|
"""Locally Linear Embedding""" |
|
|
|
|
|
|
|
|
|
from numbers import Integral, Real |
|
|
|
import numpy as np |
|
from scipy.linalg import eigh, qr, solve, svd |
|
from scipy.sparse import csr_matrix, eye, lil_matrix |
|
from scipy.sparse.linalg import eigsh |
|
|
|
from ..base import ( |
|
BaseEstimator, |
|
ClassNamePrefixFeaturesOutMixin, |
|
TransformerMixin, |
|
_fit_context, |
|
_UnstableArchMixin, |
|
) |
|
from ..neighbors import NearestNeighbors |
|
from ..utils import check_array, check_random_state |
|
from ..utils._arpack import _init_arpack_v0 |
|
from ..utils._param_validation import Interval, StrOptions, validate_params |
|
from ..utils.extmath import stable_cumsum |
|
from ..utils.validation import FLOAT_DTYPES, check_is_fitted, validate_data |
|
|
|
|
|
def barycenter_weights(X, Y, indices, reg=1e-3): |
|
"""Compute barycenter weights of X from Y along the first axis |
|
|
|
We estimate the weights to assign to each point in Y[indices] to recover |
|
the point X[i]. The barycenter weights sum to 1. |
|
|
|
Parameters |
|
---------- |
|
X : array-like, shape (n_samples, n_dim) |
|
|
|
Y : array-like, shape (n_samples, n_dim) |
|
|
|
indices : array-like, shape (n_samples, n_dim) |
|
Indices of the points in Y used to compute the barycenter |
|
|
|
reg : float, default=1e-3 |
|
Amount of regularization to add for the problem to be |
|
well-posed in the case of n_neighbors > n_dim |
|
|
|
Returns |
|
------- |
|
B : array-like, shape (n_samples, n_neighbors) |
|
|
|
Notes |
|
----- |
|
See developers note for more information. |
|
""" |
|
X = check_array(X, dtype=FLOAT_DTYPES) |
|
Y = check_array(Y, dtype=FLOAT_DTYPES) |
|
indices = check_array(indices, dtype=int) |
|
|
|
n_samples, n_neighbors = indices.shape |
|
assert X.shape[0] == n_samples |
|
|
|
B = np.empty((n_samples, n_neighbors), dtype=X.dtype) |
|
v = np.ones(n_neighbors, dtype=X.dtype) |
|
|
|
|
|
|
|
for i, ind in enumerate(indices): |
|
A = Y[ind] |
|
C = A - X[i] |
|
G = np.dot(C, C.T) |
|
trace = np.trace(G) |
|
if trace > 0: |
|
R = reg * trace |
|
else: |
|
R = reg |
|
G.flat[:: n_neighbors + 1] += R |
|
w = solve(G, v, assume_a="pos") |
|
B[i, :] = w / np.sum(w) |
|
return B |
|
|
|
|
|
def barycenter_kneighbors_graph(X, n_neighbors, reg=1e-3, n_jobs=None): |
|
"""Computes the barycenter weighted graph of k-Neighbors for points in X |
|
|
|
Parameters |
|
---------- |
|
X : {array-like, NearestNeighbors} |
|
Sample data, shape = (n_samples, n_features), in the form of a |
|
numpy array or a NearestNeighbors object. |
|
|
|
n_neighbors : int |
|
Number of neighbors for each sample. |
|
|
|
reg : float, default=1e-3 |
|
Amount of regularization when solving the least-squares |
|
problem. Only relevant if mode='barycenter'. If None, use the |
|
default. |
|
|
|
n_jobs : int or None, default=None |
|
The number of parallel jobs to run for neighbors search. |
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. |
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>` |
|
for more details. |
|
|
|
Returns |
|
------- |
|
A : sparse matrix in CSR format, shape = [n_samples, n_samples] |
|
A[i, j] is assigned the weight of edge that connects i to j. |
|
|
|
See Also |
|
-------- |
|
sklearn.neighbors.kneighbors_graph |
|
sklearn.neighbors.radius_neighbors_graph |
