|
""" |
|
For compatibility with numpy libraries, pandas functions or methods have to |
|
accept '*args' and '**kwargs' parameters to accommodate numpy arguments that |
|
are not actually used or respected in the pandas implementation. |
|
|
|
To ensure that users do not abuse these parameters, validation is performed in |
|
'validators.py' to make sure that any extra parameters passed correspond ONLY |
|
to those in the numpy signature. Part of that validation includes whether or |
|
not the user attempted to pass in non-default values for these extraneous |
|
parameters. As we want to discourage users from relying on these parameters |
|
when calling the pandas implementation, we want them only to pass in the |
|
default values for these parameters. |
|
|
|
This module provides a set of commonly used default arguments for functions and |
|
methods that are spread throughout the codebase. This module will make it |
|
easier to adjust to future upstream changes in the analogous numpy signatures. |
|
""" |
|
from __future__ import annotations |
|
|
|
from typing import ( |
|
TYPE_CHECKING, |
|
Any, |
|
TypeVar, |
|
cast, |
|
overload, |
|
) |
|
|
|
import numpy as np |
|
from numpy import ndarray |
|
|
|
from pandas._libs.lib import ( |
|
is_bool, |
|
is_integer, |
|
) |
|
from pandas.errors import UnsupportedFunctionCall |
|
from pandas.util._validators import ( |
|
validate_args, |
|
validate_args_and_kwargs, |
|
validate_kwargs, |
|
) |
|
|
|
if TYPE_CHECKING: |
|
from pandas._typing import ( |
|
Axis, |
|
AxisInt, |
|
) |
|
|
|
AxisNoneT = TypeVar("AxisNoneT", Axis, None) |
|
|
|
|
|
class CompatValidator: |
|
def __init__( |
|
self, |
|
defaults, |
|
fname=None, |
|
method: str | None = None, |
|
max_fname_arg_count=None, |
|
) -> None: |
|
self.fname = fname |
|
self.method = method |
|
self.defaults = defaults |
|
self.max_fname_arg_count = max_fname_arg_count |
|
|
|
def __call__( |
|
self, |
|
args, |
|
kwargs, |
|
fname=None, |
|
max_fname_arg_count=None, |
|
method: str | None = None, |
|
) -> None: |
|
if not args and not kwargs: |
|
return None |
|
|
|
fname = self.fname if fname is None else fname |
|
max_fname_arg_count = ( |
|
self.max_fname_arg_count |
|
if max_fname_arg_count is None |
|
else max_fname_arg_count |
|
) |
|
method = self.method if method is None else method |
|
|
|
if method == "args": |
|
validate_args(fname, args, max_fname_arg_count, self.defaults) |
|
elif method == "kwargs": |
|
validate_kwargs(fname, kwargs, self.defaults) |
|
elif method == "both": |
|
validate_args_and_kwargs( |
|
fname, args, kwargs, max_fname_arg_count, self.defaults |
|
) |
|
else: |
|
raise ValueError(f"invalid validation method '{method}'") |
|
|
|
|
|
ARGMINMAX_DEFAULTS = {"out": None} |
|
validate_argmin = CompatValidator( |
|
ARGMINMAX_DEFAULTS, fname="argmin", method="both", max_fname_arg_count=1 |
|
) |
|
validate_argmax = CompatValidator( |
|
ARGMINMAX_DEFAULTS, fname="argmax", method="both", max_fname_arg_count=1 |
|
) |
|
|
|
|
|
def process_skipna(skipna: bool | ndarray | None, args) -> tuple[bool, Any]: |
|
if isinstance(skipna, ndarray) or skipna is None: |
|
args = (skipna,) + args |
|
skipna = True |
|
|
|
return skipna, args |
|
|
|
|
|
def validate_argmin_with_skipna(skipna: bool | ndarray | None, args, kwargs) -> bool: |
|
""" |
|
