spam-classifier
/
venv
/lib
/python3.11
/site-packages
/sklearn
/tests
/test_kernel_approximation.py
import re | |
import numpy as np | |
import pytest | |
from sklearn.datasets import make_classification | |
from sklearn.kernel_approximation import ( | |
AdditiveChi2Sampler, | |
Nystroem, | |
PolynomialCountSketch, | |
RBFSampler, | |
SkewedChi2Sampler, | |
) | |
from sklearn.metrics.pairwise import ( | |
chi2_kernel, | |
kernel_metrics, | |
polynomial_kernel, | |
rbf_kernel, | |
) | |
from sklearn.utils._testing import ( | |
assert_allclose, | |
assert_array_almost_equal, | |
assert_array_equal, | |
) | |
from sklearn.utils.fixes import CSR_CONTAINERS | |
# generate data | |
rng = np.random.RandomState(0) | |
X = rng.random_sample(size=(300, 50)) | |
Y = rng.random_sample(size=(300, 50)) | |
X /= X.sum(axis=1)[:, np.newaxis] | |
Y /= Y.sum(axis=1)[:, np.newaxis] | |
# Make sure X and Y are not writable to avoid introducing dependencies between | |
# tests. | |
X.flags.writeable = False | |
Y.flags.writeable = False | |
def test_polynomial_count_sketch(gamma, degree, coef0, n_components): | |
# test that PolynomialCountSketch approximates polynomial | |
# kernel on random data | |
# compute exact kernel | |
kernel = polynomial_kernel(X, Y, gamma=gamma, degree=degree, coef0=coef0) | |
# approximate kernel mapping | |
ps_transform = PolynomialCountSketch( | |
n_components=n_components, | |
gamma=gamma, | |
coef0=coef0, | |
degree=degree, | |
random_state=42, | |
) | |
X_trans = ps_transform.fit_transform(X) | |
Y_trans = ps_transform.transform(Y) | |
kernel_approx = np.dot(X_trans, Y_trans.T) | |
error = kernel - kernel_approx | |
assert np.abs(np.mean(error)) <= 0.05 # close to unbiased | |
np.abs(error, out=error) | |
assert np.max(error) <= 0.1 # nothing too far off | |
assert np.mean(error) <= 0.05 # mean is fairly close | |
def test_polynomial_count_sketch_dense_sparse(gamma, degree, coef0, csr_container): | |
"""Check that PolynomialCountSketch results are the same for dense and sparse | |
input. | |
""" | |
ps_dense = PolynomialCountSketch( | |
n_components=500, gamma=gamma, degree=degree, coef0=coef0, random_state=42 | |
) | |
Xt_dense = ps_dense.fit_transform(X) | |
Yt_dense = ps_dense.transform(Y) | |
ps_sparse = PolynomialCountSketch( | |
n_components=500, gamma=gamma, degree=degree, coef0=coef0, random_state=42 | |
) | |
Xt_sparse = ps_sparse.fit_transform(csr_container(X)) | |
Yt_sparse = ps_sparse.transform(csr_container(Y)) | |
assert_allclose(Xt_dense, Xt_sparse) | |
assert_allclose(Yt_dense, Yt_sparse) | |
def _linear_kernel(X, Y): | |
return np.dot(X, Y.T) | |
def test_additive_chi2_sampler(csr_container): | |
# test that AdditiveChi2Sampler approximates kernel on random data | |
# compute exact kernel | |
# abbreviations for easier formula | |
X_ = X[:, np.newaxis, :].copy() | |
Y_ = Y[np.newaxis, :, :].copy() | |
large_kernel = 2 * X_ * Y_ / (X_ + Y_) | |
# reduce to n_samples_x x n_samples_y by summing over features | |
kernel = large_kernel.sum(axis=2) | |
# approximate kernel mapping | |
transform = AdditiveChi2Sampler(sample_steps=3) | |
X_trans = transform.fit_transform(X) | |
Y_trans = transform.transform(Y) | |
kernel_approx = np.dot(X_trans, Y_trans.T) | |
assert_array_almost_equal(kernel, kernel_approx, 1) | |
X_sp_trans = transform.fit_transform(csr_container(X)) | |
Y_sp_trans = transform.transform(csr_container(Y)) | |
assert_array_equal(X_trans, X_sp_trans.toarray()) | |
assert_array_equal(Y_trans, Y_sp_trans.toarray()) | |
# test error is raised on negative input | |
Y_neg = Y.copy() | |
Y_neg[0, 0] = -1 | |
msg = "Negative values in data passed to" | |
with pytest.raises(ValueError, match=msg): | |
transform.fit(Y_neg) | |
def test_additive_chi2_sampler_sample_steps(method, sample_steps): | |
"""Check that the input sample step doesn't raise an error | |
and that sample interval doesn't change after fit. | |
""" | |
