|
from math import nan, inf |
|
import pytest |
|
from numpy._core import array, arange, printoptions |
|
import numpy.polynomial as poly |
|
from numpy.testing import assert_equal, assert_ |
|
|
|
|
|
from fractions import Fraction |
|
from decimal import Decimal |
|
|
|
|
|
class TestStrUnicodeSuperSubscripts: |
|
|
|
@pytest.fixture(scope='class', autouse=True) |
|
def use_unicode(self): |
|
poly.set_default_printstyle('unicode') |
|
|
|
@pytest.mark.parametrize(('inp', 'tgt'), ( |
|
([1, 2, 3], "1.0 + 2.0·x + 3.0·x²"), |
|
([-1, 0, 3, -1], "-1.0 + 0.0·x + 3.0·x² - 1.0·x³"), |
|
(arange(12), ("0.0 + 1.0·x + 2.0·x² + 3.0·x³ + 4.0·x⁴ + 5.0·x⁵ + " |
|
"6.0·x⁶ + 7.0·x⁷ +\n8.0·x⁸ + 9.0·x⁹ + 10.0·x¹⁰ + " |
|
"11.0·x¹¹")), |
|
)) |
|
def test_polynomial_str(self, inp, tgt): |
|
p = poly.Polynomial(inp) |
|
res = str(p) |
|
assert_equal(res, tgt) |
|
|
|
@pytest.mark.parametrize(('inp', 'tgt'), ( |
|
([1, 2, 3], "1.0 + 2.0·T₁(x) + 3.0·T₂(x)"), |
|
([-1, 0, 3, -1], "-1.0 + 0.0·T₁(x) + 3.0·T₂(x) - 1.0·T₃(x)"), |
|
(arange(12), ("0.0 + 1.0·T₁(x) + 2.0·T₂(x) + 3.0·T₃(x) + 4.0·T₄(x) + " |
|
"5.0·T₅(x) +\n6.0·T₆(x) + 7.0·T₇(x) + 8.0·T₈(x) + " |
|
"9.0·T₉(x) + 10.0·T₁₀(x) + 11.0·T₁₁(x)")), |
|
)) |
|
def test_chebyshev_str(self, inp, tgt): |
|
res = str(poly.Chebyshev(inp)) |
|
assert_equal(res, tgt) |
|
|
|
@pytest.mark.parametrize(('inp', 'tgt'), ( |
|
([1, 2, 3], "1.0 + 2.0·P₁(x) + 3.0·P₂(x)"), |
|
([-1, 0, 3, -1], "-1.0 + 0.0·P₁(x) + 3.0·P₂(x) - 1.0·P₃(x)"), |
|
(arange(12), ("0.0 + 1.0·P₁(x) + 2.0·P₂(x) + 3.0·P₃(x) + 4.0·P₄(x) + " |
|
"5.0·P₅(x) +\n6.0·P₆(x) + 7.0·P₇(x) + 8.0·P₈(x) + " |
|
"9.0·P₉(x) + 10.0·P₁₀(x) + 11.0·P₁₁(x)")), |
|
)) |
|
def test_legendre_str(self, inp, tgt): |
|
res = str(poly.Legendre(inp)) |
|
assert_equal(res, tgt) |
|
|
|
@pytest.mark.parametrize(('inp', 'tgt'), ( |
|
([1, 2, 3], "1.0 + 2.0·H₁(x) + 3.0·H₂(x)"), |
|
([-1, 0, 3, -1], "-1.0 + 0.0·H₁(x) + 3.0·H₂(x) - 1.0·H₃(x)"), |
|
(arange(12), ("0.0 + 1.0·H₁(x) + 2.0·H₂(x) + 3.0·H₃(x) + 4.0·H₄(x) + " |
|
"5.0·H₅(x) +\n6.0·H₆(x) + 7.0·H₇(x) + 8.0·H₈(x) + " |
|
"9.0·H₉(x) + 10.0·H₁₀(x) + 11.0·H₁₁(x)")), |
|
)) |
|
def test_hermite_str(self, inp, tgt): |
|
res = str(poly.Hermite(inp)) |
|
assert_equal(res, tgt) |
|
|
|
@pytest.mark.parametrize(('inp', 'tgt'), ( |
|
([1, 2, 3], "1.0 + 2.0·He₁(x) + 3.0·He₂(x)"), |