If 'Series.argmin' is called via the 'numpy' library, the third parameter |
|
in its signature is 'out', which takes either an ndarray or 'None', so |
|
check if the 'skipna' parameter is either an instance of ndarray or is |
|
None, since 'skipna' itself should be a boolean |
|
""" |
|
skipna, args = process_skipna(skipna, args) |
|
validate_argmin(args, kwargs) |
|
return skipna |
|
|
|
|
|
def validate_argmax_with_skipna(skipna: bool | ndarray | None, args, kwargs) -> bool: |
|
""" |
|
If 'Series.argmax' is called via the 'numpy' library, the third parameter |
|
in its signature is 'out', which takes either an ndarray or 'None', so |
|
check if the 'skipna' parameter is either an instance of ndarray or is |
|
None, since 'skipna' itself should be a boolean |
|
""" |
|
skipna, args = process_skipna(skipna, args) |
|
validate_argmax(args, kwargs) |
|
return skipna |
|
|
|
|
|
ARGSORT_DEFAULTS: dict[str, int | str | None] = {} |
|
ARGSORT_DEFAULTS["axis"] = -1 |
|
ARGSORT_DEFAULTS["kind"] = "quicksort" |
|
ARGSORT_DEFAULTS["order"] = None |
|
ARGSORT_DEFAULTS["kind"] = None |
|
ARGSORT_DEFAULTS["stable"] = None |
|
|
|
|
|
validate_argsort = CompatValidator( |
|
ARGSORT_DEFAULTS, fname="argsort", max_fname_arg_count=0, method="both" |
|
) |
|
|
|
|
|
|
|
ARGSORT_DEFAULTS_KIND: dict[str, int | None] = {} |
|
ARGSORT_DEFAULTS_KIND["axis"] = -1 |
|
ARGSORT_DEFAULTS_KIND["order"] = None |
|
ARGSORT_DEFAULTS_KIND["stable"] = None |
|
validate_argsort_kind = CompatValidator( |
|
ARGSORT_DEFAULTS_KIND, fname="argsort", max_fname_arg_count=0, method="both" |
|
) |
|
|
|
|
|
def validate_argsort_with_ascending(ascending: bool | int | None, args, kwargs) -> bool: |
|
""" |
|
If 'Categorical.argsort' is called via the 'numpy' library, the first |
|
parameter in its signature is 'axis', which takes either an integer or |
|
'None', so check if the 'ascending' parameter has either integer type or is |
|
None, since 'ascending' itself should be a boolean |
|
""" |
|
if is_integer(ascending) or ascending is None: |
|
args = (ascending,) + args |
|
ascending = True |
|
|
|
validate_argsort_kind(args, kwargs, max_fname_arg_count=3) |
|
ascending = cast(bool, ascending) |
|
return ascending |
|
|
|
|
|
CLIP_DEFAULTS: dict[str, Any] = {"out": None} |
|
validate_clip = CompatValidator( |
|
CLIP_DEFAULTS, fname="clip", method="both", max_fname_arg_count=3 |
|
) |
|
|
|
|
|
@overload |
|
def validate_clip_with_axis(axis: ndarray, args, kwargs) -> None: |
|
... |
|
|
|
|
|
@overload |
|
def validate_clip_with_axis(axis: AxisNoneT, args, kwargs) -> AxisNoneT: |
|
... |
|
|
|
|
|
def validate_clip_with_axis( |
|
axis: ndarray | AxisNoneT, args, kwargs |
|
) -> AxisNoneT | None: |
|
""" |
|
If 'NDFrame.clip' is called via the numpy library, the third parameter in |
|
its signature is 'out', which can takes an ndarray, so check if the 'axis' |
|
parameter is an instance of ndarray, since 'axis' itself should either be |
|
an integer or None |
|
""" |
|
if isinstance(axis, ndarray): |
|
args = (axis,) + args |
|
|
|
|
|
axis = None |
|
|
|
validate_clip(args, kwargs) |
|
|
|
|
|
return axis |
|
|
|
|
|
CUM_FUNC_DEFAULTS: dict[str, Any] = {} |
|
CUM_FUNC_DEFAULTS["dtype"] = None |
|
CUM_FUNC_DEFAULTS["out"] = None |
|
validate_cum_func = CompatValidator( |
|
CUM_FUNC_DEFAULTS, method="both", max_fname_arg_count=1 |
|
) |
|
