Sam Chaudry
Upload folder using huggingface_hub
7885a28 verified
raw
history blame
15.8 kB
"""
Test the hashing module.
"""
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
# Copyright (c) 2009 Gael Varoquaux
# License: BSD Style, 3 clauses.
import collections
import gc
import hashlib
import io
import itertools
import pickle
import random
import sys
import time
from concurrent.futures import ProcessPoolExecutor
from decimal import Decimal
from joblib.func_inspect import filter_args
from joblib.hashing import hash
from joblib.memory import Memory
from joblib.test.common import np, with_numpy
from joblib.testing import fixture, parametrize, raises, skipif
def unicode(s):
return s
###############################################################################
# Helper functions for the tests
def time_func(func, *args):
"""Time function func on *args."""
times = list()
for _ in range(3):
t1 = time.time()
func(*args)
times.append(time.time() - t1)
return min(times)
def relative_time(func1, func2, *args):
"""Return the relative time between func1 and func2 applied on
*args.
"""
time_func1 = time_func(func1, *args)
time_func2 = time_func(func2, *args)
relative_diff = 0.5 * (abs(time_func1 - time_func2) / (time_func1 + time_func2))
return relative_diff
class Klass(object):
def f(self, x):
return x
class KlassWithCachedMethod(object):
def __init__(self, cachedir):
mem = Memory(location=cachedir)
self.f = mem.cache(self.f)
def f(self, x):
return x
###############################################################################
# Tests
input_list = [
1,
2,
1.0,
2.0,
1 + 1j,
2.0 + 1j,
"a",
"b",
(1,),
(
1,
1,
),
[
1,
],
[
1,
1,
],
{1: 1},
{1: 2},
{2: 1},
None,
gc.collect,
[
1,
].append,
# Next 2 sets have unorderable elements in python 3.
set(("a", 1)),
set(("a", 1, ("a", 1))),
# Next 2 dicts have unorderable type of keys in python 3.
{"a": 1, 1: 2},
{"a": 1, 1: 2, "d": {"a": 1}},
]
@parametrize("obj1", input_list)
@parametrize("obj2", input_list)
def test_trivial_hash(obj1, obj2):
"""Smoke test hash on various types."""
# Check that 2 objects have the same hash only if they are the same.
are_hashes_equal = hash(obj1) == hash(obj2)
are_objs_identical = obj1 is obj2
assert are_hashes_equal == are_objs_identical
def test_hash_methods():
# Check that hashing instance methods works
a = io.StringIO(unicode("a"))
assert hash(a.flush) == hash(a.flush)
a1 = collections.deque(range(10))
a2 = collections.deque(range(9))
assert hash(a1.extend) != hash(a2.extend)
@fixture(scope="function")
@with_numpy
def three_np_arrays():
rnd = np.random.RandomState(0)
arr1 = rnd.random_sample((10, 10))
arr2 = arr1.copy()
arr3 = arr2.copy()
arr3[0] += 1
return arr1, arr2, arr3
def test_hash_numpy_arrays(three_np_arrays):
arr1, arr2, arr3 = three_np_arrays
for obj1, obj2 in itertools.product(three_np_arrays, repeat=2):
are_hashes_equal = hash(obj1) == hash(obj2)
are_arrays_equal = np.all(obj1 == obj2)
assert are_hashes_equal == are_arrays_equal
assert hash(arr1) != hash(arr1.T)
def test_hash_numpy_dict_of_arrays(three_np_arrays):
arr1, arr2, arr3 = three_np_arrays
d1 = {1: arr1, 2: arr2}
d2 = {1: arr2, 2: arr1}
d3 = {1: arr2, 2: arr3}
assert hash(d1) == hash(d2)
assert hash(d1) != hash(d3)
@with_numpy
@parametrize("dtype", ["datetime64[s]", "timedelta64[D]"])
def test_numpy_datetime_array(dtype):
# memoryview is not supported for some dtypes e.g. datetime64
# see https://github.com/joblib/joblib/issues/188 for more details
a_hash = hash(np.arange(10))
array = np.arange(0, 10, dtype=dtype)
assert hash(array) != a_hash
@with_numpy
def test_hash_numpy_noncontiguous():
a = np.asarray(np.arange(6000).reshape((1000, 2, 3)), order="F")[:, :1, :]
b = np.ascontiguousarray(a)
assert hash(a) != hash(b)
c = np.asfortranarray(a)
assert hash(a) != hash(c)
@with_numpy
@parametrize("coerce_mmap", [True, False])
def test_hash_memmap(tmpdir, coerce_mmap):
"""Check that memmap and arrays hash identically if coerce_mmap is True."""