|
([-1, 0, 3, -1], "-1.0 + 0.0·He₁(x) + 3.0·He₂(x) - 1.0·He₃(x)"), |
|
(arange(12), ("0.0 + 1.0·He₁(x) + 2.0·He₂(x) + 3.0·He₃(x) + " |
|
"4.0·He₄(x) + 5.0·He₅(x) +\n6.0·He₆(x) + 7.0·He₇(x) + " |
|
"8.0·He₈(x) + 9.0·He₉(x) + 10.0·He₁₀(x) +\n" |
|
"11.0·He₁₁(x)")), |
|
)) |
|
def test_hermiteE_str(self, inp, tgt): |
|
res = str(poly.HermiteE(inp)) |
|
assert_equal(res, tgt) |
|
|
|
@pytest.mark.parametrize(('inp', 'tgt'), ( |
|
([1, 2, 3], "1.0 + 2.0·L₁(x) + 3.0·L₂(x)"), |
|
([-1, 0, 3, -1], "-1.0 + 0.0·L₁(x) + 3.0·L₂(x) - 1.0·L₃(x)"), |
|
(arange(12), ("0.0 + 1.0·L₁(x) + 2.0·L₂(x) + 3.0·L₃(x) + 4.0·L₄(x) + " |
|
"5.0·L₅(x) +\n6.0·L₆(x) + 7.0·L₇(x) + 8.0·L₈(x) + " |
|
"9.0·L₉(x) + 10.0·L₁₀(x) + 11.0·L₁₁(x)")), |
|
)) |
|
def test_laguerre_str(self, inp, tgt): |
|
res = str(poly.Laguerre(inp)) |
|
assert_equal(res, tgt) |
|
|
|
def test_polynomial_str_domains(self): |
|
res = str(poly.Polynomial([0, 1])) |
|
tgt = '0.0 + 1.0·x' |
|
assert_equal(res, tgt) |
|
|
|
res = str(poly.Polynomial([0, 1], domain=[1, 2])) |
|
tgt = '0.0 + 1.0·(-3.0 + 2.0x)' |
|
assert_equal(res, tgt) |
|
|
|
class TestStrAscii: |
|
|
|
@pytest.fixture(scope='class', autouse=True) |
|
def use_ascii(self): |
|
poly.set_default_printstyle('ascii') |
|
|
|
@pytest.mark.parametrize(('inp', 'tgt'), ( |
|
([1, 2, 3], "1.0 + 2.0 x + 3.0 x**2"), |
|
([-1, 0, 3, -1], "-1.0 + 0.0 x + 3.0 x**2 - 1.0 x**3"), |
|
(arange(12), ("0.0 + 1.0 x + 2.0 x**2 + 3.0 x**3 + 4.0 x**4 + " |
|
"5.0 x**5 + 6.0 x**6 +\n7.0 x**7 + 8.0 x**8 + " |
|
"9.0 x**9 + 10.0 x**10 + 11.0 x**11")), |
|
)) |
|
def test_polynomial_str(self, inp, tgt): |
|
res = str(poly.Polynomial(inp)) |
|
assert_equal(res, tgt) |
|
|
|
@pytest.mark.parametrize(('inp', 'tgt'), ( |
|
([1, 2, 3], "1.0 + 2.0 T_1(x) + 3.0 T_2(x)"), |
|
([-1, 0, 3, -1], "-1.0 + 0.0 T_1(x) + 3.0 T_2(x) - 1.0 T_3(x)"), |
|
(arange(12), ("0.0 + 1.0 T_1(x) + 2.0 T_2(x) + 3.0 T_3(x) + " |
|
"4.0 T_4(x) + 5.0 T_5(x) +\n6.0 T_6(x) + 7.0 T_7(x) + " |
|
"8.0 T_8(x) + 9.0 T_9(x) + 10.0 T_10(x) +\n" |
|
"11.0 T_11(x)")), |
|
)) |
|
def test_chebyshev_str(self, inp, tgt): |
|
res = str(poly.Chebyshev(inp)) |
|
assert_equal(res, tgt) |
|
|
|
@pytest.mark.parametrize(('inp', 'tgt'), ( |
|
([1, 2, 3], "1.0 + 2.0 P_1(x) + 3.0 P_2(x)"), |
|
([-1, 0, 3, -1], "-1.0 + 0.0 P_1(x) + 3.0 P_2(x) - 1.0 P_3(x)"), |
