|
import json |
|
import logging |
|
import mmap |
|
import os |
|
import shutil |
|
import zipfile |
|
from contextlib import contextmanager |
|
from dataclasses import dataclass, field |
|
from pathlib import Path |
|
from typing import Any, Dict, Generator, Iterable, Tuple, Union |
|
|
|
from ..errors import DDUFCorruptedFileError, DDUFExportError, DDUFInvalidEntryNameError |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
DDUF_ALLOWED_ENTRIES = { |
|
|
|
".json", |
|
".model", |
|
".safetensors", |
|
".txt", |
|
} |
|
|
|
DDUF_FOLDER_REQUIRED_ENTRIES = { |
|
|
|
"config.json", |
|
"tokenizer_config.json", |
|
"preprocessor_config.json", |
|
"scheduler_config.json", |
|
} |
|
|
|
|
|
@dataclass |
|
class DDUFEntry: |
|
"""Object representing a file entry in a DDUF file. |
|
|
|
See [`read_dduf_file`] for how to read a DDUF file. |
|
|
|
Attributes: |
|
filename (str): |
|
The name of the file in the DDUF archive. |
|
offset (int): |
|
The offset of the file in the DDUF archive. |
|
length (int): |
|
The length of the file in the DDUF archive. |
|
dduf_path (str): |
|
The path to the DDUF archive (for internal use). |
|
""" |
|
|
|
filename: str |
|
length: int |
|
offset: int |
|
|
|
dduf_path: Path = field(repr=False) |
|
|
|
@contextmanager |
|
def as_mmap(self) -> Generator[bytes, None, None]: |
|
"""Open the file as a memory-mapped file. |
|
|
|
Useful to load safetensors directly from the file. |
|
|
|
Example: |
|
```py |
|
>>> import safetensors.torch |
|
>>> with entry.as_mmap() as mm: |
|
... tensors = safetensors.torch.load(mm) |
|
``` |
|
""" |
|
with self.dduf_path.open("rb") as f: |
|
with mmap.mmap(f.fileno(), length=0, access=mmap.ACCESS_READ) as mm: |
|
yield mm[self.offset : self.offset + self.length] |
|
|
|
def read_text(self, encoding: str = "utf-8") -> str: |
|
"""Read the file as text. |
|
|
|
Useful for '.txt' and '.json' entries. |
|
|
|
Example: |
|
```py |
|
>>> import json |
|
>>> index = json.loads(entry.read_text()) |
|
``` |
|
""" |
|
with self.dduf_path.open("rb") as f: |
|
f.seek(self.offset) |
|
return f.read(self.length).decode(encoding=encoding) |
|
|
|
|
|
def read_dduf_file(dduf_path: Union[os.PathLike, str]) -> Dict[str, DDUFEntry]: |
|
""" |
|
Read a DDUF file and return a dictionary of entries. |
|
|
|
Only the metadata is read, the data is not loaded in memory. |
|
|
|
Args: |
|
dduf_path (`str` or `os.PathLike`): |
|
The path to the DDUF file to read. |
|
|
|
Returns: |
|
`Dict[str, DDUFEntry]`: |
|
A dictionary of [`DDUFEntry`] indexed by filename. |
|
|
|
Raises: |
|
- [`DDUFCorruptedFileError`]: If the DDUF file is corrupted (i.e. doesn't follow the DDUF format). |
|
|
|
Example: |
|
```python |
|
>>> import json |
|
>>> import safetensors.torch |
|
>>> from huggingface_hub import read_dduf_file |
|
|
|
# Read DDUF metadata |
|
>>> dduf_entries = read_dduf_file("FLUX.1-dev.dduf") |
|
|
|
# Returns a mapping filename <> DDUFEntry |
|
>>> dduf_entries["model_index.json"] |
|
DDUFEntry(filename='model_index.json', offset=66, length=587) |
|
|
|
# Load model index as JSON |
|
>>> json.loads(dduf_entries["model_index.json"].read_text()) |
|
{'_class_name': 'FluxPipeline', '_diffusers_version': '0.32.0.dev0', '_name_or_path': 'black-forest-labs/FLUX.1-dev', ... |
|
|
|
# Load VAE weights using safetensors |
|
>>> with dduf_entries["vae/diffusion_pytorch_model.safetensors"].as_mmap() as mm: |
|
... state_dict = safetensors.torch.load(mm) |
|
``` |
|
""" |
|
entries = {} |
|
dduf_path = Path(dduf_path) |