|
""" |
|
knn = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs).fit(X) |
|
X = knn._fit_X |
|
n_samples = knn.n_samples_fit_ |
|
ind = knn.kneighbors(X, return_distance=False)[:, 1:] |
|
data = barycenter_weights(X, X, ind, reg=reg) |
|
indptr = np.arange(0, n_samples * n_neighbors + 1, n_neighbors) |
|
return csr_matrix((data.ravel(), ind.ravel(), indptr), shape=(n_samples, n_samples)) |
|
|
|
|
|
def null_space( |
|
M, k, k_skip=1, eigen_solver="arpack", tol=1e-6, max_iter=100, random_state=None |
|
): |
|
""" |
|
Find the null space of a matrix M. |
|
|
|
Parameters |
|
---------- |
|
M : {array, matrix, sparse matrix, LinearOperator} |
|
Input covariance matrix: should be symmetric positive semi-definite |
|
|
|
k : int |
|
Number of eigenvalues/vectors to return |
|
|
|
k_skip : int, default=1 |
|
Number of low eigenvalues to skip. |
|
|
|
eigen_solver : {'auto', 'arpack', 'dense'}, default='arpack' |
|
auto : algorithm will attempt to choose the best method for input data |
|
arpack : use arnoldi iteration in shift-invert mode. |
|
For this method, M may be a dense matrix, sparse matrix, |
|
or general linear operator. |
|
Warning: ARPACK can be unstable for some problems. It is |
|
best to try several random seeds in order to check results. |
|
dense : use standard dense matrix operations for the eigenvalue |
|
decomposition. For this method, M must be an array |
|
or matrix type. This method should be avoided for |
|
large problems. |
|
|
|
tol : float, default=1e-6 |
|
Tolerance for 'arpack' method. |
|
Not used if eigen_solver=='dense'. |
|
|
|
max_iter : int, default=100 |
|
Maximum number of iterations for 'arpack' method. |
|
Not used if eigen_solver=='dense' |
|
|
|
random_state : int, RandomState instance, default=None |
|
Determines the random number generator when ``solver`` == 'arpack'. |
|
Pass an int for reproducible results across multiple function calls. |
|
See :term:`Glossary <random_state>`. |
|
""" |
|
if eigen_solver == "auto": |
|
if M.shape[0] > 200 and k + k_skip < 10: |
|
eigen_solver = "arpack" |
|
else: |
|
eigen_solver = "dense" |
|
|
|
if eigen_solver == "arpack": |
|
v0 = _init_arpack_v0(M.shape[0], random_state) |
|
try: |
|
eigen_values, eigen_vectors = eigsh( |
|
M, k + k_skip, sigma=0.0, tol=tol, maxiter=max_iter, v0=v0 |
|
) |
|
except RuntimeError as e: |
|
raise ValueError( |
|
"Error in determining null-space with ARPACK. Error message: " |
|
"'%s'. Note that eigen_solver='arpack' can fail when the " |
|
"weight matrix is singular or otherwise ill-behaved. In that " |
|
"case, eigen_solver='dense' is recommended. See online " |
|
"documentation for more information." % e |
|
) from e |
|
|
|
return eigen_vectors[:, k_skip:], np.sum(eigen_values[k_skip:]) |
|
elif eigen_solver == "dense": |
|
if hasattr(M, "toarray"): |
|
M = M.toarray() |
|
eigen_values, eigen_vectors = eigh( |
|
M, subset_by_index=(k_skip, k + k_skip - 1), overwrite_a=True |
|
) |
|
index = np.argsort(np.abs(eigen_values)) |
|
return eigen_vectors[:, index], np.sum(eigen_values) |
|
else: |
|
raise ValueError("Unrecognized eigen_solver '%s'" % eigen_solver) |
|
|
|
|
|
def _locally_linear_embedding( |
|
X, |
|
*, |
|
n_neighbors, |
|
n_components, |
|
reg=1e-3, |
|
eigen_solver="auto", |
|
tol=1e-6, |
|