|
(arange(12), ("0.0 + 1.0 P_1(x) + 2.0 P_2(x) + 3.0 P_3(x) + " |
|
"4.0 P_4(x) + 5.0 P_5(x) +\n6.0 P_6(x) + 7.0 P_7(x) + " |
|
"8.0 P_8(x) + 9.0 P_9(x) + 10.0 P_10(x) +\n" |
|
"11.0 P_11(x)")), |
|
)) |
|
def test_legendre_str(self, inp, tgt): |
|
res = str(poly.Legendre(inp)) |
|
assert_equal(res, tgt) |
|
|
|
@pytest.mark.parametrize(('inp', 'tgt'), ( |
|
([1, 2, 3], "1.0 + 2.0 H_1(x) + 3.0 H_2(x)"), |
|
([-1, 0, 3, -1], "-1.0 + 0.0 H_1(x) + 3.0 H_2(x) - 1.0 H_3(x)"), |
|
(arange(12), ("0.0 + 1.0 H_1(x) + 2.0 H_2(x) + 3.0 H_3(x) + " |
|
"4.0 H_4(x) + 5.0 H_5(x) +\n6.0 H_6(x) + 7.0 H_7(x) + " |
|
"8.0 H_8(x) + 9.0 H_9(x) + 10.0 H_10(x) +\n" |
|
"11.0 H_11(x)")), |
|
)) |
|
def test_hermite_str(self, inp, tgt): |
|
res = str(poly.Hermite(inp)) |
|
assert_equal(res, tgt) |
|
|
|
@pytest.mark.parametrize(('inp', 'tgt'), ( |
|
([1, 2, 3], "1.0 + 2.0 He_1(x) + 3.0 He_2(x)"), |
|
([-1, 0, 3, -1], "-1.0 + 0.0 He_1(x) + 3.0 He_2(x) - 1.0 He_3(x)"), |
|
(arange(12), ("0.0 + 1.0 He_1(x) + 2.0 He_2(x) + 3.0 He_3(x) + " |
|
"4.0 He_4(x) +\n5.0 He_5(x) + 6.0 He_6(x) + " |
|
"7.0 He_7(x) + 8.0 He_8(x) + 9.0 He_9(x) +\n" |
|
"10.0 He_10(x) + 11.0 He_11(x)")), |
|
)) |
|
def test_hermiteE_str(self, inp, tgt): |
|
res = str(poly.HermiteE(inp)) |
|
assert_equal(res, tgt) |
|
|
|
@pytest.mark.parametrize(('inp', 'tgt'), ( |
|
([1, 2, 3], "1.0 + 2.0 L_1(x) + 3.0 L_2(x)"), |
|
([-1, 0, 3, -1], "-1.0 + 0.0 L_1(x) + 3.0 L_2(x) - 1.0 L_3(x)"), |
|
(arange(12), ("0.0 + 1.0 L_1(x) + 2.0 L_2(x) + 3.0 L_3(x) + " |
|
"4.0 L_4(x) + 5.0 L_5(x) +\n6.0 L_6(x) + 7.0 L_7(x) + " |
|
"8.0 L_8(x) + 9.0 L_9(x) + 10.0 L_10(x) +\n" |
|
"11.0 L_11(x)")), |
|
)) |
|
def test_laguerre_str(self, inp, tgt): |
|
res = str(poly.Laguerre(inp)) |
|
assert_equal(res, tgt) |
|
|
|
def test_polynomial_str_domains(self): |
|
res = str(poly.Polynomial([0, 1])) |
|
tgt = '0.0 + 1.0 x' |
|
assert_equal(res, tgt) |
|
|
|
res = str(poly.Polynomial([0, 1], domain=[1, 2])) |
|
tgt = '0.0 + 1.0 (-3.0 + 2.0x)' |
|
assert_equal(res, tgt) |
|
|
|
class TestLinebreaking: |
|
|
|
@pytest.fixture(scope='class', autouse=True) |
|
def use_ascii(self): |
|
poly.set_default_printstyle('ascii') |
|
|
|
def test_single_line_one_less(self): |
|
|
|
p = poly.Polynomial([12345678, 12345678, 12345678, 12345678, 123]) |
|
assert_equal(len(str(p)), 74) |