|
logger.info(f"Reading DDUF file {dduf_path}") |
|
with zipfile.ZipFile(str(dduf_path), "r") as zf: |
|
for info in zf.infolist(): |
|
logger.debug(f"Reading entry {info.filename}") |
|
if info.compress_type != zipfile.ZIP_STORED: |
|
raise DDUFCorruptedFileError("Data must not be compressed in DDUF file.") |
|
|
|
try: |
|
_validate_dduf_entry_name(info.filename) |
|
except DDUFInvalidEntryNameError as e: |
|
raise DDUFCorruptedFileError(f"Invalid entry name in DDUF file: {info.filename}") from e |
|
|
|
offset = _get_data_offset(zf, info) |
|
|
|
entries[info.filename] = DDUFEntry( |
|
filename=info.filename, offset=offset, length=info.file_size, dduf_path=dduf_path |
|
) |
|
|
|
|
|
if "model_index.json" not in entries: |
|
raise DDUFCorruptedFileError("Missing required 'model_index.json' entry in DDUF file.") |
|
index = json.loads(entries["model_index.json"].read_text()) |
|
_validate_dduf_structure(index, entries.keys()) |
|
|
|
logger.info(f"Done reading DDUF file {dduf_path}. Found {len(entries)} entries") |
|
return entries |
|
|
|
|
|
def export_entries_as_dduf( |
|
dduf_path: Union[str, os.PathLike], entries: Iterable[Tuple[str, Union[str, Path, bytes]]] |
|
) -> None: |
|
"""Write a DDUF file from an iterable of entries. |
|
|
|
This is a lower-level helper than [`export_folder_as_dduf`] that allows more flexibility when serializing data. |
|
In particular, you don't need to save the data on disk before exporting it in the DDUF file. |
|
|
|
Args: |
|
dduf_path (`str` or `os.PathLike`): |
|
The path to the DDUF file to write. |
|
entries (`Iterable[Tuple[str, Union[str, Path, bytes]]]`): |
|
An iterable of entries to write in the DDUF file. Each entry is a tuple with the filename and the content. |
|
The filename should be the path to the file in the DDUF archive. |
|
The content can be a string or a pathlib.Path representing a path to a file on the local disk or directly the content as bytes. |
|
|
|
Raises: |
|
- [`DDUFExportError`]: If anything goes wrong during the export (e.g. invalid entry name, missing 'model_index.json', etc.). |
|
|
|
Example: |
|
```python |
|
# Export specific files from the local disk. |
|
>>> from huggingface_hub import export_entries_as_dduf |
|
>>> export_entries_as_dduf( |
|
... dduf_path="stable-diffusion-v1-4-FP16.dduf", |
|
... entries=[ # List entries to add to the DDUF file (here, only FP16 weights) |
|
... ("model_index.json", "path/to/model_index.json"), |
|
... ("vae/config.json", "path/to/vae/config.json"), |
|
... ("vae/diffusion_pytorch_model.fp16.safetensors", "path/to/vae/diffusion_pytorch_model.fp16.safetensors"), |
|
... ("text_encoder/config.json", "path/to/text_encoder/config.json"), |
|
... ("text_encoder/model.fp16.safetensors", "path/to/text_encoder/model.fp16.safetensors"), |
|
... # ... add more entries here |
|
... ] |
|
... ) |
|
``` |
|
|
|
```python |
|
# Export state_dicts one by one from a loaded pipeline |
|
>>> from diffusers import DiffusionPipeline |
|
>>> from typing import Generator, Tuple |
|
>>> import safetensors.torch |
|
>>> from huggingface_hub import export_entries_as_dduf |
|
>>> pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") |
|
... # ... do some work with the pipeline |
|
|
|
>>> def as_entries(pipe: DiffusionPipeline) -> Generator[Tuple[str, bytes], None, None]: |
|
... # Build an generator that yields the entries to add to the DDUF file. |
|
... # The first element of the tuple is the filename in the DDUF archive (must use UNIX separator!). The second element is the content of the file. |
