|
import hashlib |
|
import pickle |
|
import sys |
|
import warnings |
|
|
|
import numpy as np |
|
import pytest |
|
from numpy.testing import ( |
|
assert_, assert_raises, assert_equal, assert_warns, |
|
assert_no_warnings, assert_array_equal, assert_array_almost_equal, |
|
suppress_warnings, IS_WASM |
|
) |
|
|
|
from numpy.random import MT19937, PCG64 |
|
from numpy import random |
|
|
|
INT_FUNCS = {'binomial': (100.0, 0.6), |
|
'geometric': (.5,), |
|
'hypergeometric': (20, 20, 10), |
|
'logseries': (.5,), |
|
'multinomial': (20, np.ones(6) / 6.0), |
|
'negative_binomial': (100, .5), |
|
'poisson': (10.0,), |
|
'zipf': (2,), |
|
} |
|
|
|
if np.iinfo(np.long).max < 2**32: |
|
|
|
INT_FUNC_HASHES = {'binomial': '2fbead005fc63942decb5326d36a1f32fe2c9d32c904ee61e46866b88447c263', |
|
'logseries': '23ead5dcde35d4cfd4ef2c105e4c3d43304b45dc1b1444b7823b9ee4fa144ebb', |
|
'geometric': '0d764db64f5c3bad48c8c33551c13b4d07a1e7b470f77629bef6c985cac76fcf', |
|
'hypergeometric': '7b59bf2f1691626c5815cdcd9a49e1dd68697251d4521575219e4d2a1b8b2c67', |
|
'multinomial': 'd754fa5b92943a38ec07630de92362dd2e02c43577fc147417dc5b9db94ccdd3', |
|
'negative_binomial': '8eb216f7cb2a63cf55605422845caaff002fddc64a7dc8b2d45acd477a49e824', |
|
'poisson': '70c891d76104013ebd6f6bcf30d403a9074b886ff62e4e6b8eb605bf1a4673b7', |
|
'zipf': '01f074f97517cd5d21747148ac6ca4074dde7fcb7acbaec0a936606fecacd93f', |
|
} |
|
else: |
|
INT_FUNC_HASHES = {'binomial': '8626dd9d052cb608e93d8868de0a7b347258b199493871a1dc56e2a26cacb112', |
|
'geometric': '8edd53d272e49c4fc8fbbe6c7d08d563d62e482921f3131d0a0e068af30f0db9', |
|
'hypergeometric': '83496cc4281c77b786c9b7ad88b74d42e01603a55c60577ebab81c3ba8d45657', |
|
'logseries': '65878a38747c176bc00e930ebafebb69d4e1e16cd3a704e264ea8f5e24f548db', |
|
'multinomial': '7a984ae6dca26fd25374479e118b22f55db0aedccd5a0f2584ceada33db98605', |
|
'negative_binomial': 'd636d968e6a24ae92ab52fe11c46ac45b0897e98714426764e820a7d77602a61', |
|
'poisson': '956552176f77e7c9cb20d0118fc9cf690be488d790ed4b4c4747b965e61b0bb4', |
|
'zipf': 'f84ba7feffda41e606e20b28dfc0f1ea9964a74574513d4a4cbc98433a8bfa45', |
|
} |
|
|
|
|
|
@pytest.fixture(scope='module', params=INT_FUNCS) |
|
def int_func(request): |
|
return (request.param, INT_FUNCS[request.param], |
|
INT_FUNC_HASHES[request.param]) |
|
|
|
|
|
@pytest.fixture |
|
def restore_singleton_bitgen(): |
|
"""Ensures that the singleton bitgen is restored after a test""" |
|
orig_bitgen = np.random.get_bit_generator() |
|
yield |
|
np.random.set_bit_generator(orig_bitgen) |
|
|
|
|
|
def assert_mt19937_state_equal(a, b): |
|
assert_equal(a['bit_generator'], b['bit_generator']) |
|
assert_array_equal(a['state']['key'], b['state']['key']) |
|
assert_array_equal(a['state']['pos'], b['state']['pos']) |
|
assert_equal(a['has_gauss'], b['has_gauss']) |
|
assert_equal(a['gauss'], b['gauss']) |
|
|
|
|
|
class TestSeed: |
|
def test_scalar(self): |
|
s = random.RandomState(0) |
|
assert_equal(s.randint(1000), 684) |
|
s = random.RandomState(4294967295) |
|
assert_equal(s.randint(1000), 419) |
|
|
|
def test_array(self): |
|
s = random.RandomState(range(10)) |
|
assert_equal(s.randint(1000), 468) |
|
s = random.RandomState(np.arange(10)) |
|
assert_equal(s.randint(1000), 468) |
|
s = random.RandomState([0]) |
|
assert_equal(s.randint(1000), 973) |
|
s = random.RandomState([4294967295]) |
|
assert_equal(s.randint(1000), 265) |
|
|
|
def test_invalid_scalar(self): |
|
|
|
assert_raises(TypeError, random.RandomState, -0.5) |
|
assert_raises(ValueError, random.RandomState, -1) |
|
|
|
def test_invalid_array(self): |
|
|
|
assert_raises(TypeError, random.RandomState, [-0.5]) |
|
assert_raises(ValueError, random.RandomState, [-1]) |
|
assert_raises(ValueError, random.RandomState, [4294967296]) |
|
assert_raises(ValueError, random.RandomState, [1, 2, 4294967296]) |
|
assert_raises(ValueError, random.RandomState, [1, -2, 4294967296]) |
|
|
|
def test_invalid_array_shape(self): |
|
|
|
assert_raises(ValueError, random.RandomState, np.array([], |
|
dtype=np.int64)) |
|
assert_raises(ValueError, random.RandomState, [[1, 2, 3]]) |
|
assert_raises(ValueError, random.RandomState, [[1, 2, 3], |
|
[4, 5, 6]]) |
|
|
|
def test_cannot_seed(self): |
|
rs = random.RandomState(PCG64(0)) |
|
with assert_raises(TypeError): |
|
rs.seed(1234) |
|
|
|
def test_invalid_initialization(self): |
|
assert_raises(ValueError, random.RandomState, MT19937) |
|
|
|
|
|
class TestBinomial: |
|
def test_n_zero(self): |
|
|
|
|
|
|
|
zeros = np.zeros(2, dtype='int') |
|
for p in [0, .5, 1]: |
|
assert_(random.binomial(0, p) == 0) |
|
assert_array_equal(random.binomial(zeros, p), zeros) |
|
|
|
def test_p_is_nan(self): |
|
|
|
assert_raises(ValueError, random.binomial, 1, np.nan) |
|
|
|
|
|
class TestMultinomial: |
|
def test_basic(self): |
|
random.multinomial(100, [0.2, 0.8]) |
|
|
|
def test_zero_probability(self): |
|
random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0]) |
|
|
|
def test_int_negative_interval(self): |
|
assert_(-5 <= random.randint(-5, -1) < -1) |
|
x = random.randint(-5, -1, 5) |
|
assert_(np.all(-5 <= x)) |
|
assert_(np.all(x < -1)) |
|
|
|
def test_size(self): |
|
|
|
p = [0.5, 0.5] |
|
assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) |
|
assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) |
|
assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) |
|
assert_equal(random.multinomial(1, p, [2, 2]).shape, (2, 2, 2)) |
|
assert_equal(random.multinomial(1, p, (2, 2)).shape, (2, 2, 2)) |
|
assert_equal(random.multinomial(1, p, np.array((2, 2))).shape, |
|
(2, 2, 2)) |
|
|
|
assert_raises(TypeError, random.multinomial, 1, p, |
|
float(1)) |
|
|
|
def test_invalid_prob(self): |
|
assert_raises(ValueError, random.multinomial, 100, [1.1, 0.2]) |
|
assert_raises(ValueError, random.multinomial, 100, [-.1, 0.9]) |
|
|
|
def test_invalid_n(self): |
|
assert_raises(ValueError, random.multinomial, -1, [0.8, 0.2]) |
|
|
|
def test_p_non_contiguous(self): |
|
p = np.arange(15.) |
|
p /= np.sum(p[1::3]) |
|
pvals = p[1::3] |
|
random.seed(1432985819) |
|
non_contig = random.multinomial(100, pvals=pvals) |
|
random.seed(1432985819) |
|
contig = random.multinomial(100, pvals=np.ascontiguousarray(pvals)) |
|
assert_array_equal(non_contig, contig) |
|
|
|
def test_multinomial_pvals_float32(self): |
|
x = np.array([9.9e-01, 9.9e-01, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, |
|
1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09], dtype=np.float32) |
|
pvals = x / x.sum() |
|
match = r"[\w\s]*pvals array is cast to 64-bit floating" |
|
with pytest.raises(ValueError, match=match): |
|
random.multinomial(1, pvals) |
|
|
|
def test_multinomial_n_float(self): |
|
|
|
random.multinomial(100.5, [0.2, 0.8]) |
|
|
|
class TestSetState: |
|
def setup_method(self): |
|
self.seed = 1234567890 |
|
self.random_state = random.RandomState(self.seed) |
|
self.state = self.random_state.get_state() |
|
|
|
def test_basic(self): |
|
old = self.random_state.tomaxint(16) |
|
self.random_state.set_state(self.state) |
|
new = self.random_state.tomaxint(16) |
|
assert_(np.all(old == new)) |
|
|
|
def test_gaussian_reset(self): |
|
|
|
old = self.random_state.standard_normal(size=3) |
|
self.random_state.set_state(self.state) |
|
new = self.random_state.standard_normal(size=3) |
|
assert_(np.all(old == new)) |
|
|
|
def test_gaussian_reset_in_media_res(self): |
|
|
|
|
|
|
|
self.random_state.standard_normal() |
|
state = self.random_state.get_state() |
|
old = self.random_state.standard_normal(size=3) |
|
self.random_state.set_state(state) |
|
new = self.random_state.standard_normal(size=3) |
|
assert_(np.all(old == new)) |
|
|
|
def test_backwards_compatibility(self): |
|
|
|
|
|
old_state = self.state[:-2] |
|
x1 = self.random_state.standard_normal(size=16) |
|
self.random_state.set_state(old_state) |
|
x2 = self.random_state.standard_normal(size=16) |
|
self.random_state.set_state(self.state) |
|
x3 = self.random_state.standard_normal(size=16) |
|
assert_(np.all(x1 == x2)) |
|
assert_(np.all(x1 == x3)) |
|
|
|
def test_negative_binomial(self): |
|
|
|
|
|
self.random_state.negative_binomial(0.5, 0.5) |
|
|
|
def test_get_state_warning(self): |
|
rs = random.RandomState(PCG64()) |
|
with suppress_warnings() as sup: |
|
w = sup.record(RuntimeWarning) |
|
state = rs.get_state() |
|
assert_(len(w) == 1) |
|
assert isinstance(state, dict) |
|
assert state['bit_generator'] == 'PCG64' |
|
|
|
def test_invalid_legacy_state_setting(self): |
|
state = self.random_state.get_state() |
|
new_state = ('Unknown', ) + state[1:] |
|
assert_raises(ValueError, self.random_state.set_state, new_state) |
