|
import functools |
|
import warnings |
|
from typing import Any, List |
|
|
|
import numpy as np |
|
import pytest |
|
import scipy.sparse as sp |
|
|
|
from sklearn.exceptions import DataDimensionalityWarning, NotFittedError |
|
from sklearn.metrics import euclidean_distances |
|
from sklearn.random_projection import ( |
|
GaussianRandomProjection, |
|
SparseRandomProjection, |
|
_gaussian_random_matrix, |
|
_sparse_random_matrix, |
|
johnson_lindenstrauss_min_dim, |
|
) |
|
from sklearn.utils._testing import ( |
|
assert_allclose, |
|
assert_allclose_dense_sparse, |
|
assert_almost_equal, |
|
assert_array_almost_equal, |
|
assert_array_equal, |
|
) |
|
from sklearn.utils.fixes import COO_CONTAINERS |
|
|
|
all_sparse_random_matrix: List[Any] = [_sparse_random_matrix] |
|
all_dense_random_matrix: List[Any] = [_gaussian_random_matrix] |
|
all_random_matrix = all_sparse_random_matrix + all_dense_random_matrix |
|
|
|
all_SparseRandomProjection: List[Any] = [SparseRandomProjection] |
|
all_DenseRandomProjection: List[Any] = [GaussianRandomProjection] |
|
all_RandomProjection = all_SparseRandomProjection + all_DenseRandomProjection |
|
|
|
|
|
def make_sparse_random_data( |
|
coo_container, |
|
n_samples, |
|
n_features, |
|
n_nonzeros, |
|
random_state=None, |
|
sparse_format="csr", |
|
): |
|
"""Make some random data with uniformly located non zero entries with |
|
Gaussian distributed values; `sparse_format` can be `"csr"` (default) or |
|
`None` (in which case a dense array is returned). |
|
""" |
|
rng = np.random.RandomState(random_state) |
|
data_coo = coo_container( |
|
( |
|
rng.randn(n_nonzeros), |
|
( |
|
rng.randint(n_samples, size=n_nonzeros), |
|
rng.randint(n_features, size=n_nonzeros), |
|
), |
|
), |
|
shape=(n_samples, n_features), |
|
) |
|
if sparse_format is not None: |
|
return data_coo.asformat(sparse_format) |
|
else: |
|
return data_coo.toarray() |
|
|
|
|
|
def densify(matrix): |
|
if not sp.issparse(matrix): |
|
return matrix |
|
else: |
|
return matrix.toarray() |
|
|
|
|
|
n_samples, n_features = (10, 1000) |
|
n_nonzeros = int(n_samples * n_features / 100.0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize( |
|
"n_samples, eps", |
|
[ |
|
([100, 110], [0.9, 1.1]), |
|
([90, 100], [0.1, 0.0]), |
|
([50, -40], [0.1, 0.2]), |
|
], |
|
) |
|
def test_invalid_jl_domain(n_samples, eps): |
|
with pytest.raises(ValueError): |
|
johnson_lindenstrauss_min_dim(n_samples, eps=eps) |
|
|
|
|
|
def test_input_size_jl_min_dim(): |
|
with pytest.raises(ValueError): |
|
johnson_lindenstrauss_min_dim(3 * [100], eps=2 * [0.9]) |
|
|
|
johnson_lindenstrauss_min_dim( |
|
np.random.randint(1, 10, size=(10, 10)), eps=np.full((10, 10), 0.5) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def check_input_size_random_matrix(random_matrix): |
|
inputs = [(0, 0), (-1, 1), (1, -1), (1, 0), (-1, 0)] |
|
for n_components, n_features in inputs: |
|
with pytest.raises(ValueError): |
|
random_matrix(n_components, n_features) |
|
|
|
|
|
def check_size_generated(random_matrix): |
|
inputs = [(1, 5), (5, 1), (5, 5), (1, 1)] |
|
for n_components, n_features in inputs: |
|
assert random_matrix(n_components, n_features).shape == ( |
|
n_components, |
|
n_features, |
|
) |
|
|
|
|
|
def check_zero_mean_and_unit_norm(random_matrix): |
|
|
|
|
|
|
|
A = densify(random_matrix(10000, 1, random_state=0)) |