max_iter=100, |
|
method="standard", |
|
hessian_tol=1e-4, |
|
modified_tol=1e-12, |
|
random_state=None, |
|
n_jobs=None, |
|
): |
|
nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs) |
|
nbrs.fit(X) |
|
X = nbrs._fit_X |
|
|
|
N, d_in = X.shape |
|
|
|
if n_components > d_in: |
|
raise ValueError( |
|
"output dimension must be less than or equal to input dimension" |
|
) |
|
if n_neighbors >= N: |
|
raise ValueError( |
|
"Expected n_neighbors <= n_samples, but n_samples = %d, n_neighbors = %d" |
|
% (N, n_neighbors) |
|
) |
|
|
|
M_sparse = eigen_solver != "dense" |
|
M_container_constructor = lil_matrix if M_sparse else np.zeros |
|
|
|
if method == "standard": |
|
W = barycenter_kneighbors_graph( |
|
nbrs, n_neighbors=n_neighbors, reg=reg, n_jobs=n_jobs |
|
) |
|
|
|
|
|
|
|
if M_sparse: |
|
M = eye(*W.shape, format=W.format) - W |
|
M = M.T * M |
|
else: |
|
M = (W.T * W - W.T - W).toarray() |
|
M.flat[:: M.shape[0] + 1] += 1 |
|
|
|
elif method == "hessian": |
|
dp = n_components * (n_components + 1) // 2 |
|
|
|
if n_neighbors <= n_components + dp: |
|
raise ValueError( |
|
"for method='hessian', n_neighbors must be " |
|
"greater than " |
|
"[n_components * (n_components + 3) / 2]" |
|
) |
|
|
|
neighbors = nbrs.kneighbors( |
|
X, n_neighbors=n_neighbors + 1, return_distance=False |
|
) |
|
neighbors = neighbors[:, 1:] |
|
|
|
Yi = np.empty((n_neighbors, 1 + n_components + dp), dtype=np.float64) |
|
Yi[:, 0] = 1 |
|
|
|
M = M_container_constructor((N, N), dtype=np.float64) |
|
|
|
use_svd = n_neighbors > d_in |
|
|
|
for i in range(N): |
|
Gi = X[neighbors[i]] |
|
Gi -= Gi.mean(0) |
|
|
|
|
|
if use_svd: |
|
U = svd(Gi, full_matrices=0)[0] |
|
else: |
|
Ci = np.dot(Gi, Gi.T) |
|
U = eigh(Ci)[1][:, ::-1] |
|
|
|
Yi[:, 1 : 1 + n_components] = U[:, :n_components] |
|
|
|
j = 1 + n_components |
|
for k in range(n_components): |
|
Yi[:, j : j + n_components - k] = U[:, k : k + 1] * U[:, k:n_components] |
|
j += n_components - k |
|
|
|
Q, R = qr(Yi) |
|
|
|
w = Q[:, n_components + 1 :] |
|
S = w.sum(0) |
|
|
|
S[np.where(abs(S) < hessian_tol)] = 1 |
|
w /= S |
|
|
|
nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) |
|
M[nbrs_x, nbrs_y] += np.dot(w, w.T) |
|
|
|
elif method == "modified": |
|
if n_neighbors < n_components: |
|
raise ValueError("modified LLE requires n_neighbors >= n_components") |
|
|
|
neighbors = nbrs.kneighbors( |
|
X, n_neighbors=n_neighbors + 1, return_distance=False |
|
) |
|
neighbors = neighbors[:, 1:] |
|
|
|
|
|
|
|
|
|
V = np.zeros((N, n_neighbors, n_neighbors)) |
|
nev = min(d_in, n_neighbors) |
|
evals = np.zeros([N, nev]) |
|
|
|
|
|
use_svd = n_neighbors > d_in |
|
|
|
if use_svd: |
|
for i in range(N): |
|
X_nbrs = X[neighbors[i]] - X[i] |
|
V[i], evals[i], _ = svd(X_nbrs, full_matrices=True) |
|
evals **= 2 |
|
else: |
|
for i in range(N): |
|
X_nbrs = X[neighbors[i]] - X[i] |
|
C_nbrs = np.dot(X_nbrs, X_nbrs.T) |
|
evi, vi = eigh(C_nbrs) |
|
evals[i] = evi[::-1] |
|
V[i] = vi[:, ::-1] |
|
|
|
|
|
|
|
|
|
reg = 1e-3 * evals.sum(1) |
|
|
|
tmp = np.dot(V.transpose(0, 2, 1), np.ones(n_neighbors)) |
|
tmp[:, :nev] /= evals + reg[:, None] |
|
tmp[:, nev:] /= reg[:, None] |
|
|
|
w_reg = np.zeros((N, n_neighbors)) |
|
for i in range(N): |
|
w_reg[i] = np.dot(V[i], tmp[i]) |
|
w_reg /= w_reg.sum(1)[:, None] |
