|
import abc |
|
from collections.abc import Callable, Mapping, Sequence |
|
from threading import Lock |
|
from typing import Any, ClassVar, Literal, NamedTuple, TypeAlias, TypedDict, overload, type_check_only |
|
|
|
from _typeshed import Incomplete |
|
from typing_extensions import CapsuleType, Self |
|
|
|
import numpy as np |
|
from numpy._typing import NDArray, _ArrayLikeInt_co, _DTypeLike, _ShapeLike, _UInt32Codes, _UInt64Codes |
|
|
|
__all__ = ["BitGenerator", "SeedSequence"] |
|
|
|
|
|
|
|
_DTypeLikeUint_: TypeAlias = _DTypeLike[np.uint32 | np.uint64] | _UInt32Codes | _UInt64Codes |
|
|
|
@type_check_only |
|
class _SeedSeqState(TypedDict): |
|
entropy: int | Sequence[int] | None |
|
spawn_key: tuple[int, ...] |
|
pool_size: int |
|
n_children_spawned: int |
|
|
|
@type_check_only |
|
class _Interface(NamedTuple): |
|
state_address: Incomplete |
|
state: Incomplete |
|
next_uint64: Incomplete |
|
next_uint32: Incomplete |
|
next_double: Incomplete |
|
bit_generator: Incomplete |
|
|
|
@type_check_only |
|
class _CythonMixin: |
|
def __setstate_cython__(self, pyx_state: object, /) -> None: ... |
|
def __reduce_cython__(self) -> Any: ... |
|
|
|
@type_check_only |
|
class _GenerateStateMixin(_CythonMixin): |
|
def generate_state(self, /, n_words: int, dtype: _DTypeLikeUint_ = ...) -> NDArray[np.uint32 | np.uint64]: ... |
|
|
|
|
|
|
|
class ISeedSequence(abc.ABC): |
|
@abc.abstractmethod |
|
def generate_state(self, /, n_words: int, dtype: _DTypeLikeUint_ = ...) -> NDArray[np.uint32 | np.uint64]: ... |
|
|
|
class ISpawnableSeedSequence(ISeedSequence, abc.ABC): |
|
@abc.abstractmethod |
|
def spawn(self, /, n_children: int) -> list[Self]: ... |
|
|
|
class SeedlessSeedSequence(_GenerateStateMixin, ISpawnableSeedSequence): |
|
def spawn(self, /, n_children: int) -> list[Self]: ... |
|
|
|
class SeedSequence(_GenerateStateMixin, ISpawnableSeedSequence): |
|
__pyx_vtable__: ClassVar[CapsuleType] = ... |
|
|
|
entropy: int | Sequence[int] | None |
|
spawn_key: tuple[int, ...] |
|
pool_size: int |
|
n_children_spawned: int |
|
pool: NDArray[np.uint32] |
|
|
|
def __init__( |
|
self, |
|
/, |
|
entropy: _ArrayLikeInt_co | None = None, |
|
*, |
|
spawn_key: Sequence[int] = (), |
|
pool_size: int = 4, |
|
n_children_spawned: int = ..., |
|
) -> None: ... |
|
def spawn(self, /, n_children: int) -> list[Self]: ... |
|
@property |
|
def state(self) -> _SeedSeqState: ... |
|
|
|
class BitGenerator(_CythonMixin, abc.ABC): |
|
lock: Lock |
|
@property |
|
def state(self) -> Mapping[str, Any]: ... |
|
@state.setter |
|
def state(self, value: Mapping[str, Any], /) -> None: ... |
|
@property |
|
def seed_seq(self) -> ISeedSequence: ... |
|
@property |
|
def ctypes(self) -> _Interface: ... |
|
@property |
|
def cffi(self) -> _Interface: ... |
|
@property |
|
def capsule(self) -> CapsuleType: ... |
|
|
|
|
|
def __init__(self, /, seed: _ArrayLikeInt_co | SeedSequence | None = None) -> None: ... |
|
def __reduce__(self) -> tuple[Callable[[str], Self], tuple[str], tuple[Mapping[str, Any], ISeedSequence]]: ... |
|
def spawn(self, /, n_children: int) -> list[Self]: ... |
|
def _benchmark(self, /, cnt: int, method: str = "uint64") -> None: ... |
|
|
|
|
|
@overload |
|
def random_raw(self, /, size: None = None, output: Literal[True] = True) -> int: ... |
|
@overload |
|
def random_raw(self, /, size: _ShapeLike, output: Literal[True] = True) -> NDArray[np.uint64]: ... |
|
@overload |
|
def random_raw(self, /, size: _ShapeLike | None, output: Literal[False]) -> None: ... |
|
@overload |
|
def random_raw(self, /, size: _ShapeLike | None = None, *, output: Literal[False]) -> None: ... |
|
|