spam-classifier
/
venv
/lib
/python3.11
/site-packages
/sklearn
/decomposition
/tests
/test_fastica.py
""" | |
Test the fastica algorithm. | |
""" | |
import itertools | |
import os | |
import warnings | |
import numpy as np | |
import pytest | |
from scipy import stats | |
from sklearn.decomposition import PCA, FastICA, fastica | |
from sklearn.decomposition._fastica import _gs_decorrelation | |
from sklearn.exceptions import ConvergenceWarning | |
from sklearn.utils._testing import assert_allclose, ignore_warnings | |
def center_and_norm(x, axis=-1): | |
"""Centers and norms x **in place** | |
Parameters | |
----------- | |
x: ndarray | |
Array with an axis of observations (statistical units) measured on | |
random variables. | |
axis: int, optional | |
Axis along which the mean and variance are calculated. | |
""" | |
x = np.rollaxis(x, axis) | |
x -= x.mean(axis=0) | |
x /= x.std(axis=0) | |
def test_gs(): | |
# Test gram schmidt orthonormalization | |
# generate a random orthogonal matrix | |
rng = np.random.RandomState(0) | |
W, _, _ = np.linalg.svd(rng.randn(10, 10)) | |
w = rng.randn(10) | |
_gs_decorrelation(w, W, 10) | |
assert (w**2).sum() < 1.0e-10 | |
w = rng.randn(10) | |
u = _gs_decorrelation(w, W, 5) | |
tmp = np.dot(u, W.T) | |
assert (tmp[:5] ** 2).sum() < 1.0e-10 | |
def test_fastica_attributes_dtypes(global_dtype): | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((100, 10)).astype(global_dtype, copy=False) | |
fica = FastICA( | |
n_components=5, max_iter=1000, whiten="unit-variance", random_state=0 | |
).fit(X) | |
assert fica.components_.dtype == global_dtype | |
assert fica.mixing_.dtype == global_dtype | |
assert fica.mean_.dtype == global_dtype | |
assert fica.whitening_.dtype == global_dtype | |
def test_fastica_return_dtypes(global_dtype): | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((100, 10)).astype(global_dtype, copy=False) | |
k_, mixing_, s_ = fastica( | |
X, max_iter=1000, whiten="unit-variance", random_state=rng | |
) | |
assert k_.dtype == global_dtype | |
assert mixing_.dtype == global_dtype | |
assert s_.dtype == global_dtype | |
def test_fastica_simple(add_noise, global_random_seed, global_dtype): | |
if ( | |
global_random_seed == 20 | |
and global_dtype == np.float32 | |
and not add_noise | |
and os.getenv("DISTRIB") == "ubuntu" | |
): | |
pytest.xfail( | |
"FastICA instability with Ubuntu Atlas build with float32 " | |
"global_dtype. For more details, see " | |
"https://github.com/scikit-learn/scikit-learn/issues/24131#issuecomment-1208091119" # noqa | |
) | |
# Test the FastICA algorithm on very simple data. | |
rng = np.random.RandomState(global_random_seed) | |
n_samples = 1000 | |
# Generate two sources: | |
s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 | |
s2 = stats.t.rvs(1, size=n_samples, random_state=global_random_seed) | |
s = np.c_[s1, s2].T | |
center_and_norm(s) | |
s = s.astype(global_dtype) | |
s1, s2 = s | |
# Mixing angle | |
phi = 0.6 | |
mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) | |
mixing = mixing.astype(global_dtype) | |
m = np.dot(mixing, s) | |
if add_noise: | |
m += 0.1 * rng.randn(2, 1000) | |
center_and_norm(m) | |
# function as fun arg | |
def g_test(x): | |
return x**3, (3 * x**2).mean(axis=-1) | |
