xl/workbook.xml" in component_names: |
|
return "xlsx" |
|
if "xl/workbook.bin" in component_names: |
|
return "xlsb" |
|
if "content.xml" in component_names: |
|
return "ods" |
|
return "zip" |
|
|
|
|
|
class ExcelFile: |
|
""" |
|
Class for parsing tabular Excel sheets into DataFrame objects. |
|
|
|
See read_excel for more documentation. |
|
|
|
Parameters |
|
---------- |
|
path_or_buffer : str, bytes, path object (pathlib.Path or py._path.local.LocalPath), |
|
A file-like object, xlrd workbook or openpyxl workbook. |
|
If a string or path object, expected to be a path to a |
|
.xls, .xlsx, .xlsb, .xlsm, .odf, .ods, or .odt file. |
|
engine : str, default None |
|
If io is not a buffer or path, this must be set to identify io. |
|
Supported engines: ``xlrd``, ``openpyxl``, ``odf``, ``pyxlsb``, ``calamine`` |
|
Engine compatibility : |
|
|
|
- ``xlrd`` supports old-style Excel files (.xls). |
|
- ``openpyxl`` supports newer Excel file formats. |
|
- ``odf`` supports OpenDocument file formats (.odf, .ods, .odt). |
|
- ``pyxlsb`` supports Binary Excel files. |
|
- ``calamine`` supports Excel (.xls, .xlsx, .xlsm, .xlsb) |
|
and OpenDocument (.ods) file formats. |
|
|
|
.. versionchanged:: 1.2.0 |
|
|
|
The engine `xlrd <https://xlrd.readthedocs.io/en/latest/>`_ |
|
now only supports old-style ``.xls`` files. |
|
When ``engine=None``, the following logic will be |
|
used to determine the engine: |
|
|
|
- If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt), |
|
then `odf <https://pypi.org/project/odfpy/>`_ will be used. |
|
- Otherwise if ``path_or_buffer`` is an xls format, |
|
``xlrd`` will be used. |
|
- Otherwise if ``path_or_buffer`` is in xlsb format, |
|
`pyxlsb <https://pypi.org/project/pyxlsb/>`_ will be used. |
|
|
|
.. versionadded:: 1.3.0 |
|
|
|
- Otherwise if `openpyxl <https://pypi.org/project/openpyxl/>`_ is installed, |
|
then ``openpyxl`` will be used. |
|
- Otherwise if ``xlrd >= 2.0`` is installed, a ``ValueError`` will be raised. |
|
|
|
.. warning:: |
|
|
|
Please do not report issues when using ``xlrd`` to read ``.xlsx`` files. |
|
This is not supported, switch to using ``openpyxl`` instead. |
|
engine_kwargs : dict, optional |
|
Arbitrary keyword arguments passed to excel engine. |
|
|
|
Examples |
|
-------- |
|
>>> file = pd.ExcelFile('myfile.xlsx') # doctest: +SKIP |
|
>>> with pd.ExcelFile("myfile.xls") as xls: # doctest: +SKIP |
|
... df1 = pd.read_excel(xls, "Sheet1") # doctest: +SKIP |
|
""" |
|
|
|
from pandas.io.excel._calamine import CalamineReader |
|
from pandas.io.excel._odfreader import ODFReader |
|
from pandas.io.excel._openpyxl import OpenpyxlReader |
|
from pandas.io.excel._pyxlsb import PyxlsbReader |
|
from pandas.io.excel._xlrd import XlrdReader |
|
|
|
_engines: Mapping[str, Any] = { |
|
"xlrd": XlrdReader, |
|
"openpyxl": OpenpyxlReader, |
|
"odf": ODFReader, |
|
"pyxlsb": PyxlsbReader, |
|
"calamine": CalamineReader, |
|
} |
|
|
|
def __init__( |
|
self, |
|
path_or_buffer, |
|
engine: str | None = None, |
|
storage_options: StorageOptions | None = None, |
|
engine_kwargs: dict | None = None, |
|
) -> None: |
|
if engine_kwargs is None: |
|
engine_kwargs = {} |
|
|
|
if engine is not None and engine not in self._engines: |
|
raise ValueError(f"Unknown engine: {engine}") |
|
|
|
|
|
if isinstance(path_or_buffer, bytes): |
|
path_or_buffer = BytesIO(path_or_buffer) |
|
warnings.warn( |
|
"Passing bytes to 'read_excel' is deprecated and " |
|
"will be removed in a future version. To read from a " |
|
"byte string, wrap it in a `BytesIO` object.", |
|