|
assert_equal(str(p), ( |
|
'12345678.0 + 12345678.0 x + 12345678.0 x**2 + ' |
|
'12345678.0 x**3 + 123.0 x**4' |
|
)) |
|
|
|
def test_num_chars_is_linewidth(self): |
|
|
|
p = poly.Polynomial([12345678, 12345678, 12345678, 12345678, 1234]) |
|
assert_equal(len(str(p)), 75) |
|
assert_equal(str(p), ( |
|
'12345678.0 + 12345678.0 x + 12345678.0 x**2 + ' |
|
'12345678.0 x**3 +\n1234.0 x**4' |
|
)) |
|
|
|
def test_first_linebreak_multiline_one_less_than_linewidth(self): |
|
|
|
p = poly.Polynomial( |
|
[12345678, 12345678, 12345678, 12345678, 1, 12345678] |
|
) |
|
assert_equal(len(str(p).split('\n')[0]), 74) |
|
assert_equal(str(p), ( |
|
'12345678.0 + 12345678.0 x + 12345678.0 x**2 + ' |
|
'12345678.0 x**3 + 1.0 x**4 +\n12345678.0 x**5' |
|
)) |
|
|
|
def test_first_linebreak_multiline_on_linewidth(self): |
|
|
|
p = poly.Polynomial( |
|
[12345678, 12345678, 12345678, 12345678.12, 1, 12345678] |
|
) |
|
assert_equal(str(p), ( |
|
'12345678.0 + 12345678.0 x + 12345678.0 x**2 + ' |
|
'12345678.12 x**3 +\n1.0 x**4 + 12345678.0 x**5' |
|
)) |
|
|
|
@pytest.mark.parametrize(('lw', 'tgt'), ( |
|
(75, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 + 40000.0 x**4 + ' |
|
'500000.0 x**5 +\n600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 + ' |
|
'900.0 x**9')), |
|
(45, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 +\n40000.0 x**4 + ' |
|
'500000.0 x**5 +\n600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 +\n' |
|
'900.0 x**9')), |
|
(132, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 + 40000.0 x**4 + ' |
|
'500000.0 x**5 + 600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 + ' |
|
'900.0 x**9')), |
|
)) |
|
def test_linewidth_printoption(self, lw, tgt): |
|
p = poly.Polynomial( |
|
[0, 10, 200, 3000, 40000, 500000, 600000, 70000, 8000, 900] |
|
) |
|
with printoptions(linewidth=lw): |
|
assert_equal(str(p), tgt) |
|
for line in str(p).split('\n'): |
|
assert_(len(line) < lw) |
|
|
|
|
|
def test_set_default_printoptions(): |
|
p = poly.Polynomial([1, 2, 3]) |
|
c = poly.Chebyshev([1, 2, 3]) |
|
poly.set_default_printstyle('ascii') |
|
assert_equal(str(p), "1.0 + 2.0 x + 3.0 x**2") |
|
assert_equal(str(c), "1.0 + 2.0 T_1(x) + 3.0 T_2(x)") |
|
poly.set_default_printstyle('unicode') |
|
assert_equal(str(p), "1.0 + 2.0·x + 3.0·x²") |
|