|
|
|
|
|
|
|
rho = evals[:, n_components:].sum(1) / evals[:, :n_components].sum(1) |
|
eta = np.median(rho) |
|
|
|
|
|
|
|
|
|
s_range = np.zeros(N, dtype=int) |
|
evals_cumsum = stable_cumsum(evals, 1) |
|
eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1 |
|
for i in range(N): |
|
s_range[i] = np.searchsorted(eta_range[i, ::-1], eta) |
|
s_range += n_neighbors - nev |
|
|
|
|
|
|
|
M = M_container_constructor((N, N), dtype=np.float64) |
|
|
|
for i in range(N): |
|
s_i = s_range[i] |
|
|
|
|
|
Vi = V[i, :, n_neighbors - s_i :] |
|
alpha_i = np.linalg.norm(Vi.sum(0)) / np.sqrt(s_i) |
|
|
|
|
|
|
|
|
|
h = np.full(s_i, alpha_i) - np.dot(Vi.T, np.ones(n_neighbors)) |
|
|
|
norm_h = np.linalg.norm(h) |
|
if norm_h < modified_tol: |
|
h *= 0 |
|
else: |
|
h /= norm_h |
|
|
|
|
|
|
|
|
|
|
|
|
|
Wi = Vi - 2 * np.outer(np.dot(Vi, h), h) + (1 - alpha_i) * w_reg[i, :, None] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) |
|
M[nbrs_x, nbrs_y] += np.dot(Wi, Wi.T) |
|
Wi_sum1 = Wi.sum(1) |
|
M[i, neighbors[i]] -= Wi_sum1 |
|
M[neighbors[i], [i]] -= Wi_sum1 |
|
M[i, i] += s_i |
|
|
|
elif method == "ltsa": |
|
neighbors = nbrs.kneighbors( |
|
X, n_neighbors=n_neighbors + 1, return_distance=False |
|
) |
|
neighbors = neighbors[:, 1:] |
|
|
|
M = M_container_constructor((N, N), dtype=np.float64) |
|
|
|
use_svd = n_neighbors > d_in |
|
|
|
for i in range(N): |
|
Xi = X[neighbors[i]] |
|
Xi -= Xi.mean(0) |
|
|
|
|
|
if use_svd: |
|
v = svd(Xi, full_matrices=True)[0] |
|
else: |
|
Ci = np.dot(Xi, Xi.T) |
|
v = eigh(Ci)[1][:, ::-1] |
|
|
|
Gi = np.zeros((n_neighbors, n_components + 1)) |
|
Gi[:, 1:] = v[:, :n_components] |
|
Gi[:, 0] = 1.0 / np.sqrt(n_neighbors) |
|
|
|
GiGiT = np.dot(Gi, Gi.T) |
|
|
|
nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) |
|
M[nbrs_x, nbrs_y] -= GiGiT |
|
|
|
M[neighbors[i], neighbors[i]] += np.ones(shape=n_neighbors) |
|
|
|
if M_sparse: |
|
M = M.tocsr() |
|
|
|
return null_space( |
|
M, |
|
n_components, |
|
k_skip=1, |
|
eigen_solver=eigen_solver, |
|
tol=tol, |
|
max_iter=max_iter, |
|
random_state=random_state, |
|
) |
|
|
|
|
|
@validate_params( |
|
{ |
|
"X": ["array-like", NearestNeighbors], |
|
"n_neighbors": [Interval(Integral, 1, None, closed="left")], |
|
"n_components": [Interval(Integral, 1, None, closed="left")], |
|
"reg": [Interval(Real, 0, None, closed="left")], |
|
"eigen_solver": [StrOptions({"auto", "arpack", "dense"})], |
|
"tol": [Interval(Real, 0, None, closed="left")], |
|
"max_iter": [Interval(Integral, 1, None, closed="left")], |
|
"method": [StrOptions({"standard", "hessian", "modified", "ltsa"})], |
|
"hessian_tol": [Interval(Real, 0, None, closed="left")], |
|
"modified_tol": [Interval(Real, 0, None, closed="left")], |
|
"random_state": ["random_state"], |
|
"n_jobs": [None, Integral], |
|
}, |
|
prefer_skip_nested_validation=True, |
|
) |
|
def locally_linear_embedding( |
|
X, |
|
*, |
|
n_neighbors, |
|
n_components, |
|
reg=1e-3, |
|
eigen_solver="auto", |
|
tol=1e-6, |
|
max_iter=100, |
|
method="standard", |
|
hessian_tol=1e-4, |
|
modified_tol=1e-12, |
|
random_state=None, |
|
n_jobs=None, |
|
): |
|
"""Perform a Locally Linear Embedding analysis on the data. |
|
|
|
Read more in the :ref:`User Guide <locally_linear_embedding>`. |
|
|
|
Parameters |