filename = tmpdir.join("memmap_temp").strpath
try:
m = np.memmap(filename, shape=(10, 10), mode="w+")
a = np.asarray(m)
are_hashes_equal = hash(a, coerce_mmap=coerce_mmap) == hash(
m, coerce_mmap=coerce_mmap
)
assert are_hashes_equal == coerce_mmap
finally:
if "m" in locals():
del m
# Force a garbage-collection cycle, to be certain that the
# object is delete, and we don't run in a problem under
# Windows with a file handle still open.
gc.collect()
@with_numpy
@skipif(
sys.platform == "win32",
reason="This test is not stable under windows for some reason",
)
def test_hash_numpy_performance():
"""Check the performance of hashing numpy arrays:
In [22]: a = np.random.random(1000000)
In [23]: %timeit hashlib.md5(a).hexdigest()
100 loops, best of 3: 20.7 ms per loop
In [24]: %timeit hashlib.md5(pickle.dumps(a, protocol=2)).hexdigest()
1 loops, best of 3: 73.1 ms per loop
In [25]: %timeit hashlib.md5(cPickle.dumps(a, protocol=2)).hexdigest()
10 loops, best of 3: 53.9 ms per loop
In [26]: %timeit hash(a)
100 loops, best of 3: 20.8 ms per loop
"""
rnd = np.random.RandomState(0)
a = rnd.random_sample(1000000)
def md5_hash(x):
return hashlib.md5(memoryview(x)).hexdigest()
relative_diff = relative_time(md5_hash, hash, a)
assert relative_diff < 0.3
# Check that hashing an tuple of 3 arrays takes approximately
# 3 times as much as hashing one array
time_hashlib = 3 * time_func(md5_hash, a)
time_hash = time_func(hash, (a, a, a))
relative_diff = 0.5 * (abs(time_hash - time_hashlib) / (time_hash + time_hashlib))
assert relative_diff < 0.3
def test_bound_methods_hash():
"""Make sure that calling the same method on two different instances
of the same class does resolve to the same hashes.
"""
a = Klass()
b = Klass()
assert hash(filter_args(a.f, [], (1,))) == hash(filter_args(b.f, [], (1,)))
def test_bound_cached_methods_hash(tmpdir):
"""Make sure that calling the same _cached_ method on two different
instances of the same class does resolve to the same hashes.
"""
a = KlassWithCachedMethod(tmpdir.strpath)
b = KlassWithCachedMethod(tmpdir.strpath)
assert hash(filter_args(a.f.func, [], (1,))) == hash(
filter_args(b.f.func, [], (1,))
)
@with_numpy
def test_hash_object_dtype():
"""Make sure that ndarrays with dtype `object' hash correctly."""