|
assert_raises(TypeError, self.random_state.set_state, |
|
np.array(new_state, dtype=object)) |
|
state = self.random_state.get_state(legacy=False) |
|
del state['bit_generator'] |
|
assert_raises(ValueError, self.random_state.set_state, state) |
|
|
|
def test_pickle(self): |
|
self.random_state.seed(0) |
|
self.random_state.random_sample(100) |
|
self.random_state.standard_normal() |
|
pickled = self.random_state.get_state(legacy=False) |
|
assert_equal(pickled['has_gauss'], 1) |
|
rs_unpick = pickle.loads(pickle.dumps(self.random_state)) |
|
unpickled = rs_unpick.get_state(legacy=False) |
|
assert_mt19937_state_equal(pickled, unpickled) |
|
|
|
def test_state_setting(self): |
|
attr_state = self.random_state.__getstate__() |
|
self.random_state.standard_normal() |
|
self.random_state.__setstate__(attr_state) |
|
state = self.random_state.get_state(legacy=False) |
|
assert_mt19937_state_equal(attr_state, state) |
|
|
|
def test_repr(self): |
|
assert repr(self.random_state).startswith('RandomState(MT19937)') |
|
|
|
|
|
class TestRandint: |
|
|
|
rfunc = random.randint |
|
|
|
|
|
itype = [np.bool, np.int8, np.uint8, np.int16, np.uint16, |
|
np.int32, np.uint32, np.int64, np.uint64] |
|
|
|
def test_unsupported_type(self): |
|
assert_raises(TypeError, self.rfunc, 1, dtype=float) |
|
|
|
def test_bounds_checking(self): |
|
for dt in self.itype: |
|
lbnd = 0 if dt is np.bool else np.iinfo(dt).min |
|
ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1 |
|
assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, dtype=dt) |
|
assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, dtype=dt) |
|
assert_raises(ValueError, self.rfunc, ubnd, lbnd, dtype=dt) |
|
assert_raises(ValueError, self.rfunc, 1, 0, dtype=dt) |
|
|
|
def test_rng_zero_and_extremes(self): |
|
for dt in self.itype: |
|
lbnd = 0 if dt is np.bool else np.iinfo(dt).min |
|
ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1 |
|
|
|
tgt = ubnd - 1 |
|
assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt) |
|
|
|
tgt = lbnd |
|
assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt) |
|
|
|
tgt = (lbnd + ubnd)//2 |
|
assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt) |
|
|
|
def test_full_range(self): |
|
|
|
|
|
for dt in self.itype: |
|
lbnd = 0 if dt is np.bool else np.iinfo(dt).min |
|
ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1 |
|
|
|
try: |
|
self.rfunc(lbnd, ubnd, dtype=dt) |
|
except Exception as e: |
|
raise AssertionError("No error should have been raised, " |
|
"but one was with the following " |
|
"message:\n\n%s" % str(e)) |
|
|
|
def test_in_bounds_fuzz(self): |
|
|
|
random.seed() |
|
|
|
for dt in self.itype[1:]: |
|
for ubnd in [4, 8, 16]: |
|
vals = self.rfunc(2, ubnd, size=2**16, dtype=dt) |
|
assert_(vals.max() < ubnd) |
|
assert_(vals.min() >= 2) |
|
|
|
vals = self.rfunc(0, 2, size=2**16, dtype=np.bool) |
|
|
|
assert_(vals.max() < 2) |
|
assert_(vals.min() >= 0) |
|
|
|
def test_repeatability(self): |
|
|
|
|
|
|
|
tgt = {'bool': '509aea74d792fb931784c4b0135392c65aec64beee12b0cc167548a2c3d31e71', |
|
'int16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4', |
|
'int32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f', |
|
'int64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e', |
|
'int8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404', |
|
'uint16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4', |
|
'uint32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f', |
|
'uint64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e', |
|
'uint8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404'} |
|
|
|
for dt in self.itype[1:]: |
|
random.seed(1234) |
|
|
|
|
|
if sys.byteorder == 'little': |
|
val = self.rfunc(0, 6, size=1000, dtype=dt) |
|
else: |
|
val = self.rfunc(0, 6, size=1000, dtype=dt).byteswap() |
|
|
|
res = hashlib.sha256(val.view(np.int8)).hexdigest() |
|
assert_(tgt[np.dtype(dt).name] == res) |
|
|
|
|
|
random.seed(1234) |
|
val = self.rfunc(0, 2, size=1000, dtype=bool).view(np.int8) |
|
res = hashlib.sha256(val).hexdigest() |
|
assert_(tgt[np.dtype(bool).name] == res) |
|
|
|
@pytest.mark.skipif(np.iinfo('l').max < 2**32, |
|
reason='Cannot test with 32-bit C long') |
|
def test_repeatability_32bit_boundary_broadcasting(self): |
|
desired = np.array([[[3992670689, 2438360420, 2557845020], |
|
[4107320065, 4142558326, 3216529513], |
|
[1605979228, 2807061240, 665605495]], |
|
[[3211410639, 4128781000, 457175120], |
|
[1712592594, 1282922662, 3081439808], |
|
[3997822960, 2008322436, 1563495165]], |
|
[[1398375547, 4269260146, 115316740], |
|
[3414372578, 3437564012, 2112038651], |
|
[3572980305, 2260248732, 3908238631]], |
|
[[2561372503, 223155946, 3127879445], |
|
[ 441282060, 3514786552, 2148440361], |
|
[1629275283, 3479737011, 3003195987]], |
|
[[ 412181688, 940383289, 3047321305], |
|
[2978368172, 764731833, 2282559898], |
|
[ 105711276, 720447391, 3596512484]]]) |
|
for size in [None, (5, 3, 3)]: |
|
random.seed(12345) |
|
x = self.rfunc([[-1], [0], [1]], [2**32 - 1, 2**32, 2**32 + 1], |
|
size=size) |
|
assert_array_equal(x, desired if size is not None else desired[0]) |
|
|
|
def test_int64_uint64_corner_case(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dt = np.int64 |
|
tgt = np.iinfo(np.int64).max |
|
lbnd = np.int64(np.iinfo(np.int64).max) |
|
ubnd = np.uint64(np.iinfo(np.int64).max + 1) |
|
|
|
|
|
|
|
actual = random.randint(lbnd, ubnd, dtype=dt) |
|
assert_equal(actual, tgt) |
|
|
|
def test_respect_dtype_singleton(self): |
|
|
|
for dt in self.itype: |
|
lbnd = 0 if dt is np.bool else np.iinfo(dt).min |
|
ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1 |
|
|
|
sample = self.rfunc(lbnd, ubnd, dtype=dt) |
|
assert_equal(sample.dtype, np.dtype(dt)) |
|
|
|
for dt in (bool, int): |
|
|
|
|
|
|
|
op_dtype = "long" if dt is int else "bool" |
|
lbnd = 0 if dt is bool else np.iinfo(op_dtype).min |
|
ubnd = 2 if dt is bool else np.iinfo(op_dtype).max + 1 |
|
|
|
sample = self.rfunc(lbnd, ubnd, dtype=dt) |
|
assert_(not hasattr(sample, 'dtype')) |
|
assert_equal(type(sample), dt) |
|
|
|
|
|
class TestRandomDist: |
|
|
|
|
|
|
|
def setup_method(self): |
|
self.seed = 1234567890 |
|
|
|
def test_rand(self): |
|
random.seed(self.seed) |
|
actual = random.rand(3, 2) |
|
desired = np.array([[0.61879477158567997, 0.59162362775974664], |
|
[0.88868358904449662, 0.89165480011560816], |
|
[0.4575674820298663, 0.7781880808593471]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_rand_singleton(self): |
|
random.seed(self.seed) |
|
actual = random.rand() |
|
desired = 0.61879477158567997 |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_randn(self): |
|
random.seed(self.seed) |
|
actual = random.randn(3, 2) |
|
desired = np.array([[1.34016345771863121, 1.73759122771936081], |
|
[1.498988344300628, -0.2286433324536169], |
|
[2.031033998682787, 2.17032494605655257]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
random.seed(self.seed) |
|
actual = random.randn() |
|
assert_array_almost_equal(actual, desired[0, 0], decimal=15) |
|
|
|
def test_randint(self): |
|
random.seed(self.seed) |
|
actual = random.randint(-99, 99, size=(3, 2)) |
|
desired = np.array([[31, 3], |
|
[-52, 41], |
|
[-48, -66]]) |
|
assert_array_equal(actual, desired) |
|
|
|
def test_random_integers(self): |
|
random.seed(self.seed) |
|
with suppress_warnings() as sup: |
|
w = sup.record(DeprecationWarning) |
|
actual = random.random_integers(-99, 99, size=(3, 2)) |
|
assert_(len(w) == 1) |
|
desired = np.array([[31, 3], |
|
[-52, 41], |
|
[-48, -66]]) |
|
assert_array_equal(actual, desired) |
|
|
|
random.seed(self.seed) |
|
with suppress_warnings() as sup: |
|
w = sup.record(DeprecationWarning) |
|
actual = random.random_integers(198, size=(3, 2)) |
|
assert_(len(w) == 1) |
|
assert_array_equal(actual, desired + 100) |
|
|
|
def test_tomaxint(self): |
|
random.seed(self.seed) |
|
rs = random.RandomState(self.seed) |
|
actual = rs.tomaxint(size=(3, 2)) |
|
if np.iinfo(np.long).max == 2147483647: |
|
desired = np.array([[1328851649, 731237375], |
|
[1270502067, 320041495], |
|
[1908433478, 499156889]], dtype=np.int64) |
|
else: |
|
desired = np.array([[5707374374421908479, 5456764827585442327], |
|
[8196659375100692377, 8224063923314595285], |
|
[4220315081820346526, 7177518203184491332]], |
|
dtype=np.int64) |
|
|
|
assert_equal(actual, desired) |
|
|
|
rs.seed(self.seed) |
|
actual = rs.tomaxint() |
|
assert_equal(actual, desired[0, 0]) |
|
|
|
def test_random_integers_max_int(self): |
|
|
|
|
|
|
|
|
|
|
|
with suppress_warnings() as sup: |
|
w = sup.record(DeprecationWarning) |