assert_equal(str(c), "1.0 + 2.0·T₁(x) + 3.0·T₂(x)") |
|
with pytest.raises(ValueError): |
|
poly.set_default_printstyle('invalid_input') |
|
|
|
|
|
def test_complex_coefficients(): |
|
"""Test both numpy and built-in complex.""" |
|
coefs = [0+1j, 1+1j, -2+2j, 3+0j] |
|
|
|
p1 = poly.Polynomial(coefs) |
|
|
|
p2 = poly.Polynomial(array(coefs, dtype=object)) |
|
poly.set_default_printstyle('unicode') |
|
assert_equal(str(p1), "1j + (1+1j)·x - (2-2j)·x² + (3+0j)·x³") |
|
assert_equal(str(p2), "1j + (1+1j)·x + (-2+2j)·x² + (3+0j)·x³") |
|
poly.set_default_printstyle('ascii') |
|
assert_equal(str(p1), "1j + (1+1j) x - (2-2j) x**2 + (3+0j) x**3") |
|
assert_equal(str(p2), "1j + (1+1j) x + (-2+2j) x**2 + (3+0j) x**3") |
|
|
|
|
|
@pytest.mark.parametrize(('coefs', 'tgt'), ( |
|
(array([Fraction(1, 2), Fraction(3, 4)], dtype=object), ( |
|
"1/2 + 3/4·x" |
|
)), |
|
(array([1, 2, Fraction(5, 7)], dtype=object), ( |
|
"1 + 2·x + 5/7·x²" |
|
)), |
|
(array([Decimal('1.00'), Decimal('2.2'), 3], dtype=object), ( |
|
"1.00 + 2.2·x + 3·x²" |
|
)), |
|
)) |
|
def test_numeric_object_coefficients(coefs, tgt): |
|
p = poly.Polynomial(coefs) |
|
poly.set_default_printstyle('unicode') |
|
assert_equal(str(p), tgt) |
|
|
|
|
|
@pytest.mark.parametrize(('coefs', 'tgt'), ( |
|
(array([1, 2, 'f'], dtype=object), '1 + 2·x + f·x²'), |
|
(array([1, 2, [3, 4]], dtype=object), '1 + 2·x + [3, 4]·x²'), |
|
)) |
|
def test_nonnumeric_object_coefficients(coefs, tgt): |
|
""" |
|
Test coef fallback for object arrays of non-numeric coefficients. |
|
""" |
|
p = poly.Polynomial(coefs) |
|
poly.set_default_printstyle('unicode') |
|
assert_equal(str(p), tgt) |
|
|
|
|
|
class TestFormat: |
|
def test_format_unicode(self): |
|
poly.set_default_printstyle('ascii') |
|
p = poly.Polynomial([1, 2, 0, -1]) |
|
assert_equal(format(p, 'unicode'), "1.0 + 2.0·x + 0.0·x² - 1.0·x³") |
|
|
|
def test_format_ascii(self): |
|
poly.set_default_printstyle('unicode') |
|
p = poly.Polynomial([1, 2, 0, -1]) |
|
assert_equal( |
|
format(p, 'ascii'), "1.0 + 2.0 x + 0.0 x**2 - 1.0 x**3" |
|
) |
|
|
|
def test_empty_formatstr(self): |
|
poly.set_default_printstyle('ascii') |
|
p = poly.Polynomial([1, 2, 3]) |
|
assert_equal(format(p), "1.0 + 2.0 x + 3.0 x**2") |
|
assert_equal(f"{p}", "1.0 + 2.0 x + 3.0 x**2") |
|
|
|
def test_bad_formatstr(self): |