transformer = AdditiveChi2Sampler(sample_steps=sample_steps) | |
getattr(transformer, method)(X) | |
sample_interval = 0.5 | |
transformer = AdditiveChi2Sampler( | |
sample_steps=sample_steps, | |
sample_interval=sample_interval, | |
) | |
getattr(transformer, method)(X) | |
assert transformer.sample_interval == sample_interval | |
def test_additive_chi2_sampler_wrong_sample_steps(method): | |
"""Check that we raise a ValueError on invalid sample_steps""" | |
transformer = AdditiveChi2Sampler(sample_steps=4) | |
msg = re.escape( | |
"If sample_steps is not in [1, 2, 3], you need to provide sample_interval" | |
) | |
with pytest.raises(ValueError, match=msg): | |
getattr(transformer, method)(X) | |
def test_skewed_chi2_sampler(): | |
# test that RBFSampler approximates kernel on random data | |
# compute exact kernel | |
c = 0.03 | |
# set on negative component but greater than c to ensure that the kernel | |
# approximation is valid on the group (-c; +\infty) endowed with the skewed | |
# multiplication. | |
Y_ = Y.copy() | |
Y_[0, 0] = -c / 2.0 | |
# abbreviations for easier formula | |
X_c = (X + c)[:, np.newaxis, :] | |
Y_c = (Y_ + c)[np.newaxis, :, :] | |
# we do it in log-space in the hope that it's more stable | |
# this array is n_samples_x x n_samples_y big x n_features | |
log_kernel = ( | |
(np.log(X_c) / 2.0) + (np.log(Y_c) / 2.0) + np.log(2.0) - np.log(X_c + Y_c) | |
) | |
# reduce to n_samples_x x n_samples_y by summing over features in log-space | |
kernel = np.exp(log_kernel.sum(axis=2)) | |
# approximate kernel mapping | |
transform = SkewedChi2Sampler(skewedness=c, n_components=1000, random_state=42) | |
X_trans = transform.fit_transform(X) | |
Y_trans = transform.transform(Y_) | |
kernel_approx = np.dot(X_trans, Y_trans.T) | |
assert_array_almost_equal(kernel, kernel_approx, 1) | |
assert np.isfinite(kernel).all(), "NaNs found in the Gram matrix" | |
assert np.isfinite(kernel_approx).all(), "NaNs found in the approximate Gram matrix" | |
# test error is raised on when inputs contains values smaller than -c | |
Y_neg = Y_.copy() | |
Y_neg[0, 0] = -c * 2.0 | |
msg = "X may not contain entries smaller than -skewedness" | |
with pytest.raises(ValueError, match=msg): | |
transform.transform(Y_neg) | |
def test_additive_chi2_sampler_exceptions(): | |
"""Ensures correct error message""" | |
transformer = AdditiveChi2Sampler() | |
X_neg = X.copy() | |
X_neg[0, 0] = -1 | |
with pytest.raises(ValueError, match="X in AdditiveChi2Sampler"): | |
transformer.fit(X_neg) | |
with pytest.raises(ValueError, match="X in AdditiveChi2Sampler"): | |
transformer.fit(X) | |
transformer.transform(X_neg) | |
def test_rbf_sampler(): | |
# test that RBFSampler approximates kernel on random data | |
# compute exact kernel | |
gamma = 10.0 | |
kernel = rbf_kernel(X, Y, gamma=gamma) | |
# approximate kernel mapping | |
rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42) | |
X_trans = rbf_transform.fit_transform(X) | |
Y_trans = rbf_transform.transform(Y) | |
kernel_approx = np.dot(X_trans, Y_trans.T) | |
error = kernel - kernel_approx | |
assert np.abs(np.mean(error)) <= 0.01 # close to unbiased | |
np.abs(error, out=error) | |
assert np.max(error) <= 0.1 # nothing too far off | |
assert np.mean(error) <= 0.05 # mean is fairly close | |
def test_rbf_sampler_fitted_attributes_dtype(global_dtype): | |
"""Check that the fitted attributes are stored accordingly to the | |
data type of X.""" | |
rbf = RBFSampler() | |
X = np.array([[1, 2], [3, 4], [5, 6]], dtype=global_dtype) | |
rbf.fit(X) | |
assert rbf.random_offset_.dtype == global_dtype | |
assert rbf.random_weights_.dtype == global_dtype | |
def test_rbf_sampler_dtype_equivalence(): | |
"""Check the equivalence of the results with 32 and 64 bits input.""" | |
rbf32 = RBFSampler(random_state=42) | |
X32 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float32) | |
rbf32.fit(X32) | |