|
|
|
assert_array_almost_equal(0, np.mean(A), 3) |
|
assert_array_almost_equal(1.0, np.linalg.norm(A), 1) |
|
|
|
|
|
def check_input_with_sparse_random_matrix(random_matrix): |
|
n_components, n_features = 5, 10 |
|
|
|
for density in [-1.0, 0.0, 1.1]: |
|
with pytest.raises(ValueError): |
|
random_matrix(n_components, n_features, density=density) |
|
|
|
|
|
@pytest.mark.parametrize("random_matrix", all_random_matrix) |
|
def test_basic_property_of_random_matrix(random_matrix): |
|
|
|
check_input_size_random_matrix(random_matrix) |
|
check_size_generated(random_matrix) |
|
check_zero_mean_and_unit_norm(random_matrix) |
|
|
|
|
|
@pytest.mark.parametrize("random_matrix", all_sparse_random_matrix) |
|
def test_basic_property_of_sparse_random_matrix(random_matrix): |
|
check_input_with_sparse_random_matrix(random_matrix) |
|
|
|
random_matrix_dense = functools.partial(random_matrix, density=1.0) |
|
|
|
check_zero_mean_and_unit_norm(random_matrix_dense) |
|
|
|
|
|
def test_gaussian_random_matrix(): |
|
|
|
|
|
|
|
|
|
|
|
n_components = 100 |
|
n_features = 1000 |
|
A = _gaussian_random_matrix(n_components, n_features, random_state=0) |
|
|
|
assert_array_almost_equal(0.0, np.mean(A), 2) |
|
assert_array_almost_equal(np.var(A, ddof=1), 1 / n_components, 1) |
|
|
|
|
|
def test_sparse_random_matrix(): |
|
|
|
n_components = 100 |
|
n_features = 500 |
|
|
|
for density in [0.3, 1.0]: |
|
s = 1 / density |
|
|
|
A = _sparse_random_matrix( |
|
n_components, n_features, density=density, random_state=0 |
|
) |
|
A = densify(A) |
|
|
|
|
|
values = np.unique(A) |
|
assert np.sqrt(s) / np.sqrt(n_components) in values |
|
assert -np.sqrt(s) / np.sqrt(n_components) in values |
|
|
|
if density == 1.0: |
|
assert np.size(values) == 2 |
|
else: |
|
assert 0.0 in values |
|
assert np.size(values) == 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assert_almost_equal(np.mean(A == 0.0), 1 - 1 / s, decimal=2) |
|
assert_almost_equal( |
|
np.mean(A == np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2 |
|
) |
|
assert_almost_equal( |
|
np.mean(A == -np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2 |
|
) |
|
|
|
assert_almost_equal(np.var(A == 0.0, ddof=1), (1 - 1 / s) * 1 / s, decimal=2) |
|
assert_almost_equal( |
|
np.var(A == np.sqrt(s) / np.sqrt(n_components), ddof=1), |
|
(1 - 1 / (2 * s)) * 1 / (2 * s), |
|
decimal=2, |
|
) |
|
assert_almost_equal( |
|
np.var(A == -np.sqrt(s) / np.sqrt(n_components), ddof=1), |
|
(1 - 1 / (2 * s)) * 1 / (2 * s), |
|
decimal=2, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_random_projection_transformer_invalid_input(): |
|
n_components = "auto" |
|
fit_data = [[0, 1, 2]] |
|
for RandomProjection in all_RandomProjection: |
|
with pytest.raises(ValueError): |
|
RandomProjection(n_components=n_components).fit(fit_data) |
|
|
|
|
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS) |
|
def test_try_to_transform_before_fit(coo_container, global_random_seed): |
|
data = make_sparse_random_data( |
|
coo_container, |
|
n_samples, |
|
n_features, |
|
n_nonzeros, |
|
random_state=global_random_seed, |
|
sparse_format=None, |
|
) |
|
for RandomProjection in all_RandomProjection: |
|
with pytest.raises(NotFittedError): |
|
RandomProjection(n_components="auto").transform(data) |
|
|
|
|
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS) |
