|
import sys |
|
from numpy.testing import ( |
|
assert_, assert_array_equal, assert_raises, |
|
) |
|
from numpy import random |
|
import numpy as np |
|
|
|
|
|
class TestRegression: |
|
|
|
def test_VonMises_range(self): |
|
|
|
|
|
for mu in np.linspace(-7., 7., 5): |
|
r = random.mtrand.vonmises(mu, 1, 50) |
|
assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) |
|
|
|
def test_hypergeometric_range(self): |
|
|
|
assert_(np.all(np.random.hypergeometric(3, 18, 11, size=10) < 4)) |
|
assert_(np.all(np.random.hypergeometric(18, 3, 11, size=10) > 0)) |
|
|
|
|
|
args = [ |
|
(2**20 - 2, 2**20 - 2, 2**20 - 2), |
|
] |
|
is_64bits = sys.maxsize > 2**32 |
|
if is_64bits and sys.platform != 'win32': |
|
|
|
args.append((2**40 - 2, 2**40 - 2, 2**40 - 2)) |
|
for arg in args: |
|
assert_(np.random.hypergeometric(*arg) > 0) |
|
|
|
def test_logseries_convergence(self): |
|
|
|
N = 1000 |
|
np.random.seed(0) |
|
rvsn = np.random.logseries(0.8, size=N) |
|
|
|
|
|
|
|
freq = np.sum(rvsn == 1) / N |
|
msg = f'Frequency was {freq:f}, should be > 0.45' |
|
assert_(freq > 0.45, msg) |
|
|
|
freq = np.sum(rvsn == 2) / N |
|
msg = f'Frequency was {freq:f}, should be < 0.23' |
|
assert_(freq < 0.23, msg) |
|
|
|
def test_shuffle_mixed_dimension(self): |
|
|
|
for t in [[1, 2, 3, None], |
|
[(1, 1), (2, 2), (3, 3), None], |
|
[1, (2, 2), (3, 3), None], |
|
[(1, 1), 2, 3, None]]: |
|
np.random.seed(12345) |
|
shuffled = list(t) |
|
random.shuffle(shuffled) |
|
expected = np.array([t[0], t[3], t[1], t[2]], dtype=object) |
|
assert_array_equal(np.array(shuffled, dtype=object), expected) |
|
|
|
def test_call_within_randomstate(self): |
|
|
|
m = np.random.RandomState() |
|
res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3]) |
|
for i in range(3): |
|
np.random.seed(i) |
|
m.seed(4321) |
|
|
|
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res) |
|
|
|
def test_multivariate_normal_size_types(self): |
|
|
|
|
|
|
|
np.random.multivariate_normal([0], [[0]], size=1) |
|
np.random.multivariate_normal([0], [[0]], size=np.int_(1)) |
|
np.random.multivariate_normal([0], [[0]], size=np.int64(1)) |
|
|
|
def test_beta_small_parameters(self): |
|
|
|
|
|
np.random.seed(1234567890) |
|
x = np.random.beta(0.0001, 0.0001, size=100) |
|
assert_(not np.any(np.isnan(x)), 'Nans in np.random.beta') |
|
|
|
def test_choice_sum_of_probs_tolerance(self): |
|
|
|
|
|
|
|
np.random.seed(1234) |
|
a = [1, 2, 3] |
|
counts = [4, 4, 2] |
|
for dt in np.float16, np.float32, np.float64: |
|
probs = np.array(counts, dtype=dt) / sum(counts) |
|
c = np.random.choice(a, p=probs) |
|
assert_(c in a) |
|
assert_raises(ValueError, np.random.choice, a, p=probs*0.9) |
|
|
|
def test_shuffle_of_array_of_different_length_strings(self): |
|
|
|
|
|
|
|
np.random.seed(1234) |
|
|
|
a = np.array(['a', 'a' * 1000]) |
|
|
|
for _ in range(100): |
|
np.random.shuffle(a) |
|
|
|
|
|
import gc |
|
gc.collect() |
|
|
|
def test_shuffle_of_array_of_objects(self): |
|
|
|
|
|
|
|
np.random.seed(1234) |
|
a = np.array([np.arange(1), np.arange(4)], dtype=object) |
|
|
|
for _ in range(1000): |
|
np.random.shuffle(a) |
|
|
|
|
|
import gc |
|
gc.collect() |
|
|
|
def test_permutation_subclass(self): |
|
class N(np.ndarray): |
|
pass |
|
|
|
np.random.seed(1) |
|
orig = np.arange(3).view(N) |
|
perm = np.random.permutation(orig) |
|
assert_array_equal(perm, np.array([0, 2, 1])) |
|
assert_array_equal(orig, np.arange(3).view(N)) |
|
|
|
class M: |
|
a = np.arange(5) |
|
|
|
def __array__(self, dtype=None, copy=None): |
|
return self.a |
|
|
|
np.random.seed(1) |
|
m = M() |
|
perm = np.random.permutation(m) |
|
assert_array_equal(perm, np.array([2, 1, 4, 0, 3])) |
|
assert_array_equal(m.__array__(), np.arange(5)) |
|
|