rbf64 = RBFSampler(random_state=42) | |
X64 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float64) | |
rbf64.fit(X64) | |
assert_allclose(rbf32.random_offset_, rbf64.random_offset_) | |
assert_allclose(rbf32.random_weights_, rbf64.random_weights_) | |
def test_rbf_sampler_gamma_scale(): | |
"""Check the inner value computed when `gamma='scale'`.""" | |
X, y = [[0.0], [1.0]], [0, 1] | |
rbf = RBFSampler(gamma="scale") | |
rbf.fit(X, y) | |
assert rbf._gamma == pytest.approx(4) | |
def test_skewed_chi2_sampler_fitted_attributes_dtype(global_dtype): | |
"""Check that the fitted attributes are stored accordingly to the | |
data type of X.""" | |
skewed_chi2_sampler = SkewedChi2Sampler() | |
X = np.array([[1, 2], [3, 4], [5, 6]], dtype=global_dtype) | |
skewed_chi2_sampler.fit(X) | |
assert skewed_chi2_sampler.random_offset_.dtype == global_dtype | |
assert skewed_chi2_sampler.random_weights_.dtype == global_dtype | |
def test_skewed_chi2_sampler_dtype_equivalence(): | |
"""Check the equivalence of the results with 32 and 64 bits input.""" | |
skewed_chi2_sampler_32 = SkewedChi2Sampler(random_state=42) | |
X_32 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float32) | |
skewed_chi2_sampler_32.fit(X_32) | |
skewed_chi2_sampler_64 = SkewedChi2Sampler(random_state=42) | |
X_64 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float64) | |
skewed_chi2_sampler_64.fit(X_64) | |
assert_allclose( | |
skewed_chi2_sampler_32.random_offset_, skewed_chi2_sampler_64.random_offset_ | |
) | |
assert_allclose( | |
skewed_chi2_sampler_32.random_weights_, skewed_chi2_sampler_64.random_weights_ | |
) | |
def test_input_validation(csr_container): | |
# Regression test: kernel approx. transformers should work on lists | |
# No assertions; the old versions would simply crash | |
X = [[1, 2], [3, 4], [5, 6]] | |
AdditiveChi2Sampler().fit(X).transform(X) | |
SkewedChi2Sampler().fit(X).transform(X) | |
RBFSampler().fit(X).transform(X) | |
X = csr_container(X) | |
RBFSampler().fit(X).transform(X) | |
def test_nystroem_approximation(): | |
# some basic tests | |
rnd = np.random.RandomState(0) | |
X = rnd.uniform(size=(10, 4)) | |
# With n_components = n_samples this is exact | |
X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X) | |
K = rbf_kernel(X) | |
assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) | |
trans = Nystroem(n_components=2, random_state=rnd) | |
X_transformed = trans.fit(X).transform(X) | |
assert X_transformed.shape == (X.shape[0], 2) | |
# test callable kernel | |
trans = Nystroem(n_components=2, kernel=_linear_kernel, random_state=rnd) | |
X_transformed = trans.fit(X).transform(X) | |
assert X_transformed.shape == (X.shape[0], 2) | |
# test that available kernels fit and transform | |
kernels_available = kernel_metrics() | |
for kern in kernels_available: | |
trans = Nystroem(n_components=2, kernel=kern, random_state=rnd) | |
X_transformed = trans.fit(X).transform(X) | |
assert X_transformed.shape == (X.shape[0], 2) | |
def test_nystroem_default_parameters(): | |
rnd = np.random.RandomState(42) | |
X = rnd.uniform(size=(10, 4)) | |
# rbf kernel should behave as gamma=None by default | |
# aka gamma = 1 / n_features | |
nystroem = Nystroem(n_components=10) | |
X_transformed = nystroem.fit_transform(X) | |
K = rbf_kernel(X, gamma=None) | |
K2 = np.dot(X_transformed, X_transformed.T) | |
assert_array_almost_equal(K, K2) | |
# chi2 kernel should behave as gamma=1 by default | |
nystroem = Nystroem(kernel="chi2", n_components=10) | |
X_transformed = nystroem.fit_transform(X) | |
K = chi2_kernel(X, gamma=1) | |
K2 = np.dot(X_transformed, X_transformed.T) | |
assert_array_almost_equal(K, K2) | |
def test_nystroem_singular_kernel(): | |
# test that nystroem works with singular kernel matrix | |
rng = np.random.RandomState(0) | |
X = rng.rand(10, 20) | |
X = np.vstack([X] * 2) # duplicate samples | |
gamma = 100 | |
N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X) | |