|
actual = random.random_integers(np.iinfo('l').max, |
|
np.iinfo('l').max) |
|
assert_(len(w) == 1) |
|
|
|
desired = np.iinfo('l').max |
|
assert_equal(actual, desired) |
|
with suppress_warnings() as sup: |
|
w = sup.record(DeprecationWarning) |
|
typer = np.dtype('l').type |
|
actual = random.random_integers(typer(np.iinfo('l').max), |
|
typer(np.iinfo('l').max)) |
|
assert_(len(w) == 1) |
|
assert_equal(actual, desired) |
|
|
|
def test_random_integers_deprecated(self): |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("error", DeprecationWarning) |
|
|
|
|
|
assert_raises(DeprecationWarning, |
|
random.random_integers, |
|
np.iinfo('l').max) |
|
|
|
|
|
assert_raises(DeprecationWarning, |
|
random.random_integers, |
|
np.iinfo('l').max, np.iinfo('l').max) |
|
|
|
def test_random_sample(self): |
|
random.seed(self.seed) |
|
actual = random.random_sample((3, 2)) |
|
desired = np.array([[0.61879477158567997, 0.59162362775974664], |
|
[0.88868358904449662, 0.89165480011560816], |
|
[0.4575674820298663, 0.7781880808593471]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
random.seed(self.seed) |
|
actual = random.random_sample() |
|
assert_array_almost_equal(actual, desired[0, 0], decimal=15) |
|
|
|
def test_choice_uniform_replace(self): |
|
random.seed(self.seed) |
|
actual = random.choice(4, 4) |
|
desired = np.array([2, 3, 2, 3]) |
|
assert_array_equal(actual, desired) |
|
|
|
def test_choice_nonuniform_replace(self): |
|
random.seed(self.seed) |
|
actual = random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1]) |
|
desired = np.array([1, 1, 2, 2]) |
|
assert_array_equal(actual, desired) |
|
|
|
def test_choice_uniform_noreplace(self): |
|
random.seed(self.seed) |
|
actual = random.choice(4, 3, replace=False) |
|
desired = np.array([0, 1, 3]) |
|
assert_array_equal(actual, desired) |
|
|
|
def test_choice_nonuniform_noreplace(self): |
|
random.seed(self.seed) |
|
actual = random.choice(4, 3, replace=False, p=[0.1, 0.3, 0.5, 0.1]) |
|
desired = np.array([2, 3, 1]) |
|
assert_array_equal(actual, desired) |
|
|
|
def test_choice_noninteger(self): |
|
random.seed(self.seed) |
|
actual = random.choice(['a', 'b', 'c', 'd'], 4) |
|
desired = np.array(['c', 'd', 'c', 'd']) |
|
assert_array_equal(actual, desired) |
|
|
|
def test_choice_exceptions(self): |
|
sample = random.choice |
|
assert_raises(ValueError, sample, -1, 3) |
|
assert_raises(ValueError, sample, 3., 3) |
|
assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3) |
|
assert_raises(ValueError, sample, [], 3) |
|
assert_raises(ValueError, sample, [1, 2, 3, 4], 3, |
|
p=[[0.25, 0.25], [0.25, 0.25]]) |
|
assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2]) |
|
assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1]) |
|
assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4]) |
|
assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False) |
|
|
|
assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False) |
|
assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False) |
|
assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False) |
|
assert_raises(ValueError, sample, [1, 2, 3], 2, |
|
replace=False, p=[1, 0, 0]) |
|
|
|
def test_choice_return_shape(self): |
|
p = [0.1, 0.9] |
|
|
|
assert_(np.isscalar(random.choice(2, replace=True))) |
|
assert_(np.isscalar(random.choice(2, replace=False))) |
|
assert_(np.isscalar(random.choice(2, replace=True, p=p))) |
|
assert_(np.isscalar(random.choice(2, replace=False, p=p))) |
|
assert_(np.isscalar(random.choice([1, 2], replace=True))) |
|
assert_(random.choice([None], replace=True) is None) |
|
a = np.array([1, 2]) |
|
arr = np.empty(1, dtype=object) |
|
arr[0] = a |
|
assert_(random.choice(arr, replace=True) is a) |
|
|
|
|
|
s = tuple() |
|
assert_(not np.isscalar(random.choice(2, s, replace=True))) |
|
assert_(not np.isscalar(random.choice(2, s, replace=False))) |
|
assert_(not np.isscalar(random.choice(2, s, replace=True, p=p))) |
|
assert_(not np.isscalar(random.choice(2, s, replace=False, p=p))) |
|
assert_(not np.isscalar(random.choice([1, 2], s, replace=True))) |
|
assert_(random.choice([None], s, replace=True).ndim == 0) |
|
a = np.array([1, 2]) |
|
arr = np.empty(1, dtype=object) |
|
arr[0] = a |
|
assert_(random.choice(arr, s, replace=True).item() is a) |
|
|
|
|
|
s = (2, 3) |
|
p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2] |
|
assert_equal(random.choice(6, s, replace=True).shape, s) |
|
assert_equal(random.choice(6, s, replace=False).shape, s) |
|
assert_equal(random.choice(6, s, replace=True, p=p).shape, s) |
|
assert_equal(random.choice(6, s, replace=False, p=p).shape, s) |
|
assert_equal(random.choice(np.arange(6), s, replace=True).shape, s) |
|
|
|
|
|
assert_equal(random.randint(0, 0, size=(3, 0, 4)).shape, (3, 0, 4)) |
|
assert_equal(random.randint(0, -10, size=0).shape, (0,)) |
|
assert_equal(random.randint(10, 10, size=0).shape, (0,)) |
|
assert_equal(random.choice(0, size=0).shape, (0,)) |
|
assert_equal(random.choice([], size=(0,)).shape, (0,)) |
|
assert_equal(random.choice(['a', 'b'], size=(3, 0, 4)).shape, |
|
(3, 0, 4)) |
|
assert_raises(ValueError, random.choice, [], 10) |
|
|
|
def test_choice_nan_probabilities(self): |
|
a = np.array([42, 1, 2]) |
|
p = [None, None, None] |
|
assert_raises(ValueError, random.choice, a, p=p) |
|
|
|
def test_choice_p_non_contiguous(self): |
|
p = np.ones(10) / 5 |
|
p[1::2] = 3.0 |
|
random.seed(self.seed) |
|
non_contig = random.choice(5, 3, p=p[::2]) |
|
random.seed(self.seed) |
|
contig = random.choice(5, 3, p=np.ascontiguousarray(p[::2])) |
|
assert_array_equal(non_contig, contig) |
|
|
|
def test_bytes(self): |
|
random.seed(self.seed) |
|
actual = random.bytes(10) |
|
desired = b'\x82Ui\x9e\xff\x97+Wf\xa5' |
|
assert_equal(actual, desired) |
|
|
|
def test_shuffle(self): |
|
|
|
|
|
for conv in [lambda x: np.array([]), |
|
lambda x: x, |
|
lambda x: np.asarray(x).astype(np.int8), |
|
lambda x: np.asarray(x).astype(np.float32), |
|
lambda x: np.asarray(x).astype(np.complex64), |
|
lambda x: np.asarray(x).astype(object), |
|
lambda x: [(i, i) for i in x], |
|
lambda x: np.asarray([[i, i] for i in x]), |
|
lambda x: np.vstack([x, x]).T, |
|
|
|
lambda x: (np.asarray([(i, i) for i in x], |
|
[("a", int), ("b", int)]) |
|
.view(np.recarray)), |
|
|
|
lambda x: np.asarray([(i, i) for i in x], |
|
[("a", object, (1,)), |
|
("b", np.int32, (1,))])]: |
|
random.seed(self.seed) |
|
alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) |
|
random.shuffle(alist) |
|
actual = alist |
|
desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3]) |
|
assert_array_equal(actual, desired) |
|
|
|
def test_shuffle_masked(self): |
|
|
|
a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1) |
|
b = np.ma.masked_values(np.arange(20) % 3 - 1, -1) |
|
a_orig = a.copy() |
|
b_orig = b.copy() |
|
for i in range(50): |
|
random.shuffle(a) |
|
assert_equal( |
|
sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask])) |
|
random.shuffle(b) |
|
assert_equal( |
|
sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask])) |
|
|
|
def test_shuffle_invalid_objects(self): |
|
x = np.array(3) |
|
assert_raises(TypeError, random.shuffle, x) |
|
|
|
def test_permutation(self): |
|
random.seed(self.seed) |
|
alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0] |
|
actual = random.permutation(alist) |
|
desired = [0, 1, 9, 6, 2, 4, 5, 8, 7, 3] |
|
assert_array_equal(actual, desired) |
|
|
|
random.seed(self.seed) |
|
arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T |
|
actual = random.permutation(arr_2d) |
|
assert_array_equal(actual, np.atleast_2d(desired).T) |
|
|
|
random.seed(self.seed) |
|
bad_x_str = "abcd" |
|
assert_raises(IndexError, random.permutation, bad_x_str) |
|
|
|
random.seed(self.seed) |
|
bad_x_float = 1.2 |
|
assert_raises(IndexError, random.permutation, bad_x_float) |
|
|
|
integer_val = 10 |
|
desired = [9, 0, 8, 5, 1, 3, 4, 7, 6, 2] |
|
|
|
random.seed(self.seed) |
|
actual = random.permutation(integer_val) |
|
assert_array_equal(actual, desired) |
|
|
|
def test_beta(self): |
|
random.seed(self.seed) |
|
actual = random.beta(.1, .9, size=(3, 2)) |
|
desired = np.array( |
|
[[1.45341850513746058e-02, 5.31297615662868145e-04], |
|
[1.85366619058432324e-06, 4.19214516800110563e-03], |
|
[1.58405155108498093e-04, 1.26252891949397652e-04]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_binomial(self): |
|
random.seed(self.seed) |
|
actual = random.binomial(100.123, .456, size=(3, 2)) |
|
desired = np.array([[37, 43], |
|
[42, 48], |
|
[46, 45]]) |
|
assert_array_equal(actual, desired) |
|
|
|
random.seed(self.seed) |