|
... # Entries will be evaluated lazily when the DDUF file is created (only 1 entry is loaded in memory at a time) |
|
... yield "vae/config.json", pipe.vae.to_json_string().encode() |
|
... yield "vae/diffusion_pytorch_model.safetensors", safetensors.torch.save(pipe.vae.state_dict()) |
|
... yield "text_encoder/config.json", pipe.text_encoder.config.to_json_string().encode() |
|
... yield "text_encoder/model.safetensors", safetensors.torch.save(pipe.text_encoder.state_dict()) |
|
... # ... add more entries here |
|
|
|
>>> export_entries_as_dduf(dduf_path="stable-diffusion-v1-4.dduf", entries=as_entries(pipe)) |
|
``` |
|
""" |
|
logger.info(f"Exporting DDUF file '{dduf_path}'") |
|
filenames = set() |
|
index = None |
|
with zipfile.ZipFile(str(dduf_path), "w", zipfile.ZIP_STORED) as archive: |
|
for filename, content in entries: |
|
if filename in filenames: |
|
raise DDUFExportError(f"Can't add duplicate entry: {filename}") |
|
filenames.add(filename) |
|
|
|
if filename == "model_index.json": |
|
try: |
|
index = json.loads(_load_content(content).decode()) |
|
except json.JSONDecodeError as e: |
|
raise DDUFExportError("Failed to parse 'model_index.json'.") from e |
|
|
|
try: |
|
filename = _validate_dduf_entry_name(filename) |
|
except DDUFInvalidEntryNameError as e: |
|
raise DDUFExportError(f"Invalid entry name: {filename}") from e |
|
logger.debug(f"Adding entry '{filename}' to DDUF file") |
|
_dump_content_in_archive(archive, filename, content) |
|
|
|
|
|
if index is None: |
|
raise DDUFExportError("Missing required 'model_index.json' entry in DDUF file.") |
|
try: |
|
_validate_dduf_structure(index, filenames) |
|
except DDUFCorruptedFileError as e: |
|
raise DDUFExportError("Invalid DDUF file structure.") from e |
|
|
|
logger.info(f"Done writing DDUF file {dduf_path}") |
|
|
|
|
|
def export_folder_as_dduf(dduf_path: Union[str, os.PathLike], folder_path: Union[str, os.PathLike]) -> None: |
|
""" |
|
Export a folder as a DDUF file. |
|
|
|
AUses [`export_entries_as_dduf`] under the hood. |
|
|
|
Args: |
|
dduf_path (`str` or `os.PathLike`): |
|
The path to the DDUF file to write. |
|
folder_path (`str` or `os.PathLike`): |
|
The path to the folder containing the diffusion model. |
|
|
|
Example: |
|
```python |
|
>>> from huggingface_hub import export_folder_as_dduf |
|
>>> export_folder_as_dduf(dduf_path="FLUX.1-dev.dduf", folder_path="path/to/FLUX.1-dev") |
|
``` |
|
""" |
|
folder_path = Path(folder_path) |
|
|
|
def _iterate_over_folder() -> Iterable[Tuple[str, Path]]: |
|
for path in Path(folder_path).glob("**/*"): |
|
if not path.is_file(): |
|
continue |
|
if path.suffix not in DDUF_ALLOWED_ENTRIES: |
|
logger.debug(f"Skipping file '{path}' (file type not allowed)") |
|
continue |
|
path_in_archive = path.relative_to(folder_path) |
|
if len(path_in_archive.parts) >= 3: |
|
logger.debug(f"Skipping file '{path}' (nested directories not allowed)") |
|
continue |
|
yield path_in_archive.as_posix(), path |
|
|
|
export_entries_as_dduf(dduf_path, _iterate_over_folder()) |
|
|
|
|
|
def _dump_content_in_archive(archive: zipfile.ZipFile, filename: str, content: Union[str, os.PathLike, bytes]) -> None: |
|
with archive.open(filename, "w", force_zip64=True) as archive_fh: |
|
if isinstance(content, (str, Path)): |
|
content_path = Path(content) |
|
with content_path.open("rb") as content_fh: |
|
shutil.copyfileobj(content_fh, archive_fh, 1024 * 1024 * 8) |
|
elif isinstance(content, bytes): |