X_transformed = N.transform(X) | |
K = rbf_kernel(X, gamma=gamma) | |
assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T)) | |
assert np.all(np.isfinite(Y)) | |
def test_nystroem_poly_kernel_params(): | |
# Non-regression: Nystroem should pass other parameters beside gamma. | |
rnd = np.random.RandomState(37) | |
X = rnd.uniform(size=(10, 4)) | |
K = polynomial_kernel(X, degree=3.1, coef0=0.1) | |
nystroem = Nystroem( | |
kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=0.1 | |
) | |
X_transformed = nystroem.fit_transform(X) | |
assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) | |
def test_nystroem_callable(): | |
# Test Nystroem on a callable. | |
rnd = np.random.RandomState(42) | |
n_samples = 10 | |
X = rnd.uniform(size=(n_samples, 4)) | |
def logging_histogram_kernel(x, y, log): | |
"""Histogram kernel that writes to a log.""" | |
log.append(1) | |
return np.minimum(x, y).sum() | |
kernel_log = [] | |
X = list(X) # test input validation | |
Nystroem( | |
kernel=logging_histogram_kernel, | |
n_components=(n_samples - 1), | |
kernel_params={"log": kernel_log}, | |
).fit(X) | |
assert len(kernel_log) == n_samples * (n_samples - 1) / 2 | |
# if degree, gamma or coef0 is passed, we raise a ValueError | |
msg = "Don't pass gamma, coef0 or degree to Nystroem" | |
params = ({"gamma": 1}, {"coef0": 1}, {"degree": 2}) | |
for param in params: | |
ny = Nystroem(kernel=_linear_kernel, n_components=(n_samples - 1), **param) | |
with pytest.raises(ValueError, match=msg): | |
ny.fit(X) | |
def test_nystroem_precomputed_kernel(): | |
# Non-regression: test Nystroem on precomputed kernel. | |
# PR - 14706 | |
rnd = np.random.RandomState(12) | |
X = rnd.uniform(size=(10, 4)) | |
K = polynomial_kernel(X, degree=2, coef0=0.1) | |
nystroem = Nystroem(kernel="precomputed", n_components=X.shape[0]) | |
X_transformed = nystroem.fit_transform(K) | |
assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) | |
# if degree, gamma or coef0 is passed, we raise a ValueError | |
msg = "Don't pass gamma, coef0 or degree to Nystroem" | |
params = ({"gamma": 1}, {"coef0": 1}, {"degree": 2}) | |
for param in params: | |
ny = Nystroem(kernel="precomputed", n_components=X.shape[0], **param) | |
with pytest.raises(ValueError, match=msg): | |
ny.fit(K) | |
def test_nystroem_component_indices(): | |
"""Check that `component_indices_` corresponds to the subset of | |
training points used to construct the feature map. | |
Non-regression test for: | |
https://github.com/scikit-learn/scikit-learn/issues/20474 | |
""" | |
X, _ = make_classification(n_samples=100, n_features=20) | |
feature_map_nystroem = Nystroem( | |
n_components=10, | |
random_state=0, | |
) | |
feature_map_nystroem.fit(X) | |
assert feature_map_nystroem.component_indices_.shape == (10,) | |
def test_get_feature_names_out(Estimator): | |
"""Check get_feature_names_out""" | |
est = Estimator().fit(X) | |
X_trans = est.transform(X) | |
names_out = est.get_feature_names_out() | |
class_name = Estimator.__name__.lower() | |
expected_names = [f"{class_name}{i}" for i in range(X_trans.shape[1])] | |
assert_array_equal(names_out, expected_names) | |
def test_additivechi2sampler_get_feature_names_out(): | |
"""Check get_feature_names_out for AdditiveChi2Sampler.""" | |
rng = np.random.RandomState(0) | |
X = rng.random_sample(size=(300, 3)) | |
chi2_sampler = AdditiveChi2Sampler(sample_steps=3).fit(X) | |
input_names = ["f0", "f1", "f2"] | |
suffixes = [ | |
"f0_sqrt", | |
"f1_sqrt", | |
"f2_sqrt", | |
"f0_cos1", | |
"f1_cos1", | |
"f2_cos1", | |
"f0_sin1", | |
"f1_sin1", | |
"f2_sin1", | |
"f0_cos2", | |
"f1_cos2", | |
"f2_cos2", | |
"f0_sin2", | |
"f1_sin2", | |
"f2_sin2", | |
] | |
names_out = chi2_sampler.get_feature_names_out(input_features=input_names) | |
expected_names = [f"additivechi2sampler_{suffix}" for suffix in suffixes] | |
assert_array_equal(names_out, expected_names) | |