|
---------- |
|
X : {array-like, NearestNeighbors} |
|
Sample data, shape = (n_samples, n_features), in the form of a |
|
numpy array or a NearestNeighbors object. |
|
|
|
n_neighbors : int |
|
Number of neighbors to consider for each point. |
|
|
|
n_components : int |
|
Number of coordinates for the manifold. |
|
|
|
reg : float, default=1e-3 |
|
Regularization constant, multiplies the trace of the local covariance |
|
matrix of the distances. |
|
|
|
eigen_solver : {'auto', 'arpack', 'dense'}, default='auto' |
|
auto : algorithm will attempt to choose the best method for input data |
|
|
|
arpack : use arnoldi iteration in shift-invert mode. |
|
For this method, M may be a dense matrix, sparse matrix, |
|
or general linear operator. |
|
Warning: ARPACK can be unstable for some problems. It is |
|
best to try several random seeds in order to check results. |
|
|
|
dense : use standard dense matrix operations for the eigenvalue |
|
decomposition. For this method, M must be an array |
|
or matrix type. This method should be avoided for |
|
large problems. |
|
|
|
tol : float, default=1e-6 |
|
Tolerance for 'arpack' method |
|
Not used if eigen_solver=='dense'. |
|
|
|
max_iter : int, default=100 |
|
Maximum number of iterations for the arpack solver. |
|
|
|
method : {'standard', 'hessian', 'modified', 'ltsa'}, default='standard' |
|
standard : use the standard locally linear embedding algorithm. |
|
see reference [1]_ |
|
hessian : use the Hessian eigenmap method. This method requires |
|
n_neighbors > n_components * (1 + (n_components + 1) / 2. |
|
see reference [2]_ |
|
modified : use the modified locally linear embedding algorithm. |
|
see reference [3]_ |
|
ltsa : use local tangent space alignment algorithm |
|
see reference [4]_ |
|
|
|
hessian_tol : float, default=1e-4 |
|
Tolerance for Hessian eigenmapping method. |
|
Only used if method == 'hessian'. |
|
|
|
modified_tol : float, default=1e-12 |
|
Tolerance for modified LLE method. |
|
Only used if method == 'modified'. |
|
|
|
random_state : int, RandomState instance, default=None |
|
Determines the random number generator when ``solver`` == 'arpack'. |
|
Pass an int for reproducible results across multiple function calls. |
|
See :term:`Glossary <random_state>`. |
|
|
|
n_jobs : int or None, default=None |
|
The number of parallel jobs to run for neighbors search. |
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. |
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>` |
|
for more details. |
|
|
|
Returns |
|
------- |
|
Y : ndarray of shape (n_samples, n_components) |
|
Embedding vectors. |
|
|
|
squared_error : float |
|
Reconstruction error for the embedding vectors. Equivalent to |
|
``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights. |
|
|
|
References |
|
---------- |
|
|
|
.. [1] Roweis, S. & Saul, L. Nonlinear dimensionality reduction |
|
by locally linear embedding. Science 290:2323 (2000). |
|
.. [2] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally |
|
linear embedding techniques for high-dimensional data. |
|
Proc Natl Acad Sci U S A. 100:5591 (2003). |
|
.. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear |
|
Embedding Using Multiple Weights. |
|
<https://citeseerx.ist.psu.edu/doc_view/pid/0b060fdbd92cbcc66b383bcaa9ba5e5e624d7ee3>`_ |