FutureWarning, |
|
stacklevel=find_stack_level(), |
|
) |
|
|
|
|
|
self.io = path_or_buffer |
|
|
|
self._io = stringify_path(path_or_buffer) |
|
|
|
|
|
if import_optional_dependency("xlrd", errors="ignore") is None: |
|
xlrd_version = None |
|
else: |
|
import xlrd |
|
|
|
xlrd_version = Version(get_version(xlrd)) |
|
|
|
if engine is None: |
|
|
|
ext: str | None |
|
if xlrd_version is not None and isinstance(path_or_buffer, xlrd.Book): |
|
ext = "xls" |
|
else: |
|
ext = inspect_excel_format( |
|
content_or_path=path_or_buffer, storage_options=storage_options |
|
) |
|
if ext is None: |
|
raise ValueError( |
|
"Excel file format cannot be determined, you must specify " |
|
"an engine manually." |
|
) |
|
|
|
engine = config.get_option(f"io.excel.{ext}.reader", silent=True) |
|
if engine == "auto": |
|
engine = get_default_engine(ext, mode="reader") |
|
|
|
assert engine is not None |
|
self.engine = engine |
|
self.storage_options = storage_options |
|
|
|
self._reader = self._engines[engine]( |
|
self._io, |
|
storage_options=storage_options, |
|
engine_kwargs=engine_kwargs, |
|
) |
|
|
|
def __fspath__(self): |
|
return self._io |
|
|
|
def parse( |
|
self, |
|
sheet_name: str | int | list[int] | list[str] | None = 0, |
|
header: int | Sequence[int] | None = 0, |
|
names: SequenceNotStr[Hashable] | range | None = None, |
|
index_col: int | Sequence[int] | None = None, |
|
usecols=None, |
|
converters=None, |
|
true_values: Iterable[Hashable] | None = None, |
|
false_values: Iterable[Hashable] | None = None, |
|
skiprows: Sequence[int] | int | Callable[[int], object] | None = None, |
|
nrows: int | None = None, |
|
na_values=None, |
|
parse_dates: list | dict | bool = False, |
|
date_parser: Callable | lib.NoDefault = lib.no_default, |
|
date_format: str | dict[Hashable, str] | None = None, |
|
thousands: str | None = None, |
|
comment: str | None = None, |
|
skipfooter: int = 0, |
|
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, |
|
**kwds, |
|
) -> DataFrame | dict[str, DataFrame] | dict[int, DataFrame]: |
|
""" |
|
Parse specified sheet(s) into a DataFrame. |
|
|
|
Equivalent to read_excel(ExcelFile, ...) See the read_excel |
|
docstring for more info on accepted parameters. |
|
|
|
Returns |
|
------- |
|
DataFrame or dict of DataFrames |
|
DataFrame from the passed in Excel file. |
|
|
|
Examples |
|
-------- |
|
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) |
|
>>> df.to_excel('myfile.xlsx') # doctest: +SKIP |
|
>>> file = pd.ExcelFile('myfile.xlsx') # doctest: +SKIP |
|
>>> file.parse() # doctest: +SKIP |
|
""" |
|
return self._reader.parse( |
|
sheet_name=sheet_name, |
|
header=header, |
|
names=names, |
|
index_col=index_col, |
|
usecols=usecols, |
|
converters=converters, |
|
true_values=true_values, |
|
false_values=false_values, |
|
skiprows=skiprows, |
|
nrows=nrows, |
|
na_values=na_values, |
|
parse_dates=parse_dates, |
|
date_parser=date_parser, |
|
date_format=date_format, |
|
thousands=thousands, |
|
comment=comment, |
|
skipfooter=skipfooter, |
|
dtype_backend=dtype_backend, |
|
**kwds, |
|
) |
|
|
|
@property |
|
def book(self): |
|
return self._reader.book |
|
|
|
@property |
|
def sheet_names(self): |
|
return self._reader.sheet_names |
|
|
|
def close(self) -> None: |
|
"""close io if necessary""" |
|
self._reader.close() |
|
|
|
def __enter__(self) -> Self: |
|
return self |
|
|
|
def __exit__( |
|
self, |
|
exc_type: type[BaseException] | None, |
|
exc_value: BaseException | None, |
|
traceback: TracebackType | None, |
|
) -> None: |
|
self.close() |
|
|