|
import pytest |
|
|
|
import numpy as np |
|
from numpy.ma import masked_array |
|
from numpy.testing import assert_array_equal |
|
|
|
|
|
def test_matrix_transpose_raises_error_for_1d(): |
|
msg = "matrix transpose with ndim < 2 is undefined" |
|
ma_arr = masked_array(data=[1, 2, 3, 4, 5, 6], |
|
mask=[1, 0, 1, 1, 1, 0]) |
|
with pytest.raises(ValueError, match=msg): |
|
ma_arr.mT |
|
|
|
|
|
def test_matrix_transpose_equals_transpose_2d(): |
|
ma_arr = masked_array(data=[[1, 2, 3], [4, 5, 6]], |
|
mask=[[1, 0, 1], [1, 1, 0]]) |
|
assert_array_equal(ma_arr.T, ma_arr.mT) |
|
|
|
|
|
ARRAY_SHAPES_TO_TEST = ( |
|
(5, 2), |
|
(5, 2, 3), |
|
(5, 2, 3, 4), |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("shape", ARRAY_SHAPES_TO_TEST) |
|
def test_matrix_transpose_equals_swapaxes(shape): |
|
num_of_axes = len(shape) |
|
vec = np.arange(shape[-1]) |
|
arr = np.broadcast_to(vec, shape) |
|
|
|
rng = np.random.default_rng(42) |
|
mask = rng.choice([0, 1], size=shape) |
|
ma_arr = masked_array(data=arr, mask=mask) |
|
|
|
tgt = np.swapaxes(arr, num_of_axes - 2, num_of_axes - 1) |
|
assert_array_equal(tgt, ma_arr.mT) |
|
|