|
actual = random.binomial(100.123, .456) |
|
desired = 37 |
|
assert_array_equal(actual, desired) |
|
|
|
def test_chisquare(self): |
|
random.seed(self.seed) |
|
actual = random.chisquare(50, size=(3, 2)) |
|
desired = np.array([[63.87858175501090585, 68.68407748911370447], |
|
[65.77116116901505904, 47.09686762438974483], |
|
[72.3828403199695174, 74.18408615260374006]]) |
|
assert_array_almost_equal(actual, desired, decimal=13) |
|
|
|
def test_dirichlet(self): |
|
random.seed(self.seed) |
|
alpha = np.array([51.72840233779265162, 39.74494232180943953]) |
|
actual = random.dirichlet(alpha, size=(3, 2)) |
|
desired = np.array([[[0.54539444573611562, 0.45460555426388438], |
|
[0.62345816822039413, 0.37654183177960598]], |
|
[[0.55206000085785778, 0.44793999914214233], |
|
[0.58964023305154301, 0.41035976694845688]], |
|
[[0.59266909280647828, 0.40733090719352177], |
|
[0.56974431743975207, 0.43025568256024799]]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
bad_alpha = np.array([5.4e-01, -1.0e-16]) |
|
assert_raises(ValueError, random.dirichlet, bad_alpha) |
|
|
|
random.seed(self.seed) |
|
alpha = np.array([51.72840233779265162, 39.74494232180943953]) |
|
actual = random.dirichlet(alpha) |
|
assert_array_almost_equal(actual, desired[0, 0], decimal=15) |
|
|
|
def test_dirichlet_size(self): |
|
|
|
p = np.array([51.72840233779265162, 39.74494232180943953]) |
|
assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) |
|
assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) |
|
assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) |
|
assert_equal(random.dirichlet(p, [2, 2]).shape, (2, 2, 2)) |
|
assert_equal(random.dirichlet(p, (2, 2)).shape, (2, 2, 2)) |
|
assert_equal(random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2)) |
|
|
|
assert_raises(TypeError, random.dirichlet, p, float(1)) |
|
|
|
def test_dirichlet_bad_alpha(self): |
|
|
|
alpha = np.array([5.4e-01, -1.0e-16]) |
|
assert_raises(ValueError, random.dirichlet, alpha) |
|
|
|
def test_dirichlet_alpha_non_contiguous(self): |
|
a = np.array([51.72840233779265162, -1.0, 39.74494232180943953]) |
|
alpha = a[::2] |
|
random.seed(self.seed) |
|
non_contig = random.dirichlet(alpha, size=(3, 2)) |
|
random.seed(self.seed) |
|
contig = random.dirichlet(np.ascontiguousarray(alpha), |
|
size=(3, 2)) |
|
assert_array_almost_equal(non_contig, contig) |
|
|
|
def test_exponential(self): |
|
random.seed(self.seed) |
|
actual = random.exponential(1.1234, size=(3, 2)) |
|
desired = np.array([[1.08342649775011624, 1.00607889924557314], |
|
[2.46628830085216721, 2.49668106809923884], |
|
[0.68717433461363442, 1.69175666993575979]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_exponential_0(self): |
|
assert_equal(random.exponential(scale=0), 0) |
|
assert_raises(ValueError, random.exponential, scale=-0.) |
|
|
|
def test_f(self): |
|
random.seed(self.seed) |
|
actual = random.f(12, 77, size=(3, 2)) |
|
desired = np.array([[1.21975394418575878, 1.75135759791559775], |
|
[1.44803115017146489, 1.22108959480396262], |
|
[1.02176975757740629, 1.34431827623300415]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_gamma(self): |
|
random.seed(self.seed) |
|
actual = random.gamma(5, 3, size=(3, 2)) |
|
desired = np.array([[24.60509188649287182, 28.54993563207210627], |
|
[26.13476110204064184, 12.56988482927716078], |
|
[31.71863275789960568, 33.30143302795922011]]) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
|
|
def test_gamma_0(self): |
|
assert_equal(random.gamma(shape=0, scale=0), 0) |
|
assert_raises(ValueError, random.gamma, shape=-0., scale=-0.) |
|
|
|
def test_geometric(self): |
|
random.seed(self.seed) |
|
actual = random.geometric(.123456789, size=(3, 2)) |
|
desired = np.array([[8, 7], |
|
[17, 17], |
|
[5, 12]]) |
|
assert_array_equal(actual, desired) |
|
|
|
def test_geometric_exceptions(self): |
|
assert_raises(ValueError, random.geometric, 1.1) |
|
assert_raises(ValueError, random.geometric, [1.1] * 10) |
|
assert_raises(ValueError, random.geometric, -0.1) |
|
assert_raises(ValueError, random.geometric, [-0.1] * 10) |
|
with suppress_warnings() as sup: |
|
sup.record(RuntimeWarning) |
|
assert_raises(ValueError, random.geometric, np.nan) |
|
assert_raises(ValueError, random.geometric, [np.nan] * 10) |
|
|
|
def test_gumbel(self): |
|
random.seed(self.seed) |
|
actual = random.gumbel(loc=.123456789, scale=2.0, size=(3, 2)) |
|
desired = np.array([[0.19591898743416816, 0.34405539668096674], |
|
[-1.4492522252274278, -1.47374816298446865], |
|
[1.10651090478803416, -0.69535848626236174]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_gumbel_0(self): |
|
assert_equal(random.gumbel(scale=0), 0) |
|
assert_raises(ValueError, random.gumbel, scale=-0.) |
|
|
|
def test_hypergeometric(self): |
|
random.seed(self.seed) |
|
actual = random.hypergeometric(10.1, 5.5, 14, size=(3, 2)) |
|
desired = np.array([[10, 10], |
|
[10, 10], |
|
[9, 9]]) |
|
assert_array_equal(actual, desired) |
|
|
|
|
|
actual = random.hypergeometric(5, 0, 3, size=4) |
|
desired = np.array([3, 3, 3, 3]) |
|
assert_array_equal(actual, desired) |
|
|
|
actual = random.hypergeometric(15, 0, 12, size=4) |
|
desired = np.array([12, 12, 12, 12]) |
|
assert_array_equal(actual, desired) |
|
|
|
|
|
actual = random.hypergeometric(0, 5, 3, size=4) |
|
desired = np.array([0, 0, 0, 0]) |
|
assert_array_equal(actual, desired) |
|
|
|
actual = random.hypergeometric(0, 15, 12, size=4) |
|
desired = np.array([0, 0, 0, 0]) |
|
assert_array_equal(actual, desired) |
|
|
|
def test_laplace(self): |
|
random.seed(self.seed) |
|
actual = random.laplace(loc=.123456789, scale=2.0, size=(3, 2)) |
|
desired = np.array([[0.66599721112760157, 0.52829452552221945], |
|
[3.12791959514407125, 3.18202813572992005], |
|
[-0.05391065675859356, 1.74901336242837324]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_laplace_0(self): |
|
assert_equal(random.laplace(scale=0), 0) |
|
assert_raises(ValueError, random.laplace, scale=-0.) |
|
|
|
def test_logistic(self): |
|
random.seed(self.seed) |
|
actual = random.logistic(loc=.123456789, scale=2.0, size=(3, 2)) |
|
desired = np.array([[1.09232835305011444, 0.8648196662399954], |
|
[4.27818590694950185, 4.33897006346929714], |
|
[-0.21682183359214885, 2.63373365386060332]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_lognormal(self): |
|
random.seed(self.seed) |
|
actual = random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2)) |
|
desired = np.array([[16.50698631688883822, 36.54846706092654784], |
|
[22.67886599981281748, 0.71617561058995771], |
|
[65.72798501792723869, 86.84341601437161273]]) |
|
assert_array_almost_equal(actual, desired, decimal=13) |
|
|
|
def test_lognormal_0(self): |
|
assert_equal(random.lognormal(sigma=0), 1) |
|
assert_raises(ValueError, random.lognormal, sigma=-0.) |
|
|
|
def test_logseries(self): |
|
random.seed(self.seed) |
|
actual = random.logseries(p=.923456789, size=(3, 2)) |
|
desired = np.array([[2, 2], |
|
[6, 17], |
|
[3, 6]]) |
|
assert_array_equal(actual, desired) |
|
|
|
def test_logseries_zero(self): |
|
assert random.logseries(0) == 1 |
|
|
|
@pytest.mark.parametrize("value", [np.nextafter(0., -1), 1., np.nan, 5.]) |
|
def test_logseries_exceptions(self, value): |
|
with np.errstate(invalid="ignore"): |
|
with pytest.raises(ValueError): |
|
random.logseries(value) |
|
with pytest.raises(ValueError): |
|
|
|
random.logseries(np.array([value] * 10)) |
|
with pytest.raises(ValueError): |
|
|
|
random.logseries(np.array([value] * 10)[::2]) |
|
|
|
def test_multinomial(self): |
|
random.seed(self.seed) |
|
actual = random.multinomial(20, [1 / 6.] * 6, size=(3, 2)) |
|
desired = np.array([[[4, 3, 5, 4, 2, 2], |
|
[5, 2, 8, 2, 2, 1]], |
|
[[3, 4, 3, 6, 0, 4], |
|
[2, 1, 4, 3, 6, 4]], |
|
[[4, 4, 2, 5, 2, 3], |
|
[4, 3, 4, 2, 3, 4]]]) |
|
assert_array_equal(actual, desired) |
|
|
|
def test_multivariate_normal(self): |
|
random.seed(self.seed) |
|
mean = (.123456789, 10) |
|
cov = [[1, 0], [0, 1]] |
|
size = (3, 2) |
|
actual = random.multivariate_normal(mean, cov, size) |
|
desired = np.array([[[1.463620246718631, 11.73759122771936], |
|
[1.622445133300628, 9.771356667546383]], |
|
[[2.154490787682787, 12.170324946056553], |
|
[1.719909438201865, 9.230548443648306]], |
|
[[0.689515026297799, 9.880729819607714], |
|
[-0.023054015651998, 9.201096623542879]]]) |
|
|
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
|
|
actual = random.multivariate_normal(mean, cov) |
|
desired = np.array([0.895289569463708, 9.17180864067987]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
|
|
|
|
mean = [0, 0] |
|
cov = [[1, 2], [2, 1]] |
|
assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov) |
|
|
|
|
|
assert_no_warnings(random.multivariate_normal, mean, cov, |
|
check_valid='ignore') |
|
|
|
|
|
assert_raises(ValueError, random.multivariate_normal, mean, cov, |
|
check_valid='raise') |
|
|
|
cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32) |
|
with suppress_warnings() as sup: |
|
random.multivariate_normal(mean, cov) |
|
w = sup.record(RuntimeWarning) |
|
assert len(w) == 0 |
|
|
|
mu = np.zeros(2) |
|
cov = np.eye(2) |
|
assert_raises(ValueError, random.multivariate_normal, mean, cov, |
|
check_valid='other') |
|
assert_raises(ValueError, random.multivariate_normal, |
|
np.zeros((2, 1, 1)), cov) |
|
assert_raises(ValueError, random.multivariate_normal, |
|
mu, np.empty((3, 2))) |
|
assert_raises(ValueError, random.multivariate_normal, |
|
mu, np.eye(3)) |
|
|
|
def test_negative_binomial(self): |
|
random.seed(self.seed) |
|
actual = random.negative_binomial(n=100, p=.12345, size=(3, 2)) |
|
desired = np.array([[848, 841], |
|
[892, 611], |
|
[779, 647]]) |
|
assert_array_equal(actual, desired) |
|
|
|
def test_negative_binomial_exceptions(self): |
|
with suppress_warnings() as sup: |
|
sup.record(RuntimeWarning) |
|
assert_raises(ValueError, random.negative_binomial, 100, np.nan) |
|
assert_raises(ValueError, random.negative_binomial, 100, |
|
[np.nan] * 10) |
|
|
|
def test_noncentral_chisquare(self): |
|
random.seed(self.seed) |
|
actual = random.noncentral_chisquare(df=5, nonc=5, size=(3, 2)) |
|
desired = np.array([[23.91905354498517511, 13.35324692733826346], |
|
[31.22452661329736401, 16.60047399466177254], |
|
[5.03461598262724586, 17.94973089023519464]]) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
|
|
actual = random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2)) |
|
desired = np.array([[1.47145377828516666, 0.15052899268012659], |
|
[0.00943803056963588, 1.02647251615666169], |
|
[0.332334982684171, 0.15451287602753125]]) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
|
|
random.seed(self.seed) |
|
actual = random.noncentral_chisquare(df=5, nonc=0, size=(3, 2)) |
|
desired = np.array([[9.597154162763948, 11.725484450296079], |
|
[10.413711048138335, 3.694475922923986], |
|
[13.484222138963087, 14.377255424602957]]) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
|
|
def test_noncentral_f(self): |
|
random.seed(self.seed) |
|
actual = random.noncentral_f(dfnum=5, dfden=2, nonc=1, |
|
size=(3, 2)) |
|
desired = np.array([[1.40598099674926669, 0.34207973179285761], |
|
[3.57715069265772545, 7.92632662577829805], |
|
[0.43741599463544162, 1.1774208752428319]]) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
|
|
def test_noncentral_f_nan(self): |
|
random.seed(self.seed) |
|
actual = random.noncentral_f(dfnum=5, dfden=2, nonc=np.nan) |
|
assert np.isnan(actual) |
|
|
|
def test_normal(self): |
|
random.seed(self.seed) |
|
actual = random.normal(loc=.123456789, scale=2.0, size=(3, 2)) |
|
desired = np.array([[2.80378370443726244, 3.59863924443872163], |
|
[3.121433477601256, -0.33382987590723379], |
|
[4.18552478636557357, 4.46410668111310471]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_normal_0(self): |
|
assert_equal(random.normal(scale=0), 0) |
|
assert_raises(ValueError, random.normal, scale=-0.) |
|
|
|
def test_pareto(self): |
|
random.seed(self.seed) |
|
actual = random.pareto(a=.123456789, size=(3, 2)) |
|
desired = np.array( |
|
[[2.46852460439034849e+03, 1.41286880810518346e+03], |
|
[5.28287797029485181e+07, 6.57720981047328785e+07], |
|
[1.40840323350391515e+02, 1.98390255135251704e+05]]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30) |
|
|
|
def test_poisson(self): |
|
random.seed(self.seed) |
|
actual = random.poisson(lam=.123456789, size=(3, 2)) |
|
desired = np.array([[0, 0], |
|
[1, 0], |
|
[0, 0]]) |
|
assert_array_equal(actual, desired) |
|
|
|
def test_poisson_exceptions(self): |
|
lambig = np.iinfo('l').max |
|
lamneg = -1 |
|
assert_raises(ValueError, random.poisson, lamneg) |
|
assert_raises(ValueError, random.poisson, [lamneg] * 10) |
|
assert_raises(ValueError, random.poisson, lambig) |
|
assert_raises(ValueError, random.poisson, [lambig] * 10) |
|
with suppress_warnings() as sup: |
|
sup.record(RuntimeWarning) |
|
assert_raises(ValueError, random.poisson, np.nan) |
|
assert_raises(ValueError, random.poisson, [np.nan] * 10) |
|
|
|
def test_power(self): |
|
random.seed(self.seed) |
|
actual = random.power(a=.123456789, size=(3, 2)) |
|
desired = np.array([[0.02048932883240791, 0.01424192241128213], |
|
[0.38446073748535298, 0.39499689943484395], |
|
[0.00177699707563439, 0.13115505880863756]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_rayleigh(self): |
|
random.seed(self.seed) |
|
actual = random.rayleigh(scale=10, size=(3, 2)) |
|
desired = np.array([[13.8882496494248393, 13.383318339044731], |
|
[20.95413364294492098, 21.08285015800712614], |
|
[11.06066537006854311, 17.35468505778271009]]) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
|
|
def test_rayleigh_0(self): |
|
assert_equal(random.rayleigh(scale=0), 0) |
|
assert_raises(ValueError, random.rayleigh, scale=-0.) |
|
|
|
def test_standard_cauchy(self): |
|
random.seed(self.seed) |
|
actual = random.standard_cauchy(size=(3, 2)) |
|
desired = np.array([[0.77127660196445336, -6.55601161955910605], |
|
[0.93582023391158309, -2.07479293013759447], |
|
[-4.74601644297011926, 0.18338989290760804]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_standard_exponential(self): |
|
random.seed(self.seed) |
|
actual = random.standard_exponential(size=(3, 2)) |
|
desired = np.array([[0.96441739162374596, 0.89556604882105506], |
|
[2.1953785836319808, 2.22243285392490542], |
|
[0.6116915921431676, 1.50592546727413201]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_standard_gamma(self): |
|
random.seed(self.seed) |
|
actual = random.standard_gamma(shape=3, size=(3, 2)) |
|
desired = np.array([[5.50841531318455058, 6.62953470301903103], |
|
[5.93988484943779227, 2.31044849402133989], |
|
[7.54838614231317084, 8.012756093271868]]) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
|
|
def test_standard_gamma_0(self): |
|
assert_equal(random.standard_gamma(shape=0), 0) |
|
assert_raises(ValueError, random.standard_gamma, shape=-0.) |
|
|
|
def test_standard_normal(self): |
|
random.seed(self.seed) |
|
actual = random.standard_normal(size=(3, 2)) |
|
desired = np.array([[1.34016345771863121, 1.73759122771936081], |
|
[1.498988344300628, -0.2286433324536169], |
|
[2.031033998682787, 2.17032494605655257]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_randn_singleton(self): |
|
random.seed(self.seed) |
|
actual = random.randn() |
|
desired = np.array(1.34016345771863121) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_standard_t(self): |
|
random.seed(self.seed) |
|
actual = random.standard_t(df=10, size=(3, 2)) |
|
desired = np.array([[0.97140611862659965, -0.08830486548450577], |
|
[1.36311143689505321, -0.55317463909867071], |
|
[-0.18473749069684214, 0.61181537341755321]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_triangular(self): |
|
random.seed(self.seed) |
|
actual = random.triangular(left=5.12, mode=10.23, right=20.34, |
|
size=(3, 2)) |
|
desired = np.array([[12.68117178949215784, 12.4129206149193152], |
|
[16.20131377335158263, 16.25692138747600524], |
|
[11.20400690911820263, 14.4978144835829923]]) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
|
|
def test_uniform(self): |
|
random.seed(self.seed) |
|
actual = random.uniform(low=1.23, high=10.54, size=(3, 2)) |
|
desired = np.array([[6.99097932346268003, 6.73801597444323974], |
|
[9.50364421400426274, 9.53130618907631089], |
|
[5.48995325769805476, 8.47493103280052118]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_uniform_range_bounds(self): |
|
fmin = np.finfo('float').min |
|
fmax = np.finfo('float').max |
|
|
|
func = random.uniform |
|
assert_raises(OverflowError, func, -np.inf, 0) |
|
assert_raises(OverflowError, func, 0, np.inf) |
|
assert_raises(OverflowError, func, fmin, fmax) |
|
assert_raises(OverflowError, func, [-np.inf], [0]) |
|
assert_raises(OverflowError, func, [0], [np.inf]) |
|
|
|
|
|
|
|
|
|
random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17) |
|
|
|
def test_scalar_exception_propagation(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
class ThrowingFloat(np.ndarray): |
|
def __float__(self): |
|
raise TypeError |
|
|
|
throwing_float = np.array(1.0).view(ThrowingFloat) |
|
assert_raises(TypeError, random.uniform, throwing_float, |
|
throwing_float) |
|
|
|
class ThrowingInteger(np.ndarray): |
|