|
def test_too_many_samples_to_find_a_safe_embedding(coo_container, global_random_seed): |
|
data = make_sparse_random_data( |
|
coo_container, |
|
n_samples=1000, |
|
n_features=100, |
|
n_nonzeros=1000, |
|
random_state=global_random_seed, |
|
sparse_format=None, |
|
) |
|
|
|
for RandomProjection in all_RandomProjection: |
|
rp = RandomProjection(n_components="auto", eps=0.1) |
|
expected_msg = ( |
|
"eps=0.100000 and n_samples=1000 lead to a target dimension" |
|
" of 5920 which is larger than the original space with" |
|
" n_features=100" |
|
) |
|
with pytest.raises(ValueError, match=expected_msg): |
|
rp.fit(data) |
|
|
|
|
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS) |
|
def test_random_projection_embedding_quality(coo_container): |
|
data = make_sparse_random_data( |
|
coo_container, |
|
n_samples=8, |
|
n_features=5000, |
|
n_nonzeros=15000, |
|
random_state=0, |
|
sparse_format=None, |
|
) |
|
eps = 0.2 |
|
|
|
original_distances = euclidean_distances(data, squared=True) |
|
original_distances = original_distances.ravel() |
|
non_identical = original_distances != 0.0 |
|
|
|
|
|
original_distances = original_distances[non_identical] |
|
|
|
for RandomProjection in all_RandomProjection: |
|
rp = RandomProjection(n_components="auto", eps=eps, random_state=0) |
|
projected = rp.fit_transform(data) |
|
|
|
projected_distances = euclidean_distances(projected, squared=True) |
|
projected_distances = projected_distances.ravel() |
|
|
|
|
|
projected_distances = projected_distances[non_identical] |
|
|
|
distances_ratio = projected_distances / original_distances |
|
|
|
|
|
|
|
|
|
assert distances_ratio.max() < 1 + eps |
|
assert 1 - eps < distances_ratio.min() |
|
|
|
|
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS) |
|
def test_SparseRandomProj_output_representation(coo_container): |
|
dense_data = make_sparse_random_data( |
|
coo_container, |
|
n_samples, |
|
n_features, |
|
n_nonzeros, |
|
random_state=0, |
|
sparse_format=None, |
|
) |
|
sparse_data = make_sparse_random_data( |
|
coo_container, |
|
n_samples, |
|
n_features, |
|
n_nonzeros, |
|
random_state=0, |
|
sparse_format="csr", |
|
) |
|
for SparseRandomProj in all_SparseRandomProjection: |
|
|
|
|
|
rp = SparseRandomProj(n_components=10, dense_output=True, random_state=0) |
|
rp.fit(dense_data) |
|
assert isinstance(rp.transform(dense_data), np.ndarray) |
|
assert isinstance(rp.transform(sparse_data), np.ndarray) |
|
|
|
|
|
rp = SparseRandomProj(n_components=10, dense_output=False, random_state=0) |
|
rp = rp.fit(dense_data) |
|
|
|
assert isinstance(rp.transform(dense_data), np.ndarray) |
|
|
|
|
|
assert sp.issparse(rp.transform(sparse_data)) |
|
|
|
|
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS) |
|
def test_correct_RandomProjection_dimensions_embedding( |
|
coo_container, global_random_seed |
|
): |
|
data = make_sparse_random_data( |
|
coo_container, |
|
n_samples, |
|
n_features, |
|
n_nonzeros, |
|
random_state=global_random_seed, |
|
sparse_format=None, |
|
) |
|
for RandomProjection in all_RandomProjection: |
|
rp = RandomProjection(n_components="auto", random_state=0, eps=0.5).fit(data) |
|
|
|
|
|
|
|
assert rp.n_components == "auto" |
|
assert rp.n_components_ == 110 |
|
|
|
if RandomProjection in all_SparseRandomProjection: |
|
assert rp.density == "auto" |
|