|
.. [4] Zhang, Z. & Zha, H. Principal manifolds and nonlinear |
|
dimensionality reduction via tangent space alignment. |
|
Journal of Shanghai Univ. 8:406 (2004) |
|
|
|
Examples |
|
-------- |
|
>>> from sklearn.datasets import load_digits |
|
>>> from sklearn.manifold import locally_linear_embedding |
|
>>> X, _ = load_digits(return_X_y=True) |
|
>>> X.shape |
|
(1797, 64) |
|
>>> embedding, _ = locally_linear_embedding(X[:100],n_neighbors=5, n_components=2) |
|
>>> embedding.shape |
|
(100, 2) |
|
""" |
|
return _locally_linear_embedding( |
|
X=X, |
|
n_neighbors=n_neighbors, |
|
n_components=n_components, |
|
reg=reg, |
|
eigen_solver=eigen_solver, |
|
tol=tol, |
|
max_iter=max_iter, |
|
method=method, |
|
hessian_tol=hessian_tol, |
|
modified_tol=modified_tol, |
|
random_state=random_state, |
|
n_jobs=n_jobs, |
|
) |
|
|
|
|
|
class LocallyLinearEmbedding( |
|
ClassNamePrefixFeaturesOutMixin, |
|
TransformerMixin, |
|
_UnstableArchMixin, |
|
BaseEstimator, |
|
): |
|
"""Locally Linear Embedding. |
|
|
|
Read more in the :ref:`User Guide <locally_linear_embedding>`. |
|
|
|
Parameters |
|
---------- |
|
n_neighbors : int, default=5 |
|
Number of neighbors to consider for each point. |
|
|
|
n_components : int, default=2 |
|
Number of coordinates for the manifold. |
|
|
|
reg : float, default=1e-3 |
|
Regularization constant, multiplies the trace of the local covariance |
|
matrix of the distances. |
|
|
|
eigen_solver : {'auto', 'arpack', 'dense'}, default='auto' |
|
The solver used to compute the eigenvectors. The available options are: |
|
|
|
- `'auto'` : algorithm will attempt to choose the best method for input |
|
data. |
|
- `'arpack'` : use arnoldi iteration in shift-invert mode. For this |
|
method, M may be a dense matrix, sparse matrix, or general linear |
|
operator. |
|
- `'dense'` : use standard dense matrix operations for the eigenvalue |
|
decomposition. For this method, M must be an array or matrix type. |
|
This method should be avoided for large problems. |
|
|
|
.. warning:: |
|
ARPACK can be unstable for some problems. It is best to try several |
|
random seeds in order to check results. |
|
|
|
tol : float, default=1e-6 |
|
Tolerance for 'arpack' method |
|
Not used if eigen_solver=='dense'. |
|
|
|
max_iter : int, default=100 |
|
Maximum number of iterations for the arpack solver. |
|
Not used if eigen_solver=='dense'. |
|
|
|
method : {'standard', 'hessian', 'modified', 'ltsa'}, default='standard' |
|
- `standard`: use the standard locally linear embedding algorithm. see |
|
reference [1]_ |
|
- `hessian`: use the Hessian eigenmap method. This method requires |
|
``n_neighbors > n_components * (1 + (n_components + 1) / 2``. see |
|
reference [2]_ |
|
- `modified`: use the modified locally linear embedding algorithm. |
|
see reference [3]_ |
|
- `ltsa`: use local tangent space alignment algorithm. see |
|
reference [4]_ |
|
|
|
hessian_tol : float, default=1e-4 |
|
Tolerance for Hessian eigenmapping method. |
|
Only used if ``method == 'hessian'``. |
|
|
|
modified_tol : float, default=1e-12 |
|
Tolerance for modified LLE method. |
|
Only used if ``method == 'modified'``. |
|
|
|
neighbors_algorithm : {'auto', 'brute', 'kd_tree', 'ball_tree'}, \ |
|
default='auto' |
|