a = np.array([np.arange(i) for i in range(6)], dtype=object)
b = np.array([np.arange(i) for i in range(6)], dtype=object)
assert hash(a) == hash(b)
@with_numpy
def test_numpy_scalar():
# Numpy scalars are built from compiled functions, and lead to
# strange pickling paths explored, that can give hash collisions
a = np.float64(2.0)
b = np.float64(3.0)
assert hash(a) != hash(b)
def test_dict_hash(tmpdir):
# Check that dictionaries hash consistently, even though the ordering
# of the keys is not guaranteed
k = KlassWithCachedMethod(tmpdir.strpath)
d = {
"#s12069__c_maps.nii.gz": [33],
"#s12158__c_maps.nii.gz": [33],
"#s12258__c_maps.nii.gz": [33],
"#s12277__c_maps.nii.gz": [33],
"#s12300__c_maps.nii.gz": [33],
"#s12401__c_maps.nii.gz": [33],
"#s12430__c_maps.nii.gz": [33],
"#s13817__c_maps.nii.gz": [33],
"#s13903__c_maps.nii.gz": [33],
"#s13916__c_maps.nii.gz": [33],
"#s13981__c_maps.nii.gz": [33],
"#s13982__c_maps.nii.gz": [33],
"#s13983__c_maps.nii.gz": [33],
}
a = k.f(d)
b = k.f(a)
assert hash(a) == hash(b)
def test_set_hash(tmpdir):
# Check that sets hash consistently, even though their ordering
# is not guaranteed
k = KlassWithCachedMethod(tmpdir.strpath)
s = set(
[
"#s12069__c_maps.nii.gz",
"#s12158__c_maps.nii.gz",
"#s12258__c_maps.nii.gz",
"#s12277__c_maps.nii.gz",
"#s12300__c_maps.nii.gz",
"#s12401__c_maps.nii.gz",
"#s12430__c_maps.nii.gz",
"#s13817__c_maps.nii.gz",
"#s13903__c_maps.nii.gz",
"#s13916__c_maps.nii.gz",
"#s13981__c_maps.nii.gz",
"#s13982__c_maps.nii.gz",
"#s13983__c_maps.nii.gz",
]
)
a = k.f(s)
b = k.f(a)
assert hash(a) == hash(b)
def test_set_decimal_hash():
# Check that sets containing decimals hash consistently, even though
# ordering is not guaranteed
assert hash(set([Decimal(0), Decimal("NaN")])) == hash(
set([Decimal("NaN"), Decimal(0)])
)
def test_string():
# Test that we obtain the same hash for object owning several strings,
# whatever the past of these strings (which are immutable in Python)
string = "foo"
a = {string: "bar"}
b = {string: "bar"}
c = pickle.loads(pickle.dumps(b))
assert hash([a, b]) == hash([a, c])
@with_numpy
def test_numpy_dtype_pickling():
# numpy dtype hashing is tricky to get right: see #231, #239, #251 #1080,
# #1082, and explanatory comments inside
# ``joblib.hashing.NumpyHasher.save``.
# In this test, we make sure that the pickling of numpy dtypes is robust to
# object identity and object copy.
dt1 = np.dtype("f4")
dt2 = np.dtype("f4")
# simple dtypes objects are interned
assert dt1 is dt2
assert hash(dt1) == hash(dt2)
dt1_roundtripped = pickle.loads(pickle.dumps(dt1))
assert dt1 is not dt1_roundtripped
assert hash(dt1) == hash(dt1_roundtripped)
assert hash([dt1, dt1]) == hash([dt1_roundtripped, dt1_roundtripped])
assert hash([dt1, dt1]) == hash([dt1, dt1_roundtripped])
complex_dt1 = np.dtype([("name", np.str_, 16), ("grades", np.float64, (2,))])
complex_dt2 = np.dtype([("name", np.str_, 16), ("grades", np.float64, (2,))])
# complex dtypes objects are not interned
assert hash(complex_dt1) == hash(complex_dt2)
complex_dt1_roundtripped = pickle.loads(pickle.dumps(complex_dt1))
assert complex_dt1_roundtripped is not complex_dt1
assert hash(complex_dt1) == hash(complex_dt1_roundtripped)
assert hash([complex_dt1, complex_dt1]) == hash(
[complex_dt1_roundtripped, complex_dt1_roundtripped]
)
assert hash([complex_dt1, complex_dt1]) == hash(
[complex_dt1_roundtripped, complex_dt1]
)
@parametrize(
"to_hash,expected",
[
("This is a string to hash", "71b3f47df22cb19431d85d92d0b230b2"),
("C'est l\xe9t\xe9", "2d8d189e9b2b0b2e384d93c868c0e576"),
((123456, 54321, -98765), "e205227dd82250871fa25aa0ec690aa3"),
(
[random.Random(42).random() for _ in range(5)],
"a11ffad81f9682a7d901e6edc3d16c84",
),
({"abcde": 123, "sadfas": [-9999, 2, 3]}, "aeda150553d4bb5c69f0e69d51b0e2ef"),
],
)
def test_hashes_stay_the_same(to_hash, expected):