|
p = poly.Polynomial([1, 2, 0, -1]) |
|
with pytest.raises(ValueError): |
|
format(p, '.2f') |
|
|
|
|
|
@pytest.mark.parametrize(('poly', 'tgt'), ( |
|
(poly.Polynomial, '1.0 + 2.0·z + 3.0·z²'), |
|
(poly.Chebyshev, '1.0 + 2.0·T₁(z) + 3.0·T₂(z)'), |
|
(poly.Hermite, '1.0 + 2.0·H₁(z) + 3.0·H₂(z)'), |
|
(poly.HermiteE, '1.0 + 2.0·He₁(z) + 3.0·He₂(z)'), |
|
(poly.Laguerre, '1.0 + 2.0·L₁(z) + 3.0·L₂(z)'), |
|
(poly.Legendre, '1.0 + 2.0·P₁(z) + 3.0·P₂(z)'), |
|
)) |
|
def test_symbol(poly, tgt): |
|
p = poly([1, 2, 3], symbol='z') |
|
assert_equal(f"{p:unicode}", tgt) |
|
|
|
|
|
class TestRepr: |
|
def test_polynomial_repr(self): |
|
res = repr(poly.Polynomial([0, 1])) |
|
tgt = ( |
|
"Polynomial([0., 1.], domain=[-1., 1.], window=[-1., 1.], " |
|
"symbol='x')" |
|
) |
|
assert_equal(res, tgt) |
|
|
|
def test_chebyshev_repr(self): |
|
res = repr(poly.Chebyshev([0, 1])) |
|
tgt = ( |
|
"Chebyshev([0., 1.], domain=[-1., 1.], window=[-1., 1.], " |
|
"symbol='x')" |
|
) |
|
assert_equal(res, tgt) |
|
|
|
def test_legendre_repr(self): |
|
res = repr(poly.Legendre([0, 1])) |
|
tgt = ( |
|
"Legendre([0., 1.], domain=[-1., 1.], window=[-1., 1.], " |
|
"symbol='x')" |
|
) |
|
assert_equal(res, tgt) |
|
|
|
def test_hermite_repr(self): |
|
res = repr(poly.Hermite([0, 1])) |
|
tgt = ( |
|
"Hermite([0., 1.], domain=[-1., 1.], window=[-1., 1.], " |
|
"symbol='x')" |
|
) |
|
assert_equal(res, tgt) |
|
|
|
def test_hermiteE_repr(self): |
|
res = repr(poly.HermiteE([0, 1])) |
|
tgt = ( |
|
"HermiteE([0., 1.], domain=[-1., 1.], window=[-1., 1.], " |
|
"symbol='x')" |
|
) |
|
assert_equal(res, tgt) |
|
|
|
def test_laguerre_repr(self): |
|
res = repr(poly.Laguerre([0, 1])) |
|
tgt = ( |
|
"Laguerre([0., 1.], domain=[0., 1.], window=[0., 1.], " |
|
"symbol='x')" |
|
) |
|
assert_equal(res, tgt) |
|
|
|
|
|
class TestLatexRepr: |
|
"""Test the latex repr used by Jupyter""" |
|
|
|
@staticmethod |
|
def as_latex(obj): |
|
|
|
|
|
|
|
obj._repr_latex_scalar = lambda x, parens=False: str(x) |
|
try: |
|
return obj._repr_latex_() |
|
finally: |
|
del obj._repr_latex_scalar |
|
|
|
def test_simple_polynomial(self): |
|
|
|
p = poly.Polynomial([1, 2, 3]) |
|
assert_equal(self.as_latex(p), |
|
r'$x \mapsto 1.0 + 2.0\,x + 3.0\,x^{2}$') |
|
|
|
|
|
p = poly.Polynomial([1, 2, 3], domain=[-2, 0]) |