Algorithm to use for nearest neighbors search, passed to |
|
:class:`~sklearn.neighbors.NearestNeighbors` instance. |
|
|
|
random_state : int, RandomState instance, default=None |
|
Determines the random number generator when |
|
``eigen_solver`` == 'arpack'. Pass an int for reproducible results |
|
across multiple function calls. See :term:`Glossary <random_state>`. |
|
|
|
n_jobs : int or None, default=None |
|
The number of parallel jobs to run. |
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. |
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>` |
|
for more details. |
|
|
|
Attributes |
|
---------- |
|
embedding_ : array-like, shape [n_samples, n_components] |
|
Stores the embedding vectors |
|
|
|
reconstruction_error_ : float |
|
Reconstruction error associated with `embedding_` |
|
|
|
n_features_in_ : int |
|
Number of features seen during :term:`fit`. |
|
|
|
.. versionadded:: 0.24 |
|
|
|
feature_names_in_ : ndarray of shape (`n_features_in_`,) |
|
Names of features seen during :term:`fit`. Defined only when `X` |
|
has feature names that are all strings. |
|
|
|
.. versionadded:: 1.0 |
|
|
|
nbrs_ : NearestNeighbors object |
|
Stores nearest neighbors instance, including BallTree or KDtree |
|
if applicable. |
|
|
|
See Also |
|
-------- |
|
SpectralEmbedding : Spectral embedding for non-linear dimensionality |
|
reduction. |
|
TSNE : Distributed Stochastic Neighbor Embedding. |
|
|
|
References |
|
---------- |
|
|
|
.. [1] Roweis, S. & Saul, L. Nonlinear dimensionality reduction |
|
by locally linear embedding. Science 290:2323 (2000). |
|
.. [2] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally |
|
linear embedding techniques for high-dimensional data. |
|
Proc Natl Acad Sci U S A. 100:5591 (2003). |
|
.. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear |
|
Embedding Using Multiple Weights. |
|
<https://citeseerx.ist.psu.edu/doc_view/pid/0b060fdbd92cbcc66b383bcaa9ba5e5e624d7ee3>`_ |
|
.. [4] Zhang, Z. & Zha, H. Principal manifolds and nonlinear |
|
dimensionality reduction via tangent space alignment. |
|
Journal of Shanghai Univ. 8:406 (2004) |
|
|
|
Examples |
|
-------- |
|
>>> from sklearn.datasets import load_digits |
|
>>> from sklearn.manifold import LocallyLinearEmbedding |
|
>>> X, _ = load_digits(return_X_y=True) |
|
>>> X.shape |
|
(1797, 64) |
|
>>> embedding = LocallyLinearEmbedding(n_components=2) |
|
>>> X_transformed = embedding.fit_transform(X[:100]) |
|
>>> X_transformed.shape |
|
(100, 2) |
|
""" |
|
|
|
_parameter_constraints: dict = { |
|
"n_neighbors": [Interval(Integral, 1, None, closed="left")], |
|
"n_components": [Interval(Integral, 1, None, closed="left")], |
|
"reg": [Interval(Real, 0, None, closed="left")], |
|
"eigen_solver": [StrOptions({"auto", "arpack", "dense"})], |
|
"tol": [Interval(Real, 0, None, closed="left")], |
|
"max_iter": [Interval(Integral, 1, None, closed="left")], |
|
"method": [StrOptions({"standard", "hessian", "modified", "ltsa"})], |
|
"hessian_tol": [Interval(Real, 0, None, closed="left")], |
|
"modified_tol": [Interval(Real, 0, None, closed="left")], |
|
"neighbors_algorithm": [StrOptions({"auto", "brute", "kd_tree", "ball_tree"})], |
|
"random_state": ["random_state"], |
|
"n_jobs": [None, Integral], |
|
} |
|
|
|
def __init__( |
|
self, |
|
*, |
|
n_neighbors=5, |
|