algos = ["parallel", "deflation"] | |
nls = ["logcosh", "exp", "cube", g_test] | |
whitening = ["arbitrary-variance", "unit-variance", False] | |
for algo, nl, whiten in itertools.product(algos, nls, whitening): | |
if whiten: | |
k_, mixing_, s_ = fastica( | |
m.T, fun=nl, whiten=whiten, algorithm=algo, random_state=rng | |
) | |
with pytest.raises(ValueError): | |
fastica(m.T, fun=np.tanh, whiten=whiten, algorithm=algo) | |
else: | |
pca = PCA(n_components=2, whiten=True, random_state=rng) | |
X = pca.fit_transform(m.T) | |
k_, mixing_, s_ = fastica( | |
X, fun=nl, algorithm=algo, whiten=False, random_state=rng | |
) | |
with pytest.raises(ValueError): | |
fastica(X, fun=np.tanh, algorithm=algo) | |
s_ = s_.T | |
# Check that the mixing model described in the docstring holds: | |
if whiten: | |
# XXX: exact reconstruction to standard relative tolerance is not | |
# possible. This is probably expected when add_noise is True but we | |
# also need a non-trivial atol in float32 when add_noise is False. | |
# | |
# Note that the 2 sources are non-Gaussian in this test. | |
atol = 1e-5 if global_dtype == np.float32 else 0 | |
assert_allclose(np.dot(np.dot(mixing_, k_), m), s_, atol=atol) | |
center_and_norm(s_) | |
s1_, s2_ = s_ | |
# Check to see if the sources have been estimated | |
# in the wrong order | |
if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): | |
s2_, s1_ = s_ | |
s1_ *= np.sign(np.dot(s1_, s1)) | |
s2_ *= np.sign(np.dot(s2_, s2)) | |
# Check that we have estimated the original sources | |
if not add_noise: | |
assert_allclose(np.dot(s1_, s1) / n_samples, 1, atol=1e-2) | |
assert_allclose(np.dot(s2_, s2) / n_samples, 1, atol=1e-2) | |
else: | |
assert_allclose(np.dot(s1_, s1) / n_samples, 1, atol=1e-1) | |
assert_allclose(np.dot(s2_, s2) / n_samples, 1, atol=1e-1) | |
# Test FastICA class | |
_, _, sources_fun = fastica( | |
m.T, fun=nl, algorithm=algo, random_state=global_random_seed | |
) | |
ica = FastICA(fun=nl, algorithm=algo, random_state=global_random_seed) | |
sources = ica.fit_transform(m.T) | |
assert ica.components_.shape == (2, 2) | |
assert sources.shape == (1000, 2) | |
assert_allclose(sources_fun, sources) | |
# Set atol to account for the different magnitudes of the elements in sources | |
# (from 1e-4 to 1e1). | |
atol = np.max(np.abs(sources)) * (1e-5 if global_dtype == np.float32 else 1e-7) | |
assert_allclose(sources, ica.transform(m.T), atol=atol) | |
assert ica.mixing_.shape == (2, 2) | |
ica = FastICA(fun=np.tanh, algorithm=algo) | |
with pytest.raises(ValueError): | |
ica.fit(m.T) | |
def test_fastica_nowhiten(): | |
m = [[0, 1], [1, 0]] | |
# test for issue #697 | |
ica = FastICA(n_components=1, whiten=False, random_state=0) | |
warn_msg = "Ignoring n_components with whiten=False." | |
with pytest.warns(UserWarning, match=warn_msg): | |
ica.fit(m) | |
assert hasattr(ica, "mixing_") | |
def test_fastica_convergence_fail(): | |
# Test the FastICA algorithm on very simple data | |
# (see test_non_square_fastica). | |
# Ensure a ConvergenceWarning raised if the tolerance is sufficiently low. | |
rng = np.random.RandomState(0) | |
n_samples = 1000 | |
# Generate two sources: | |
t = np.linspace(0, 100, n_samples) | |
s1 = np.sin(t) | |
s2 = np.ceil(np.sin(np.pi * t)) | |