# We want to make sure that hashes don't change with joblib
# version. For end users, that would mean that they have to
# regenerate their cache from scratch, which potentially means
# lengthy recomputations.
# Expected results have been generated with joblib 0.9.2
assert hash(to_hash) == expected
@with_numpy
def test_hashes_are_different_between_c_and_fortran_contiguous_arrays():
# We want to be sure that the c-contiguous and f-contiguous versions of the
# same array produce 2 different hashes.
rng = np.random.RandomState(0)
arr_c = rng.random_sample((10, 10))
arr_f = np.asfortranarray(arr_c)
assert hash(arr_c) != hash(arr_f)
@with_numpy
def test_0d_array():
hash(np.array(0))
@with_numpy
def test_0d_and_1d_array_hashing_is_different():
assert hash(np.array(0)) != hash(np.array([0]))
@with_numpy
def test_hashes_stay_the_same_with_numpy_objects():
# Note: joblib used to test numpy objects hashing by comparing the produced
# hash of an object with some hard-coded target value to guarantee that
# hashing remains the same across joblib versions. However, since numpy
# 1.20 and joblib 1.0, joblib relies on potentially unstable implementation
# details of numpy to hash np.dtype objects, which makes the stability of
# hash values across different environments hard to guarantee and to test.
# As a result, hashing stability across joblib versions becomes best-effort
# only, and we only test the consistency within a single environment by
# making sure:
# - the hash of two copies of the same objects is the same
# - hashing some object in two different python processes produces the same
# value. This should be viewed as a proxy for testing hash consistency
# through time between Python sessions (provided no change in the
# environment was done between sessions).
def create_objects_to_hash():
rng = np.random.RandomState(42)
# Being explicit about dtypes in order to avoid
# architecture-related differences. Also using 'f4' rather than
# 'f8' for float arrays because 'f8' arrays generated by
# rng.random.randn don't seem to be bit-identical on 32bit and
# 64bit machines.
to_hash_list = [
rng.randint(-1000, high=1000, size=50).astype("<i8"),
tuple(rng.randn(3).astype("<f4") for _ in range(5)),
[rng.randn(3).astype("<f4") for _ in range(5)],
{
-3333: rng.randn(3, 5).astype("<f4"),
0: [
rng.randint(10, size=20).astype("<i8"),
rng.randn(10).astype("<f4"),
],
},
# Non regression cases for
# https://github.com/joblib/joblib/issues/308
np.arange(100, dtype="<i8").reshape((10, 10)),
# Fortran contiguous array
np.asfortranarray(np.arange(100, dtype="<i8").reshape((10, 10))),
# Non contiguous array
np.arange(100, dtype="<i8").reshape((10, 10))[:, :2],
]
return to_hash_list
# Create two lists containing copies of the same objects. joblib.hash
# should return the same hash for to_hash_list_one[i] and
# to_hash_list_two[i]
to_hash_list_one = create_objects_to_hash()
to_hash_list_two = create_objects_to_hash()
e1 = ProcessPoolExecutor(max_workers=1)
e2 = ProcessPoolExecutor(max_workers=1)
try:
for obj_1, obj_2 in zip(to_hash_list_one, to_hash_list_two):
# testing consistency of hashes across python processes
hash_1 = e1.submit(hash, obj_1).result()
hash_2 = e2.submit(hash, obj_1).result()
assert hash_1 == hash_2
# testing consistency when hashing two copies of the same objects.
hash_3 = e1.submit(hash, obj_2).result()
assert hash_1 == hash_3
finally:
e1.shutdown()
e2.shutdown()
def test_hashing_pickling_error():
def non_picklable():
return 42
with raises(pickle.PicklingError) as excinfo:
hash(non_picklable)
excinfo.match("PicklingError while hashing")
def test_wrong_hash_name():
msg = "Valid options for 'hash_name' are"
with raises(ValueError, match=msg):
data = {"foo": "bar"}
hash(data, hash_name="invalid")