|
""" Test functions for linalg module |
|
""" |
|
|
|
import pytest |
|
|
|
import numpy as np |
|
from numpy import linalg, arange, float64, array, dot, transpose |
|
from numpy.testing import ( |
|
assert_, assert_raises, assert_equal, assert_array_equal, |
|
assert_array_almost_equal, assert_array_less |
|
) |
|
|
|
|
|
class TestRegression: |
|
|
|
def test_eig_build(self): |
|
|
|
rva = array([1.03221168e+02 + 0.j, |
|
-1.91843603e+01 + 0.j, |
|
-6.04004526e-01 + 15.84422474j, |
|
-6.04004526e-01 - 15.84422474j, |
|
-1.13692929e+01 + 0.j, |
|
-6.57612485e-01 + 10.41755503j, |
|
-6.57612485e-01 - 10.41755503j, |
|
1.82126812e+01 + 0.j, |
|
1.06011014e+01 + 0.j, |
|
7.80732773e+00 + 0.j, |
|
-7.65390898e-01 + 0.j, |
|
1.51971555e-15 + 0.j, |
|
-1.51308713e-15 + 0.j]) |
|
a = arange(13 * 13, dtype=float64) |
|
a.shape = (13, 13) |
|
a = a % 17 |
|
va, ve = linalg.eig(a) |
|
va.sort() |
|
rva.sort() |
|
assert_array_almost_equal(va, rva) |
|
|
|
def test_eigh_build(self): |
|
|
|
rvals = [68.60568999, 89.57756725, 106.67185574] |
|
|
|
cov = array([[77.70273908, 3.51489954, 15.64602427], |
|
[3.51489954, 88.97013878, -1.07431931], |
|
[15.64602427, -1.07431931, 98.18223512]]) |
|
|
|
vals, vecs = linalg.eigh(cov) |
|
assert_array_almost_equal(vals, rvals) |
|
|
|
def test_svd_build(self): |
|
|
|
a = array([[0., 1.], [1., 1.], [2., 1.], [3., 1.]]) |
|
m, n = a.shape |
|
u, s, vh = linalg.svd(a) |
|
|
|
b = dot(transpose(u[:, n:]), a) |
|
|
|
assert_array_almost_equal(b, np.zeros((2, 2))) |
|
|
|
def test_norm_vector_badarg(self): |
|
|
|
|
|
assert_raises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro') |
|
|
|
def test_lapack_endian(self): |
|
|
|
a = array([[5.7998084, -2.1825367], |
|
[-2.1825367, 9.85910595]], dtype='>f8') |
|
b = array(a, dtype='<f8') |
|
|
|
ap = linalg.cholesky(a) |
|
bp = linalg.cholesky(b) |
|
assert_array_equal(ap, bp) |
|
|
|
def test_large_svd_32bit(self): |
|
|
|
x = np.eye(1000, 66) |
|
np.linalg.svd(x) |
|
|
|
def test_svd_no_uv(self): |
|
|
|
for shape in (3, 4), (4, 4), (4, 3): |
|
for t in float, complex: |
|
a = np.ones(shape, dtype=t) |
|
w = linalg.svd(a, compute_uv=False) |
|
c = np.count_nonzero(np.absolute(w) > 0.5) |
|
assert_equal(c, 1) |
|
assert_equal(np.linalg.matrix_rank(a), 1) |
|
assert_array_less(1, np.linalg.norm(a, ord=2)) |
|
|
|
w_svdvals = linalg.svdvals(a) |
|
assert_array_almost_equal(w, w_svdvals) |
|
|
|
def test_norm_object_array(self): |
|
|
|
testvector = np.array([np.array([0, 1]), 0, 0], dtype=object) |
|
|
|
norm = linalg.norm(testvector) |
|
assert_array_equal(norm, [0, 1]) |
|
assert_(norm.dtype == np.dtype('float64')) |
|
|
|
norm = linalg.norm(testvector, ord=1) |
|
assert_array_equal(norm, [0, 1]) |
|
assert_(norm.dtype != np.dtype('float64')) |