|
archive_fh.write(content) |
|
else: |
|
raise DDUFExportError(f"Invalid content type for {filename}. Must be str, Path or bytes.") |
|
|
|
|
|
def _load_content(content: Union[str, Path, bytes]) -> bytes: |
|
"""Load the content of an entry as bytes. |
|
|
|
Used only for small checks (not to dump content into archive). |
|
""" |
|
if isinstance(content, (str, Path)): |
|
return Path(content).read_bytes() |
|
elif isinstance(content, bytes): |
|
return content |
|
else: |
|
raise DDUFExportError(f"Invalid content type. Must be str, Path or bytes. Got {type(content)}.") |
|
|
|
|
|
def _validate_dduf_entry_name(entry_name: str) -> str: |
|
if "." + entry_name.split(".")[-1] not in DDUF_ALLOWED_ENTRIES: |
|
raise DDUFInvalidEntryNameError(f"File type not allowed: {entry_name}") |
|
if "\\" in entry_name: |
|
raise DDUFInvalidEntryNameError(f"Entry names must use UNIX separators ('/'). Got {entry_name}.") |
|
entry_name = entry_name.strip("/") |
|
if entry_name.count("/") > 1: |
|
raise DDUFInvalidEntryNameError(f"DDUF only supports 1 level of directory. Got {entry_name}.") |
|
return entry_name |
|
|
|
|
|
def _validate_dduf_structure(index: Any, entry_names: Iterable[str]) -> None: |
|
""" |
|
Consistency checks on the DDUF file structure. |
|
|
|
Rules: |
|
- The 'model_index.json' entry is required and must contain a dictionary. |
|
- Each folder name must correspond to an entry in 'model_index.json'. |
|
- Each folder must contain at least a config file ('config.json', 'tokenizer_config.json', 'preprocessor_config.json', 'scheduler_config.json'). |
|
|
|
Args: |
|
index (Any): |
|
The content of the 'model_index.json' entry. |
|
entry_names (Iterable[str]): |
|
The list of entry names in the DDUF file. |
|
|
|
Raises: |
|
- [`DDUFCorruptedFileError`]: If the DDUF file is corrupted (i.e. doesn't follow the DDUF format). |
|
""" |
|
if not isinstance(index, dict): |
|
raise DDUFCorruptedFileError(f"Invalid 'model_index.json' content. Must be a dictionary. Got {type(index)}.") |
|
|
|
dduf_folders = {entry.split("/")[0] for entry in entry_names if "/" in entry} |
|
for folder in dduf_folders: |
|
if folder not in index: |
|
raise DDUFCorruptedFileError(f"Missing required entry '{folder}' in 'model_index.json'.") |
|
if not any(f"{folder}/{required_entry}" in entry_names for required_entry in DDUF_FOLDER_REQUIRED_ENTRIES): |
|
raise DDUFCorruptedFileError( |
|
f"Missing required file in folder '{folder}'. Must contains at least one of {DDUF_FOLDER_REQUIRED_ENTRIES}." |
|
) |
|
|
|
|
|
def _get_data_offset(zf: zipfile.ZipFile, info: zipfile.ZipInfo) -> int: |
|
""" |
|
Calculate the data offset for a file in a ZIP archive. |
|
|
|
Args: |
|
zf (`zipfile.ZipFile`): |
|
The opened ZIP file. Must be opened in read mode. |
|
info (`zipfile.ZipInfo`): |
|
The file info. |
|
|
|
Returns: |
|
int: The offset of the file data in the ZIP archive. |
|
""" |
|
if zf.fp is None: |
|
raise DDUFCorruptedFileError("ZipFile object must be opened in read mode.") |
|
|
|
|
|
header_offset = info.header_offset |
|
|
|
|
|
zf.fp.seek(header_offset) |
|
local_file_header = zf.fp.read(30) |
|
|
|
if len(local_file_header) < 30: |
|
raise DDUFCorruptedFileError("Incomplete local file header.") |
|
|
|
|
|
|
|
filename_len = int.from_bytes(local_file_header[26:28], "little") |
|
extra_field_len = int.from_bytes(local_file_header[28:30], "little") |
|
|
|
|
|
data_offset = header_offset + 30 + filename_len + extra_field_len |
|
|
|
return data_offset |
|
|