def __int__(self): |
|
raise TypeError |
|
|
|
throwing_int = np.array(1).view(ThrowingInteger) |
|
assert_raises(TypeError, random.hypergeometric, throwing_int, 1, 1) |
|
|
|
def test_vonmises(self): |
|
random.seed(self.seed) |
|
actual = random.vonmises(mu=1.23, kappa=1.54, size=(3, 2)) |
|
desired = np.array([[2.28567572673902042, 2.89163838442285037], |
|
[0.38198375564286025, 2.57638023113890746], |
|
[1.19153771588353052, 1.83509849681825354]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_vonmises_small(self): |
|
|
|
random.seed(self.seed) |
|
r = random.vonmises(mu=0., kappa=1.1e-8, size=10**6) |
|
assert_(np.isfinite(r).all()) |
|
|
|
def test_vonmises_large(self): |
|
|
|
random.seed(self.seed) |
|
actual = random.vonmises(mu=0., kappa=1e7, size=3) |
|
desired = np.array([4.634253748521111e-04, |
|
3.558873596114509e-04, |
|
-2.337119622577433e-04]) |
|
assert_array_almost_equal(actual, desired, decimal=8) |
|
|
|
def test_vonmises_nan(self): |
|
random.seed(self.seed) |
|
r = random.vonmises(mu=0., kappa=np.nan) |
|
assert_(np.isnan(r)) |
|
|
|
def test_wald(self): |
|
random.seed(self.seed) |
|
actual = random.wald(mean=1.23, scale=1.54, size=(3, 2)) |
|
desired = np.array([[3.82935265715889983, 5.13125249184285526], |
|
[0.35045403618358717, 1.50832396872003538], |
|
[0.24124319895843183, 0.22031101461955038]]) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
|
|
def test_weibull(self): |
|
random.seed(self.seed) |
|
actual = random.weibull(a=1.23, size=(3, 2)) |
|
desired = np.array([[0.97097342648766727, 0.91422896443565516], |
|
[1.89517770034962929, 1.91414357960479564], |
|
[0.67057783752390987, 1.39494046635066793]]) |
|
assert_array_almost_equal(actual, desired, decimal=15) |
|
|
|
def test_weibull_0(self): |
|
random.seed(self.seed) |
|
assert_equal(random.weibull(a=0, size=12), np.zeros(12)) |
|
assert_raises(ValueError, random.weibull, a=-0.) |
|
|
|
def test_zipf(self): |
|
random.seed(self.seed) |
|
actual = random.zipf(a=1.23, size=(3, 2)) |
|
desired = np.array([[66, 29], |
|
[1, 1], |
|
[3, 13]]) |
|
assert_array_equal(actual, desired) |
|
|
|
|
|
class TestBroadcast: |
|
|
|
|
|
def setup_method(self): |
|
self.seed = 123456789 |
|
|
|
def set_seed(self): |
|
random.seed(self.seed) |
|
|
|
def test_uniform(self): |
|
low = [0] |
|
high = [1] |
|
uniform = random.uniform |
|
desired = np.array([0.53283302478975902, |
|
0.53413660089041659, |
|
0.50955303552646702]) |
|
|
|
self.set_seed() |
|
actual = uniform(low * 3, high) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
|
|
self.set_seed() |
|
actual = uniform(low, high * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
|
|
def test_normal(self): |
|
loc = [0] |
|
scale = [1] |
|
bad_scale = [-1] |
|
normal = random.normal |
|
desired = np.array([2.2129019979039612, |
|
2.1283977976520019, |
|
1.8417114045748335]) |
|
|
|
self.set_seed() |
|
actual = normal(loc * 3, scale) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, normal, loc * 3, bad_scale) |
|
|
|
self.set_seed() |
|
actual = normal(loc, scale * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, normal, loc, bad_scale * 3) |
|
|
|
def test_beta(self): |
|
a = [1] |
|
b = [2] |
|
bad_a = [-1] |
|
bad_b = [-2] |
|
beta = random.beta |
|
desired = np.array([0.19843558305989056, |
|
0.075230336409423643, |
|
0.24976865978980844]) |
|
|
|
self.set_seed() |
|
actual = beta(a * 3, b) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, beta, bad_a * 3, b) |
|
assert_raises(ValueError, beta, a * 3, bad_b) |
|
|
|
self.set_seed() |
|
actual = beta(a, b * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, beta, bad_a, b * 3) |
|
assert_raises(ValueError, beta, a, bad_b * 3) |
|
|
|
def test_exponential(self): |
|
scale = [1] |
|
bad_scale = [-1] |
|
exponential = random.exponential |
|
desired = np.array([0.76106853658845242, |
|
0.76386282278691653, |
|
0.71243813125891797]) |
|
|
|
self.set_seed() |
|
actual = exponential(scale * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, exponential, bad_scale * 3) |
|
|
|
def test_standard_gamma(self): |
|
shape = [1] |
|
bad_shape = [-1] |
|
std_gamma = random.standard_gamma |
|
desired = np.array([0.76106853658845242, |
|
0.76386282278691653, |
|
0.71243813125891797]) |
|
|
|
self.set_seed() |
|
actual = std_gamma(shape * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, std_gamma, bad_shape * 3) |
|
|
|
def test_gamma(self): |
|
shape = [1] |
|
scale = [2] |
|
bad_shape = [-1] |
|
bad_scale = [-2] |
|
gamma = random.gamma |
|
desired = np.array([1.5221370731769048, |
|
1.5277256455738331, |
|
1.4248762625178359]) |
|
|
|
self.set_seed() |
|
actual = gamma(shape * 3, scale) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, gamma, bad_shape * 3, scale) |
|
assert_raises(ValueError, gamma, shape * 3, bad_scale) |
|
|
|
self.set_seed() |
|
actual = gamma(shape, scale * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, gamma, bad_shape, scale * 3) |
|
assert_raises(ValueError, gamma, shape, bad_scale * 3) |
|
|
|
def test_f(self): |
|
dfnum = [1] |
|
dfden = [2] |
|
bad_dfnum = [-1] |
|
bad_dfden = [-2] |
|
f = random.f |
|
desired = np.array([0.80038951638264799, |
|
0.86768719635363512, |
|
2.7251095168386801]) |
|
|
|
self.set_seed() |
|
actual = f(dfnum * 3, dfden) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, f, bad_dfnum * 3, dfden) |
|
assert_raises(ValueError, f, dfnum * 3, bad_dfden) |
|
|
|
self.set_seed() |
|
actual = f(dfnum, dfden * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, f, bad_dfnum, dfden * 3) |
|
assert_raises(ValueError, f, dfnum, bad_dfden * 3) |
|
|
|
def test_noncentral_f(self): |
|
dfnum = [2] |
|
dfden = [3] |
|
nonc = [4] |
|
bad_dfnum = [0] |
|
bad_dfden = [-1] |
|
bad_nonc = [-2] |
|
nonc_f = random.noncentral_f |
|
desired = np.array([9.1393943263705211, |
|
13.025456344595602, |
|
8.8018098359100545]) |
|
|
|
self.set_seed() |
|
actual = nonc_f(dfnum * 3, dfden, nonc) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert np.all(np.isnan(nonc_f(dfnum, dfden, [np.nan] * 3))) |
|
|
|
assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc) |
|
assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc) |
|
assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc) |
|
|
|
self.set_seed() |
|
actual = nonc_f(dfnum, dfden * 3, nonc) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc) |
|
assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc) |
|
assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc) |
|
|
|
self.set_seed() |
|
actual = nonc_f(dfnum, dfden, nonc * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3) |
|
assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3) |
|
assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3) |
|
|
|
def test_noncentral_f_small_df(self): |
|
self.set_seed() |
|
desired = np.array([6.869638627492048, 0.785880199263955]) |
|
actual = random.noncentral_f(0.9, 0.9, 2, size=2) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
|
|
def test_chisquare(self): |
|
df = [1] |
|
bad_df = [-1] |
|
chisquare = random.chisquare |
|
desired = np.array([0.57022801133088286, |
|
0.51947702108840776, |
|
0.1320969254923558]) |
|
|
|
self.set_seed() |
|
actual = chisquare(df * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, chisquare, bad_df * 3) |
|
|
|
def test_noncentral_chisquare(self): |
|
df = [1] |
|
nonc = [2] |
|
bad_df = [-1] |
|
bad_nonc = [-2] |
|
nonc_chi = random.noncentral_chisquare |
|
desired = np.array([9.0015599467913763, |
|
4.5804135049718742, |
|
6.0872302432834564]) |
|
|
|
self.set_seed() |
|
actual = nonc_chi(df * 3, nonc) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, nonc_chi, bad_df * 3, nonc) |
|
assert_raises(ValueError, nonc_chi, df * 3, bad_nonc) |
|
|
|
self.set_seed() |
|
actual = nonc_chi(df, nonc * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, nonc_chi, bad_df, nonc * 3) |
|
assert_raises(ValueError, nonc_chi, df, bad_nonc * 3) |
|
|
|
def test_standard_t(self): |
|
df = [1] |
|
bad_df = [-1] |
|
t = random.standard_t |
|
desired = np.array([3.0702872575217643, |
|
5.8560725167361607, |
|
1.0274791436474273]) |
|
|
|
self.set_seed() |
|
actual = t(df * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, t, bad_df * 3) |
|
assert_raises(ValueError, random.standard_t, bad_df * 3) |
|
|
|
def test_vonmises(self): |
|
mu = [2] |
|
kappa = [1] |
|
bad_kappa = [-1] |
|
vonmises = random.vonmises |
|
desired = np.array([2.9883443664201312, |
|
-2.7064099483995943, |
|
-1.8672476700665914]) |
|
|
|
self.set_seed() |
|
actual = vonmises(mu * 3, kappa) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, vonmises, mu * 3, bad_kappa) |