assert_almost_equal(rp.density_, 0.03, 2) |
|
|
|
assert rp.components_.shape == (110, n_features) |
|
|
|
projected_1 = rp.transform(data) |
|
assert projected_1.shape == (n_samples, 110) |
|
|
|
|
|
projected_2 = rp.transform(data) |
|
assert_array_equal(projected_1, projected_2) |
|
|
|
|
|
rp2 = RandomProjection(random_state=0, eps=0.5) |
|
projected_3 = rp2.fit_transform(data) |
|
assert_array_equal(projected_1, projected_3) |
|
|
|
|
|
with pytest.raises(ValueError): |
|
rp.transform(data[:, 1:5]) |
|
|
|
|
|
|
|
if RandomProjection in all_SparseRandomProjection: |
|
rp = RandomProjection(n_components=100, density=0.001, random_state=0) |
|
projected = rp.fit_transform(data) |
|
assert projected.shape == (n_samples, 100) |
|
assert rp.components_.shape == (100, n_features) |
|
assert rp.components_.nnz < 115 |
|
assert 85 < rp.components_.nnz |
|
|
|
|
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS) |
|
def test_warning_n_components_greater_than_n_features( |
|
coo_container, global_random_seed |
|
): |
|
n_features = 20 |
|
n_samples = 5 |
|
n_nonzeros = int(n_features / 4) |
|
data = make_sparse_random_data( |
|
coo_container, |
|
n_samples, |
|
n_features, |
|
n_nonzeros, |
|
random_state=global_random_seed, |
|
sparse_format=None, |
|
) |
|
|
|
for RandomProjection in all_RandomProjection: |
|
with pytest.warns(DataDimensionalityWarning): |
|
RandomProjection(n_components=n_features + 1).fit(data) |
|
|
|
|
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS) |
|
def test_works_with_sparse_data(coo_container, global_random_seed): |
|
n_features = 20 |
|
n_samples = 5 |
|
n_nonzeros = int(n_features / 4) |
|
dense_data = make_sparse_random_data( |
|
coo_container, |
|
n_samples, |
|
n_features, |
|
n_nonzeros, |
|
random_state=global_random_seed, |
|
sparse_format=None, |
|
) |
|
sparse_data = make_sparse_random_data( |
|
coo_container, |
|
n_samples, |
|
n_features, |
|
n_nonzeros, |
|
random_state=global_random_seed, |
|
sparse_format="csr", |
|
) |
|
|
|
for RandomProjection in all_RandomProjection: |
|
rp_dense = RandomProjection(n_components=3, random_state=1).fit(dense_data) |
|
rp_sparse = RandomProjection(n_components=3, random_state=1).fit(sparse_data) |
|
assert_array_almost_equal( |
|
densify(rp_dense.components_), densify(rp_sparse.components_) |
|
) |
|
|
|
|
|
def test_johnson_lindenstrauss_min_dim(): |
|
"""Test Johnson-Lindenstrauss for small eps. |
|
|
|
Regression test for #17111: before #19374, 32-bit systems would fail. |
|
""" |
|
assert johnson_lindenstrauss_min_dim(100, eps=1e-5) == 368416070986 |
|
|
|
|
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS) |
|
@pytest.mark.parametrize("random_projection_cls", all_RandomProjection) |
|
def test_random_projection_feature_names_out( |
|
coo_container, random_projection_cls, global_random_seed |
|
): |
|
data = make_sparse_random_data( |
|
coo_container, |
|
n_samples, |
|
n_features, |
|
n_nonzeros, |
|
random_state=global_random_seed, |
|
sparse_format=None, |
|
) |
|
random_projection = random_projection_cls(n_components=2) |
|
random_projection.fit(data) |
|
names_out = random_projection.get_feature_names_out() |
|
class_name_lower = random_projection_cls.__name__.lower() |
|
expected_names_out = np.array( |
|
[f"{class_name_lower}{i}" for i in range(random_projection.n_components_)], |
|