|
assert_equal(self.as_latex(p), |
|
r'$x \mapsto 1.0 + 2.0\,\left(1.0 + x\right) + 3.0\,\left(1.0 + x\right)^{2}$') |
|
|
|
|
|
p = poly.Polynomial([1, 2, 3], domain=[-0.5, 0.5]) |
|
assert_equal(self.as_latex(p), |
|
r'$x \mapsto 1.0 + 2.0\,\left(2.0x\right) + 3.0\,\left(2.0x\right)^{2}$') |
|
|
|
|
|
p = poly.Polynomial([1, 2, 3], domain=[-1, 0]) |
|
assert_equal(self.as_latex(p), |
|
r'$x \mapsto 1.0 + 2.0\,\left(1.0 + 2.0x\right) + 3.0\,\left(1.0 + 2.0x\right)^{2}$') |
|
|
|
def test_basis_func(self): |
|
p = poly.Chebyshev([1, 2, 3]) |
|
assert_equal(self.as_latex(p), |
|
r'$x \mapsto 1.0\,{T}_{0}(x) + 2.0\,{T}_{1}(x) + 3.0\,{T}_{2}(x)$') |
|
|
|
p = poly.Chebyshev([1, 2, 3], domain=[-1, 0]) |
|
assert_equal(self.as_latex(p), |
|
r'$x \mapsto 1.0\,{T}_{0}(1.0 + 2.0x) + 2.0\,{T}_{1}(1.0 + 2.0x) + 3.0\,{T}_{2}(1.0 + 2.0x)$') |
|
|
|
def test_multichar_basis_func(self): |
|
p = poly.HermiteE([1, 2, 3]) |
|
assert_equal(self.as_latex(p), |
|
r'$x \mapsto 1.0\,{He}_{0}(x) + 2.0\,{He}_{1}(x) + 3.0\,{He}_{2}(x)$') |
|
|
|
def test_symbol_basic(self): |
|
|
|
p = poly.Polynomial([1, 2, 3], symbol='z') |
|
assert_equal(self.as_latex(p), |
|
r'$z \mapsto 1.0 + 2.0\,z + 3.0\,z^{2}$') |
|
|
|
|
|
p = poly.Polynomial([1, 2, 3], domain=[-2, 0], symbol='z') |
|
assert_equal( |
|
self.as_latex(p), |
|
( |
|
r'$z \mapsto 1.0 + 2.0\,\left(1.0 + z\right) + 3.0\,' |
|
r'\left(1.0 + z\right)^{2}$' |
|
), |
|
) |
|
|
|
|
|
p = poly.Polynomial([1, 2, 3], domain=[-0.5, 0.5], symbol='z') |
|
assert_equal( |
|
self.as_latex(p), |
|
( |
|
r'$z \mapsto 1.0 + 2.0\,\left(2.0z\right) + 3.0\,' |
|
r'\left(2.0z\right)^{2}$' |
|
), |
|
) |
|
|
|
|
|
p = poly.Polynomial([1, 2, 3], domain=[-1, 0], symbol='z') |
|
assert_equal( |
|
self.as_latex(p), |
|
( |
|
r'$z \mapsto 1.0 + 2.0\,\left(1.0 + 2.0z\right) + 3.0\,' |
|
r'\left(1.0 + 2.0z\right)^{2}$' |
|
), |
|
) |
|
|
|
def test_numeric_object_coefficients(self): |
|
coefs = array([Fraction(1, 2), Fraction(1)]) |
|
p = poly.Polynomial(coefs) |
|
assert_equal(self.as_latex(p), '$x \\mapsto 1/2 + 1\\,x$') |
|
|
|
SWITCH_TO_EXP = ( |
|
'1.0 + (1.0e-01) x + (1.0e-02) x**2', |
|
'1.2 + (1.2e-01) x + (1.2e-02) x**2', |
|
'1.23 + 0.12 x + (1.23e-02) x**2 + (1.23e-03) x**3', |
|
'1.235 + 0.123 x + (1.235e-02) x**2 + (1.235e-03) x**3', |
|