|
|
|
norm = linalg.norm(testvector, ord=2) |
|
assert_array_equal(norm, [0, 1]) |
|
assert_(norm.dtype == np.dtype('float64')) |
|
|
|
assert_raises(ValueError, linalg.norm, testvector, ord='fro') |
|
assert_raises(ValueError, linalg.norm, testvector, ord='nuc') |
|
assert_raises(ValueError, linalg.norm, testvector, ord=np.inf) |
|
assert_raises(ValueError, linalg.norm, testvector, ord=-np.inf) |
|
assert_raises(ValueError, linalg.norm, testvector, ord=0) |
|
assert_raises(ValueError, linalg.norm, testvector, ord=-1) |
|
assert_raises(ValueError, linalg.norm, testvector, ord=-2) |
|
|
|
testmatrix = np.array([[np.array([0, 1]), 0, 0], |
|
[0, 0, 0]], dtype=object) |
|
|
|
norm = linalg.norm(testmatrix) |
|
assert_array_equal(norm, [0, 1]) |
|
assert_(norm.dtype == np.dtype('float64')) |
|
|
|
norm = linalg.norm(testmatrix, ord='fro') |
|
assert_array_equal(norm, [0, 1]) |
|
assert_(norm.dtype == np.dtype('float64')) |
|
|
|
assert_raises(TypeError, linalg.norm, testmatrix, ord='nuc') |
|
assert_raises(ValueError, linalg.norm, testmatrix, ord=np.inf) |
|
assert_raises(ValueError, linalg.norm, testmatrix, ord=-np.inf) |
|
assert_raises(ValueError, linalg.norm, testmatrix, ord=0) |
|
assert_raises(ValueError, linalg.norm, testmatrix, ord=1) |
|
assert_raises(ValueError, linalg.norm, testmatrix, ord=-1) |
|
assert_raises(TypeError, linalg.norm, testmatrix, ord=2) |
|
assert_raises(TypeError, linalg.norm, testmatrix, ord=-2) |
|
assert_raises(ValueError, linalg.norm, testmatrix, ord=3) |
|
|
|
def test_lstsq_complex_larger_rhs(self): |
|
|
|
size = 20 |
|
n_rhs = 70 |
|
G = np.random.randn(size, size) + 1j * np.random.randn(size, size) |
|
u = np.random.randn(size, n_rhs) + 1j * np.random.randn(size, n_rhs) |
|
b = G.dot(u) |
|
|
|
u_lstsq, res, rank, sv = linalg.lstsq(G, b, rcond=None) |
|
|
|
assert_array_almost_equal(u_lstsq, u) |
|
|
|
@pytest.mark.parametrize("upper", [True, False]) |
|
def test_cholesky_empty_array(self, upper): |
|
|
|
res = np.linalg.cholesky(np.zeros((0, 0)), upper=upper) |
|
assert res.size == 0 |
|
|
|
@pytest.mark.parametrize("rtol", [0.0, [0.0] * 4, np.zeros((4,))]) |
|
def test_matrix_rank_rtol_argument(self, rtol): |
|
|
|
x = np.zeros((4, 3, 2)) |
|
res = np.linalg.matrix_rank(x, rtol=rtol) |
|
assert res.shape == (4,) |
|
|
|
def test_openblas_threading(self): |
|
|
|
|
|
|
|
x = np.arange(500000, dtype=np.float64) |
|
src = np.vstack((x, -10*x)).T |
|
matrix = np.array([[0, 1], [1, 0]]) |
|
expected = np.vstack((-10*x, x)).T |
|
for i in range(200): |
|
result = src @ matrix |
|
mismatches = (~np.isclose(result, expected)).sum() |
|
if mismatches != 0: |
|
assert False, ("unexpected result from matmul, " |
|
"probably due to OpenBLAS threading issues") |
|
|