dtype=object, |
|
) |
|
|
|
assert_array_equal(names_out, expected_names_out) |
|
|
|
|
|
@pytest.mark.parametrize("coo_container", COO_CONTAINERS) |
|
@pytest.mark.parametrize("n_samples", (2, 9, 10, 11, 1000)) |
|
@pytest.mark.parametrize("n_features", (2, 9, 10, 11, 1000)) |
|
@pytest.mark.parametrize("random_projection_cls", all_RandomProjection) |
|
@pytest.mark.parametrize("compute_inverse_components", [True, False]) |
|
def test_inverse_transform( |
|
coo_container, |
|
n_samples, |
|
n_features, |
|
random_projection_cls, |
|
compute_inverse_components, |
|
global_random_seed, |
|
): |
|
n_components = 10 |
|
|
|
random_projection = random_projection_cls( |
|
n_components=n_components, |
|
compute_inverse_components=compute_inverse_components, |
|
random_state=global_random_seed, |
|
) |
|
|
|
X_dense = make_sparse_random_data( |
|
coo_container, |
|
n_samples, |
|
n_features, |
|
n_nonzeros=n_samples * n_features // 100 + 1, |
|
random_state=global_random_seed, |
|
sparse_format=None, |
|
) |
|
X_csr = make_sparse_random_data( |
|
coo_container, |
|
n_samples, |
|
n_features, |
|
n_nonzeros=n_samples * n_features // 100 + 1, |
|
random_state=global_random_seed, |
|
sparse_format="csr", |
|
) |
|
|
|
for X in [X_dense, X_csr]: |
|
with warnings.catch_warnings(): |
|
warnings.filterwarnings( |
|
"ignore", |
|
message=( |
|
"The number of components is higher than the number of features" |
|
), |
|
category=DataDimensionalityWarning, |
|
) |
|
projected = random_projection.fit_transform(X) |
|
|
|
if compute_inverse_components: |
|
assert hasattr(random_projection, "inverse_components_") |
|
inv_components = random_projection.inverse_components_ |
|
assert inv_components.shape == (n_features, n_components) |
|
|
|
projected_back = random_projection.inverse_transform(projected) |
|
assert projected_back.shape == X.shape |
|
|
|
projected_again = random_projection.transform(projected_back) |
|
if hasattr(projected, "toarray"): |
|
projected = projected.toarray() |
|
assert_allclose(projected, projected_again, rtol=1e-7, atol=1e-10) |
|
|
|
|
|
@pytest.mark.parametrize("random_projection_cls", all_RandomProjection) |
|
@pytest.mark.parametrize( |
|
"input_dtype, expected_dtype", |
|
( |
|
(np.float32, np.float32), |
|
(np.float64, np.float64), |
|
(np.int32, np.float64), |
|
(np.int64, np.float64), |
|
), |
|
) |
|
def test_random_projection_dtype_match( |
|
random_projection_cls, input_dtype, expected_dtype |
|
): |
|
|
|
rng = np.random.RandomState(42) |
|
X = rng.rand(25, 3000) |
|
rp = random_projection_cls(random_state=0) |
|
transformed = rp.fit_transform(X.astype(input_dtype)) |
|
|
|
assert rp.components_.dtype == expected_dtype |
|
assert transformed.dtype == expected_dtype |
|
|
|
|
|
@pytest.mark.parametrize("random_projection_cls", all_RandomProjection) |
|
def test_random_projection_numerical_consistency(random_projection_cls): |
|
|
|
atol = 1e-5 |
|
rng = np.random.RandomState(42) |
|
X = rng.rand(25, 3000) |
|
rp_32 = random_projection_cls(random_state=0) |
|
rp_64 = random_projection_cls(random_state=0) |
|
|
|
projection_32 = rp_32.fit_transform(X.astype(np.float32)) |
|
projection_64 = rp_64.fit_transform(X.astype(np.float64)) |
|
|
|
assert_allclose(projection_64, projection_32, atol=atol) |
|
|
|
assert_allclose_dense_sparse(rp_32.components_, rp_64.components_) |
|
|