validate_cumsum = CompatValidator( |
|
CUM_FUNC_DEFAULTS, fname="cumsum", method="both", max_fname_arg_count=1 |
|
) |
|
|
|
|
|
def validate_cum_func_with_skipna(skipna: bool, args, kwargs, name) -> bool: |
|
""" |
|
If this function is called via the 'numpy' library, the third parameter in |
|
its signature is 'dtype', which takes either a 'numpy' dtype or 'None', so |
|
check if the 'skipna' parameter is a boolean or not |
|
""" |
|
if not is_bool(skipna): |
|
args = (skipna,) + args |
|
skipna = True |
|
elif isinstance(skipna, np.bool_): |
|
skipna = bool(skipna) |
|
|
|
validate_cum_func(args, kwargs, fname=name) |
|
return skipna |
|
|
|
|
|
ALLANY_DEFAULTS: dict[str, bool | None] = {} |
|
ALLANY_DEFAULTS["dtype"] = None |
|
ALLANY_DEFAULTS["out"] = None |
|
ALLANY_DEFAULTS["keepdims"] = False |
|
ALLANY_DEFAULTS["axis"] = None |
|
validate_all = CompatValidator( |
|
ALLANY_DEFAULTS, fname="all", method="both", max_fname_arg_count=1 |
|
) |
|
validate_any = CompatValidator( |
|
ALLANY_DEFAULTS, fname="any", method="both", max_fname_arg_count=1 |
|
) |
|
|
|
LOGICAL_FUNC_DEFAULTS = {"out": None, "keepdims": False} |
|
validate_logical_func = CompatValidator(LOGICAL_FUNC_DEFAULTS, method="kwargs") |
|
|
|
MINMAX_DEFAULTS = {"axis": None, "dtype": None, "out": None, "keepdims": False} |
|
validate_min = CompatValidator( |
|
MINMAX_DEFAULTS, fname="min", method="both", max_fname_arg_count=1 |
|
) |
|
validate_max = CompatValidator( |
|
MINMAX_DEFAULTS, fname="max", method="both", max_fname_arg_count=1 |
|
) |
|
|
|
RESHAPE_DEFAULTS: dict[str, str] = {"order": "C"} |
|
validate_reshape = CompatValidator( |
|
RESHAPE_DEFAULTS, fname="reshape", method="both", max_fname_arg_count=1 |
|
) |
|
|
|
REPEAT_DEFAULTS: dict[str, Any] = {"axis": None} |
|
validate_repeat = CompatValidator( |
|
REPEAT_DEFAULTS, fname="repeat", method="both", max_fname_arg_count=1 |
|
) |
|
|
|
ROUND_DEFAULTS: dict[str, Any] = {"out": None} |
|
validate_round = CompatValidator( |
|
ROUND_DEFAULTS, fname="round", method="both", max_fname_arg_count=1 |
|
) |
|
|
|
SORT_DEFAULTS: dict[str, int | str | None] = {} |
|
SORT_DEFAULTS["axis"] = -1 |
|
SORT_DEFAULTS["kind"] = "quicksort" |
|
SORT_DEFAULTS["order"] = None |
|
validate_sort = CompatValidator(SORT_DEFAULTS, fname="sort", method="kwargs") |
|
|
|
STAT_FUNC_DEFAULTS: dict[str, Any | None] = {} |
|
STAT_FUNC_DEFAULTS["dtype"] = None |
|
STAT_FUNC_DEFAULTS["out"] = None |
|
|
|
SUM_DEFAULTS = STAT_FUNC_DEFAULTS.copy() |
|
SUM_DEFAULTS["axis"] = None |
|
SUM_DEFAULTS["keepdims"] = False |
|
SUM_DEFAULTS["initial"] = None |
|
|
|
PROD_DEFAULTS = SUM_DEFAULTS.copy() |
|
|
|
MEAN_DEFAULTS = SUM_DEFAULTS.copy() |
|
|
|
MEDIAN_DEFAULTS = STAT_FUNC_DEFAULTS.copy() |
|
MEDIAN_DEFAULTS["overwrite_input"] = False |
|
MEDIAN_DEFAULTS["keepdims"] = False |
|
|
|
STAT_FUNC_DEFAULTS["keepdims"] = False |
|
|
|
validate_stat_func = CompatValidator(STAT_FUNC_DEFAULTS, method="kwargs") |
|
validate_sum = CompatValidator( |
|
SUM_DEFAULTS, fname="sum", method="both", max_fname_arg_count=1 |
|
) |
|
validate_prod = CompatValidator( |
|
PROD_DEFAULTS, fname="prod", method="both", max_fname_arg_count=1 |
|
) |
|
validate_mean = CompatValidator( |
|
MEAN_DEFAULTS, fname="mean", method="both", max_fname_arg_count=1 |
|
) |
|
validate_median = CompatValidator( |
|