n_components=2, |
|
reg=1e-3, |
|
eigen_solver="auto", |
|
tol=1e-6, |
|
max_iter=100, |
|
method="standard", |
|
hessian_tol=1e-4, |
|
modified_tol=1e-12, |
|
neighbors_algorithm="auto", |
|
random_state=None, |
|
n_jobs=None, |
|
): |
|
self.n_neighbors = n_neighbors |
|
self.n_components = n_components |
|
self.reg = reg |
|
self.eigen_solver = eigen_solver |
|
self.tol = tol |
|
self.max_iter = max_iter |
|
self.method = method |
|
self.hessian_tol = hessian_tol |
|
self.modified_tol = modified_tol |
|
self.random_state = random_state |
|
self.neighbors_algorithm = neighbors_algorithm |
|
self.n_jobs = n_jobs |
|
|
|
def _fit_transform(self, X): |
|
self.nbrs_ = NearestNeighbors( |
|
n_neighbors=self.n_neighbors, |
|
algorithm=self.neighbors_algorithm, |
|
n_jobs=self.n_jobs, |
|
) |
|
|
|
random_state = check_random_state(self.random_state) |
|
X = validate_data(self, X, dtype=float) |
|
self.nbrs_.fit(X) |
|
self.embedding_, self.reconstruction_error_ = _locally_linear_embedding( |
|
X=self.nbrs_, |
|
n_neighbors=self.n_neighbors, |
|
n_components=self.n_components, |
|
eigen_solver=self.eigen_solver, |
|
tol=self.tol, |
|
max_iter=self.max_iter, |
|
method=self.method, |
|
hessian_tol=self.hessian_tol, |
|
modified_tol=self.modified_tol, |
|
random_state=random_state, |
|
reg=self.reg, |
|
n_jobs=self.n_jobs, |
|
) |
|
self._n_features_out = self.embedding_.shape[1] |
|
|
|
@_fit_context(prefer_skip_nested_validation=True) |
|
def fit(self, X, y=None): |
|
"""Compute the embedding vectors for data X. |
|
|
|
Parameters |
|
---------- |
|
X : array-like of shape (n_samples, n_features) |
|
Training set. |
|
|
|
y : Ignored |
|
Not used, present here for API consistency by convention. |
|
|
|
Returns |
|
------- |
|
self : object |
|
Fitted `LocallyLinearEmbedding` class instance. |
|
""" |
|
self._fit_transform(X) |
|
return self |
|
|
|
@_fit_context(prefer_skip_nested_validation=True) |
|
def fit_transform(self, X, y=None): |
|
"""Compute the embedding vectors for data X and transform X. |
|
|
|
Parameters |
|
---------- |
|
X : array-like of shape (n_samples, n_features) |
|
Training set. |
|
|
|
y : Ignored |
|
Not used, present here for API consistency by convention. |
|
|
|
Returns |
|
------- |
|
X_new : array-like, shape (n_samples, n_components) |
|
Returns the instance itself. |
|
""" |
|
self._fit_transform(X) |
|
return self.embedding_ |
|
|
|
def transform(self, X): |
|
""" |
|
Transform new points into embedding space. |
|
|
|
Parameters |
|
---------- |
|
X : array-like of shape (n_samples, n_features) |
|
Training set. |
|
|
|
Returns |
|
------- |
|
X_new : ndarray of shape (n_samples, n_components) |
|
Returns the instance itself. |
|
|
|
Notes |
|
----- |
|
Because of scaling performed by this method, it is discouraged to use |
|
it together with methods that are not scale-invariant (like SVMs). |
|
""" |
|
check_is_fitted(self) |
|
|
|
X = validate_data(self, X, reset=False) |
|
ind = self.nbrs_.kneighbors( |
|
X, n_neighbors=self.n_neighbors, return_distance=False |
|
) |
|
weights = barycenter_weights(X, self.nbrs_._fit_X, ind, reg=self.reg) |
|
X_new = np.empty((X.shape[0], self.n_components)) |
|
for i in range(X.shape[0]): |
|
X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i]) |
|
return X_new |
|
|