'1.2346 + 0.1235 x + 0.0123 x**2 + (1.2346e-03) x**3 + (1.2346e-04) x**4', |
|
'1.23457 + 0.12346 x + 0.01235 x**2 + (1.23457e-03) x**3 + ' |
|
'(1.23457e-04) x**4', |
|
'1.234568 + 0.123457 x + 0.012346 x**2 + 0.001235 x**3 + ' |
|
'(1.234568e-04) x**4 + (1.234568e-05) x**5', |
|
'1.2345679 + 0.1234568 x + 0.0123457 x**2 + 0.0012346 x**3 + ' |
|
'(1.2345679e-04) x**4 + (1.2345679e-05) x**5') |
|
|
|
class TestPrintOptions: |
|
""" |
|
Test the output is properly configured via printoptions. |
|
The exponential notation is enabled automatically when the values |
|
are too small or too large. |
|
""" |
|
|
|
@pytest.fixture(scope='class', autouse=True) |
|
def use_ascii(self): |
|
poly.set_default_printstyle('ascii') |
|
|
|
def test_str(self): |
|
p = poly.Polynomial([1/2, 1/7, 1/7*10**8, 1/7*10**9]) |
|
assert_equal(str(p), '0.5 + 0.14285714 x + 14285714.28571429 x**2 ' |
|
'+ (1.42857143e+08) x**3') |
|
|
|
with printoptions(precision=3): |
|
assert_equal(str(p), '0.5 + 0.143 x + 14285714.286 x**2 ' |
|
'+ (1.429e+08) x**3') |
|
|
|
def test_latex(self): |
|
p = poly.Polynomial([1/2, 1/7, 1/7*10**8, 1/7*10**9]) |
|
assert_equal(p._repr_latex_(), |
|
r'$x \mapsto \text{0.5} + \text{0.14285714}\,x + ' |
|
r'\text{14285714.28571429}\,x^{2} + ' |
|
r'\text{(1.42857143e+08)}\,x^{3}$') |
|
|
|
with printoptions(precision=3): |
|
assert_equal(p._repr_latex_(), |
|
r'$x \mapsto \text{0.5} + \text{0.143}\,x + ' |
|
r'\text{14285714.286}\,x^{2} + \text{(1.429e+08)}\,x^{3}$') |
|
|
|
def test_fixed(self): |
|
p = poly.Polynomial([1/2]) |
|
assert_equal(str(p), '0.5') |
|
|
|
with printoptions(floatmode='fixed'): |
|
assert_equal(str(p), '0.50000000') |
|
|
|
with printoptions(floatmode='fixed', precision=4): |
|
assert_equal(str(p), '0.5000') |
|
|
|
def test_switch_to_exp(self): |
|
for i, s in enumerate(SWITCH_TO_EXP): |
|
with printoptions(precision=i): |
|
p = poly.Polynomial([1.23456789*10**-i |
|
for i in range(i//2+3)]) |
|
assert str(p).replace('\n', ' ') == s |
|
|
|
def test_non_finite(self): |
|
p = poly.Polynomial([nan, inf]) |
|
assert str(p) == 'nan + inf x' |
|
assert p._repr_latex_() == r'$x \mapsto \text{nan} + \text{inf}\,x$' |
|
with printoptions(nanstr='NAN', infstr='INF'): |
|
assert str(p) == 'NAN + INF x' |
|
assert p._repr_latex_() == \ |
|
r'$x \mapsto \text{NAN} + \text{INF}\,x$' |
|
|