|
|
|
self.set_seed() |
|
actual = vonmises(mu, kappa * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, vonmises, mu, bad_kappa * 3) |
|
|
|
def test_pareto(self): |
|
a = [1] |
|
bad_a = [-1] |
|
pareto = random.pareto |
|
desired = np.array([1.1405622680198362, |
|
1.1465519762044529, |
|
1.0389564467453547]) |
|
|
|
self.set_seed() |
|
actual = pareto(a * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, pareto, bad_a * 3) |
|
assert_raises(ValueError, random.pareto, bad_a * 3) |
|
|
|
def test_weibull(self): |
|
a = [1] |
|
bad_a = [-1] |
|
weibull = random.weibull |
|
desired = np.array([0.76106853658845242, |
|
0.76386282278691653, |
|
0.71243813125891797]) |
|
|
|
self.set_seed() |
|
actual = weibull(a * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, weibull, bad_a * 3) |
|
assert_raises(ValueError, random.weibull, bad_a * 3) |
|
|
|
def test_power(self): |
|
a = [1] |
|
bad_a = [-1] |
|
power = random.power |
|
desired = np.array([0.53283302478975902, |
|
0.53413660089041659, |
|
0.50955303552646702]) |
|
|
|
self.set_seed() |
|
actual = power(a * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, power, bad_a * 3) |
|
assert_raises(ValueError, random.power, bad_a * 3) |
|
|
|
def test_laplace(self): |
|
loc = [0] |
|
scale = [1] |
|
bad_scale = [-1] |
|
laplace = random.laplace |
|
desired = np.array([0.067921356028507157, |
|
0.070715642226971326, |
|
0.019290950698972624]) |
|
|
|
self.set_seed() |
|
actual = laplace(loc * 3, scale) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, laplace, loc * 3, bad_scale) |
|
|
|
self.set_seed() |
|
actual = laplace(loc, scale * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, laplace, loc, bad_scale * 3) |
|
|
|
def test_gumbel(self): |
|
loc = [0] |
|
scale = [1] |
|
bad_scale = [-1] |
|
gumbel = random.gumbel |
|
desired = np.array([0.2730318639556768, |
|
0.26936705726291116, |
|
0.33906220393037939]) |
|
|
|
self.set_seed() |
|
actual = gumbel(loc * 3, scale) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, gumbel, loc * 3, bad_scale) |
|
|
|
self.set_seed() |
|
actual = gumbel(loc, scale * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, gumbel, loc, bad_scale * 3) |
|
|
|
def test_logistic(self): |
|
loc = [0] |
|
scale = [1] |
|
bad_scale = [-1] |
|
logistic = random.logistic |
|
desired = np.array([0.13152135837586171, |
|
0.13675915696285773, |
|
0.038216792802833396]) |
|
|
|
self.set_seed() |
|
actual = logistic(loc * 3, scale) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, logistic, loc * 3, bad_scale) |
|
|
|
self.set_seed() |
|
actual = logistic(loc, scale * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, logistic, loc, bad_scale * 3) |
|
assert_equal(random.logistic(1.0, 0.0), 1.0) |
|
|
|
def test_lognormal(self): |
|
mean = [0] |
|
sigma = [1] |
|
bad_sigma = [-1] |
|
lognormal = random.lognormal |
|
desired = np.array([9.1422086044848427, |
|
8.4013952870126261, |
|
6.3073234116578671]) |
|
|
|
self.set_seed() |
|
actual = lognormal(mean * 3, sigma) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, lognormal, mean * 3, bad_sigma) |
|
assert_raises(ValueError, random.lognormal, mean * 3, bad_sigma) |
|
|
|
self.set_seed() |
|
actual = lognormal(mean, sigma * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, lognormal, mean, bad_sigma * 3) |
|
assert_raises(ValueError, random.lognormal, mean, bad_sigma * 3) |
|
|
|
def test_rayleigh(self): |
|
scale = [1] |
|
bad_scale = [-1] |
|
rayleigh = random.rayleigh |
|
desired = np.array([1.2337491937897689, |
|
1.2360119924878694, |
|
1.1936818095781789]) |
|
|
|
self.set_seed() |
|
actual = rayleigh(scale * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, rayleigh, bad_scale * 3) |
|
|
|
def test_wald(self): |
|
mean = [0.5] |
|
scale = [1] |
|
bad_mean = [0] |
|
bad_scale = [-2] |
|
wald = random.wald |
|
desired = np.array([0.11873681120271318, |
|
0.12450084820795027, |
|
0.9096122728408238]) |
|
|
|
self.set_seed() |
|
actual = wald(mean * 3, scale) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, wald, bad_mean * 3, scale) |
|
assert_raises(ValueError, wald, mean * 3, bad_scale) |
|
assert_raises(ValueError, random.wald, bad_mean * 3, scale) |
|
assert_raises(ValueError, random.wald, mean * 3, bad_scale) |
|
|
|
self.set_seed() |
|
actual = wald(mean, scale * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, wald, bad_mean, scale * 3) |
|
assert_raises(ValueError, wald, mean, bad_scale * 3) |
|
assert_raises(ValueError, wald, 0.0, 1) |
|
assert_raises(ValueError, wald, 0.5, 0.0) |
|
|
|
def test_triangular(self): |
|
left = [1] |
|
right = [3] |
|
mode = [2] |
|
bad_left_one = [3] |
|
bad_mode_one = [4] |
|
bad_left_two, bad_mode_two = right * 2 |
|
triangular = random.triangular |
|
desired = np.array([2.03339048710429, |
|
2.0347400359389356, |
|
2.0095991069536208]) |
|
|
|
self.set_seed() |
|
actual = triangular(left * 3, mode, right) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, triangular, bad_left_one * 3, mode, right) |
|
assert_raises(ValueError, triangular, left * 3, bad_mode_one, right) |
|
assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two, |
|
right) |
|
|
|
self.set_seed() |
|
actual = triangular(left, mode * 3, right) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, triangular, bad_left_one, mode * 3, right) |
|
assert_raises(ValueError, triangular, left, bad_mode_one * 3, right) |
|
assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3, |
|
right) |
|
|
|
self.set_seed() |
|
actual = triangular(left, mode, right * 3) |
|
assert_array_almost_equal(actual, desired, decimal=14) |
|
assert_raises(ValueError, triangular, bad_left_one, mode, right * 3) |
|
assert_raises(ValueError, triangular, left, bad_mode_one, right * 3) |
|
assert_raises(ValueError, triangular, bad_left_two, bad_mode_two, |
|
right * 3) |
|
|
|
assert_raises(ValueError, triangular, 10., 0., 20.) |
|
assert_raises(ValueError, triangular, 10., 25., 20.) |
|
assert_raises(ValueError, triangular, 10., 10., 10.) |
|
|
|
def test_binomial(self): |
|
n = [1] |
|
p = [0.5] |
|
bad_n = [-1] |
|
bad_p_one = [-1] |
|
bad_p_two = [1.5] |
|
binom = random.binomial |
|
desired = np.array([1, 1, 1]) |
|
|
|
self.set_seed() |
|
actual = binom(n * 3, p) |
|
assert_array_equal(actual, desired) |
|
assert_raises(ValueError, binom, bad_n * 3, p) |
|
assert_raises(ValueError, binom, n * 3, bad_p_one) |
|
assert_raises(ValueError, binom, n * 3, bad_p_two) |
|
|
|
self.set_seed() |
|
actual = binom(n, p * 3) |
|
assert_array_equal(actual, desired) |
|
assert_raises(ValueError, binom, bad_n, p * 3) |
|
assert_raises(ValueError, binom, n, bad_p_one * 3) |
|
assert_raises(ValueError, binom, n, bad_p_two * 3) |
|
|
|
def test_negative_binomial(self): |
|
n = [1] |
|
p = [0.5] |
|
bad_n = [-1] |
|
bad_p_one = [-1] |
|
bad_p_two = [1.5] |
|
neg_binom = random.negative_binomial |
|
desired = np.array([1, 0, 1]) |
|
|
|
self.set_seed() |
|
actual = neg_binom(n * 3, p) |
|
assert_array_equal(actual, desired) |
|
assert_raises(ValueError, neg_binom, bad_n * 3, p) |
|
assert_raises(ValueError, neg_binom, n * 3, bad_p_one) |
|
assert_raises(ValueError, neg_binom, n * 3, bad_p_two) |
|
|
|
self.set_seed() |
|
actual = neg_binom(n, p * 3) |
|
assert_array_equal(actual, desired) |
|
assert_raises(ValueError, neg_binom, bad_n, p * 3) |
|
assert_raises(ValueError, neg_binom, n, bad_p_one * 3) |
|
assert_raises(ValueError, neg_binom, n, bad_p_two * 3) |
|
|
|
def test_poisson(self): |
|
max_lam = random.RandomState()._poisson_lam_max |
|
|
|
lam = [1] |
|
bad_lam_one = [-1] |
|
bad_lam_two = [max_lam * 2] |
|
poisson = random.poisson |
|
desired = np.array([1, 1, 0]) |
|
|
|
self.set_seed() |
|
actual = poisson(lam * 3) |
|
assert_array_equal(actual, desired) |
|
assert_raises(ValueError, poisson, bad_lam_one * 3) |
|
assert_raises(ValueError, poisson, bad_lam_two * 3) |
|
|
|
def test_zipf(self): |
|
a = [2] |
|
bad_a = [0] |
|
zipf = random.zipf |
|
desired = np.array([2, 2, 1]) |
|
|
|
self.set_seed() |
|
actual = zipf(a * 3) |
|
assert_array_equal(actual, desired) |
|
assert_raises(ValueError, zipf, bad_a * 3) |
|
with np.errstate(invalid='ignore'): |
|
assert_raises(ValueError, zipf, np.nan) |
|
assert_raises(ValueError, zipf, [0, 0, np.nan]) |
|
|
|
def test_geometric(self): |
|
p = [0.5] |
|
bad_p_one = [-1] |
|
bad_p_two = [1.5] |
|
geom = random.geometric |
|
desired = np.array([2, 2, 2]) |
|
|
|
self.set_seed() |
|
actual = geom(p * 3) |
|
assert_array_equal(actual, desired) |
|
assert_raises(ValueError, geom, bad_p_one * 3) |
|
assert_raises(ValueError, geom, bad_p_two * 3) |