MEDIAN_DEFAULTS, fname="median", method="both", max_fname_arg_count=1 |
|
) |
|
|
|
STAT_DDOF_FUNC_DEFAULTS: dict[str, bool | None] = {} |
|
STAT_DDOF_FUNC_DEFAULTS["dtype"] = None |
|
STAT_DDOF_FUNC_DEFAULTS["out"] = None |
|
STAT_DDOF_FUNC_DEFAULTS["keepdims"] = False |
|
validate_stat_ddof_func = CompatValidator(STAT_DDOF_FUNC_DEFAULTS, method="kwargs") |
|
|
|
TAKE_DEFAULTS: dict[str, str | None] = {} |
|
TAKE_DEFAULTS["out"] = None |
|
TAKE_DEFAULTS["mode"] = "raise" |
|
validate_take = CompatValidator(TAKE_DEFAULTS, fname="take", method="kwargs") |
|
|
|
|
|
def validate_take_with_convert(convert: ndarray | bool | None, args, kwargs) -> bool: |
|
""" |
|
If this function is called via the 'numpy' library, the third parameter in |
|
its signature is 'axis', which takes either an ndarray or 'None', so check |
|
if the 'convert' parameter is either an instance of ndarray or is None |
|
""" |
|
if isinstance(convert, ndarray) or convert is None: |
|
args = (convert,) + args |
|
convert = True |
|
|
|
validate_take(args, kwargs, max_fname_arg_count=3, method="both") |
|
return convert |
|
|
|
|
|
TRANSPOSE_DEFAULTS = {"axes": None} |
|
validate_transpose = CompatValidator( |
|
TRANSPOSE_DEFAULTS, fname="transpose", method="both", max_fname_arg_count=0 |
|
) |
|
|
|
|
|
def validate_groupby_func(name: str, args, kwargs, allowed=None) -> None: |
|
""" |
|
'args' and 'kwargs' should be empty, except for allowed kwargs because all |
|
of their necessary parameters are explicitly listed in the function |
|
signature |
|
""" |
|
if allowed is None: |
|
allowed = [] |
|
|
|
kwargs = set(kwargs) - set(allowed) |
|
|
|
if len(args) + len(kwargs) > 0: |
|
raise UnsupportedFunctionCall( |
|
"numpy operations are not valid with groupby. " |
|
f"Use .groupby(...).{name}() instead" |
|
) |
|
|
|
|
|
RESAMPLER_NUMPY_OPS = ("min", "max", "sum", "prod", "mean", "std", "var") |
|
|
|
|
|
def validate_resampler_func(method: str, args, kwargs) -> None: |
|
""" |
|
'args' and 'kwargs' should be empty because all of their necessary |
|
parameters are explicitly listed in the function signature |
|
""" |
|
if len(args) + len(kwargs) > 0: |
|
if method in RESAMPLER_NUMPY_OPS: |
|
raise UnsupportedFunctionCall( |
|
"numpy operations are not valid with resample. " |
|
f"Use .resample(...).{method}() instead" |
|
) |
|
raise TypeError("too many arguments passed in") |
|
|
|
|
|
def validate_minmax_axis(axis: AxisInt | None, ndim: int = 1) -> None: |
|
""" |
|
Ensure that the axis argument passed to min, max, argmin, or argmax is zero |
|
or None, as otherwise it will be incorrectly ignored. |
|
|
|
Parameters |
|
---------- |
|
axis : int or None |
|
ndim : int, default 1 |
|
|
|
Raises |
|
------ |
|
ValueError |
|
""" |
|
if axis is None: |
|
return |
|
if axis >= ndim or (axis < 0 and ndim + axis < 0): |
|
raise ValueError(f"`axis` must be fewer than the number of dimensions ({ndim})") |
|
|
|
|
|
_validation_funcs = { |
|
"median": validate_median, |
|
"mean": validate_mean, |
|
"min": validate_min, |
|
"max": validate_max, |
|
"sum": validate_sum, |
|
"prod": validate_prod, |
|
} |
|
|
|
|
|
def validate_func(fname, args, kwargs) -> None: |
|
if fname not in _validation_funcs: |
|
return validate_stat_func(args, kwargs, fname=fname) |
|
|
|
validation_func = _validation_funcs[fname] |
|
return validation_func(args, kwargs) |
|
|