|
|
|
def test_hypergeometric(self): |
|
ngood = [1] |
|
nbad = [2] |
|
nsample = [2] |
|
bad_ngood = [-1] |
|
bad_nbad = [-2] |
|
bad_nsample_one = [0] |
|
bad_nsample_two = [4] |
|
hypergeom = random.hypergeometric |
|
desired = np.array([1, 1, 1]) |
|
|
|
self.set_seed() |
|
actual = hypergeom(ngood * 3, nbad, nsample) |
|
assert_array_equal(actual, desired) |
|
assert_raises(ValueError, hypergeom, bad_ngood * 3, nbad, nsample) |
|
assert_raises(ValueError, hypergeom, ngood * 3, bad_nbad, nsample) |
|
assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_one) |
|
assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_two) |
|
|
|
self.set_seed() |
|
actual = hypergeom(ngood, nbad * 3, nsample) |
|
assert_array_equal(actual, desired) |
|
assert_raises(ValueError, hypergeom, bad_ngood, nbad * 3, nsample) |
|
assert_raises(ValueError, hypergeom, ngood, bad_nbad * 3, nsample) |
|
assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_one) |
|
assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_two) |
|
|
|
self.set_seed() |
|
actual = hypergeom(ngood, nbad, nsample * 3) |
|
assert_array_equal(actual, desired) |
|
assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3) |
|
assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3) |
|
assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3) |
|
assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3) |
|
|
|
assert_raises(ValueError, hypergeom, -1, 10, 20) |
|
assert_raises(ValueError, hypergeom, 10, -1, 20) |
|
assert_raises(ValueError, hypergeom, 10, 10, 0) |
|
assert_raises(ValueError, hypergeom, 10, 10, 25) |
|
|
|
def test_logseries(self): |
|
p = [0.5] |
|
bad_p_one = [2] |
|
bad_p_two = [-1] |
|
logseries = random.logseries |
|
desired = np.array([1, 1, 1]) |
|
|
|
self.set_seed() |
|
actual = logseries(p * 3) |
|
assert_array_equal(actual, desired) |
|
assert_raises(ValueError, logseries, bad_p_one * 3) |
|
assert_raises(ValueError, logseries, bad_p_two * 3) |
|
|
|
|
|
@pytest.mark.skipif(IS_WASM, reason="can't start thread") |
|
class TestThread: |
|
|
|
def setup_method(self): |
|
self.seeds = range(4) |
|
|
|
def check_function(self, function, sz): |
|
from threading import Thread |
|
|
|
out1 = np.empty((len(self.seeds),) + sz) |
|
out2 = np.empty((len(self.seeds),) + sz) |
|
|
|
|
|
t = [Thread(target=function, args=(random.RandomState(s), o)) |
|
for s, o in zip(self.seeds, out1)] |
|
[x.start() for x in t] |
|
[x.join() for x in t] |
|
|
|
|
|
for s, o in zip(self.seeds, out2): |
|
function(random.RandomState(s), o) |
|
|
|
|
|
if np.intp().dtype.itemsize == 4 and sys.platform == "win32": |
|
assert_array_almost_equal(out1, out2) |
|
else: |
|
assert_array_equal(out1, out2) |
|
|
|
def test_normal(self): |
|
def gen_random(state, out): |
|
out[...] = state.normal(size=10000) |
|
|
|
self.check_function(gen_random, sz=(10000,)) |
|
|
|
def test_exp(self): |
|
def gen_random(state, out): |
|
out[...] = state.exponential(scale=np.ones((100, 1000))) |
|
|
|
self.check_function(gen_random, sz=(100, 1000)) |
|
|
|
def test_multinomial(self): |
|
def gen_random(state, out): |
|
out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000) |
|
|
|
self.check_function(gen_random, sz=(10000, 6)) |
|
|
|
|
|
|
|
class TestSingleEltArrayInput: |
|
def setup_method(self): |
|
self.argOne = np.array([2]) |
|
self.argTwo = np.array([3]) |
|
self.argThree = np.array([4]) |
|
self.tgtShape = (1,) |
|
|
|
def test_one_arg_funcs(self): |
|
funcs = (random.exponential, random.standard_gamma, |
|
random.chisquare, random.standard_t, |
|
random.pareto, random.weibull, |
|
random.power, random.rayleigh, |
|
random.poisson, random.zipf, |
|
random.geometric, random.logseries) |
|
|
|
probfuncs = (random.geometric, random.logseries) |
|
|
|
for func in funcs: |
|
if func in probfuncs: |
|
out = func(np.array([0.5])) |
|
|
|
else: |
|
out = func(self.argOne) |
|
|
|
assert_equal(out.shape, self.tgtShape) |
|
|
|
def test_two_arg_funcs(self): |
|
funcs = (random.uniform, random.normal, |
|
random.beta, random.gamma, |
|
random.f, random.noncentral_chisquare, |
|
random.vonmises, random.laplace, |
|
random.gumbel, random.logistic, |
|
random.lognormal, random.wald, |
|
random.binomial, random.negative_binomial) |
|
|
|
probfuncs = (random.binomial, random.negative_binomial) |
|
|
|
for func in funcs: |
|
if func in probfuncs: |
|
argTwo = np.array([0.5]) |
|
|
|
else: |
|
argTwo = self.argTwo |
|
|
|
out = func(self.argOne, argTwo) |
|
assert_equal(out.shape, self.tgtShape) |
|
|
|
out = func(self.argOne[0], argTwo) |
|
assert_equal(out.shape, self.tgtShape) |
|
|
|
out = func(self.argOne, argTwo[0]) |
|
assert_equal(out.shape, self.tgtShape) |
|
|
|
def test_three_arg_funcs(self): |
|
funcs = [random.noncentral_f, random.triangular, |
|
random.hypergeometric] |
|
|
|
for func in funcs: |
|
out = func(self.argOne, self.argTwo, self.argThree) |
|
assert_equal(out.shape, self.tgtShape) |
|
|
|
out = func(self.argOne[0], self.argTwo, self.argThree) |
|
assert_equal(out.shape, self.tgtShape) |
|
|
|
out = func(self.argOne, self.argTwo[0], self.argThree) |
|
assert_equal(out.shape, self.tgtShape) |
|
|
|
|
|
|
|
def test_integer_dtype(int_func): |
|
random.seed(123456789) |
|
fname, args, sha256 = int_func |
|
f = getattr(random, fname) |
|
actual = f(*args, size=2) |
|
assert_(actual.dtype == np.dtype('l')) |
|
|
|
|
|
def test_integer_repeat(int_func): |
|
random.seed(123456789) |
|
fname, args, sha256 = int_func |
|
f = getattr(random, fname) |
|
val = f(*args, size=1000000) |
|
if sys.byteorder != 'little': |
|
val = val.byteswap() |
|
res = hashlib.sha256(val.view(np.int8)).hexdigest() |
|
assert_(res == sha256) |
|
|
|
|
|
def test_broadcast_size_error(): |
|
|
|
with pytest.raises(ValueError): |
|
random.binomial(1, [0.3, 0.7], size=(2, 1)) |
|
with pytest.raises(ValueError): |
|
random.binomial([1, 2], 0.3, size=(2, 1)) |
|
with pytest.raises(ValueError): |
|
random.binomial([1, 2], [0.3, 0.7], size=(2, 1)) |
|
|
|
|
|
def test_randomstate_ctor_old_style_pickle(): |
|
rs = np.random.RandomState(MT19937(0)) |
|
rs.standard_normal(1) |
|
|
|
ctor, args, state_a = rs.__reduce__() |
|
|
|
assert args[0].__class__.__name__ == "MT19937" |
|
b = ctor(*("MT19937",)) |
|
b.set_state(state_a) |
|
state_b = b.get_state(legacy=False) |
|
|
|
assert_equal(state_a['bit_generator'], state_b['bit_generator']) |
|
assert_array_equal(state_a['state']['key'], state_b['state']['key']) |
|
assert_array_equal(state_a['state']['pos'], state_b['state']['pos']) |
|
assert_equal(state_a['has_gauss'], state_b['has_gauss']) |
|
assert_equal(state_a['gauss'], state_b['gauss']) |
|
|
|
|
|
def test_hot_swap(restore_singleton_bitgen): |
|
|
|
def_bg = np.random.default_rng(0) |
|
bg = def_bg.bit_generator |
|
np.random.set_bit_generator(bg) |
|
assert isinstance(np.random.mtrand._rand._bit_generator, type(bg)) |
|
|
|
second_bg = np.random.get_bit_generator() |
|
assert bg is second_bg |
|
|
|
|
|
def test_seed_alt_bit_gen(restore_singleton_bitgen): |
|
|
|
bg = PCG64(0) |
|
np.random.set_bit_generator(bg) |
|
state = np.random.get_state(legacy=False) |
|
np.random.seed(1) |
|
new_state = np.random.get_state(legacy=False) |
|
print(state) |
|
print(new_state) |
|
assert state["bit_generator"] == "PCG64" |
|
assert state["state"]["state"] != new_state["state"]["state"] |
|
assert state["state"]["inc"] != new_state["state"]["inc"] |
|
|
|
|
|
def test_state_error_alt_bit_gen(restore_singleton_bitgen): |
|
|
|
state = np.random.get_state() |
|
bg = PCG64(0) |
|
np.random.set_bit_generator(bg) |
|
with pytest.raises(ValueError, match="state must be for a PCG64"): |
|
np.random.set_state(state) |
|
|
|
|
|
def test_swap_worked(restore_singleton_bitgen): |
|
|
|
np.random.seed(98765) |
|
vals = np.random.randint(0, 2 ** 30, 10) |
|
bg = PCG64(0) |
|
state = bg.state |
|
np.random.set_bit_generator(bg) |
|
state_direct = np.random.get_state(legacy=False) |
|
for field in state: |
|
assert state[field] == state_direct[field] |
|
np.random.seed(98765) |
|
pcg_vals = np.random.randint(0, 2 ** 30, 10) |
|
assert not np.all(vals == pcg_vals) |
|
new_state = bg.state |
|
assert new_state["state"]["state"] != state["state"]["state"] |
|
assert new_state["state"]["inc"] == new_state["state"]["inc"] |
|
|
|
|
|
def test_swapped_singleton_against_direct(restore_singleton_bitgen): |
|
np.random.set_bit_generator(PCG64(98765)) |
|
singleton_vals = np.random.randint(0, 2 ** 30, 10) |
|
rg = np.random.RandomState(PCG64(98765)) |
|
non_singleton_vals = rg.randint(0, 2 ** 30, 10) |
|
assert_equal(non_singleton_vals, singleton_vals) |
|
|