s = np.c_[s1, s2].T | |
center_and_norm(s) | |
# Mixing matrix | |
mixing = rng.randn(6, 2) | |
m = np.dot(mixing, s) | |
# Do fastICA with tolerance 0. to ensure failing convergence | |
warn_msg = ( | |
"FastICA did not converge. Consider increasing tolerance " | |
"or the maximum number of iterations." | |
) | |
with pytest.warns(ConvergenceWarning, match=warn_msg): | |
ica = FastICA( | |
algorithm="parallel", n_components=2, random_state=rng, max_iter=2, tol=0.0 | |
) | |
ica.fit(m.T) | |
def test_non_square_fastica(add_noise): | |
# Test the FastICA algorithm on very simple data. | |
rng = np.random.RandomState(0) | |
n_samples = 1000 | |
# Generate two sources: | |
t = np.linspace(0, 100, n_samples) | |
s1 = np.sin(t) | |
s2 = np.ceil(np.sin(np.pi * t)) | |
s = np.c_[s1, s2].T | |
center_and_norm(s) | |
s1, s2 = s | |
# Mixing matrix | |
mixing = rng.randn(6, 2) | |
m = np.dot(mixing, s) | |
if add_noise: | |
m += 0.1 * rng.randn(6, n_samples) | |
center_and_norm(m) | |
k_, mixing_, s_ = fastica( | |
m.T, n_components=2, whiten="unit-variance", random_state=rng | |
) | |
s_ = s_.T | |
# Check that the mixing model described in the docstring holds: | |
assert_allclose(s_, np.dot(np.dot(mixing_, k_), m)) | |
center_and_norm(s_) | |
s1_, s2_ = s_ | |
# Check to see if the sources have been estimated | |
# in the wrong order | |
if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): | |
s2_, s1_ = s_ | |
s1_ *= np.sign(np.dot(s1_, s1)) | |
s2_ *= np.sign(np.dot(s2_, s2)) | |
# Check that we have estimated the original sources | |
if not add_noise: | |
assert_allclose(np.dot(s1_, s1) / n_samples, 1, atol=1e-3) | |
assert_allclose(np.dot(s2_, s2) / n_samples, 1, atol=1e-3) | |
def test_fit_transform(global_random_seed, global_dtype): | |
"""Test unit variance of transformed data using FastICA algorithm. | |
Check that `fit_transform` gives the same result as applying | |
`fit` and then `transform`. | |
Bug #13056 | |
""" | |
# multivariate uniform data in [0, 1] | |
rng = np.random.RandomState(global_random_seed) | |
X = rng.random_sample((100, 10)).astype(global_dtype) | |
max_iter = 300 | |
for whiten, n_components in [["unit-variance", 5], [False, None]]: | |
n_components_ = n_components if n_components is not None else X.shape[1] | |
ica = FastICA( | |
n_components=n_components, max_iter=max_iter, whiten=whiten, random_state=0 | |
) | |
with warnings.catch_warnings(): | |
# make sure that numerical errors do not cause sqrt of negative | |
# values | |
warnings.simplefilter("error", RuntimeWarning) | |
# XXX: for some seeds, the model does not converge. | |
# However this is not what we test here. | |
warnings.simplefilter("ignore", ConvergenceWarning) | |
Xt = ica.fit_transform(X) | |
assert ica.components_.shape == (n_components_, 10) | |
assert Xt.shape == (X.shape[0], n_components_) | |
ica2 = FastICA( | |
n_components=n_components, max_iter=max_iter, whiten=whiten, random_state=0 | |
) | |
with warnings.catch_warnings(): | |
# make sure that numerical errors do not cause sqrt of negative | |
# values | |
warnings.simplefilter("error", RuntimeWarning) | |
warnings.simplefilter("ignore", ConvergenceWarning) | |
ica2.fit(X) | |
assert ica2.components_.shape == (n_components_, 10) | |
Xt2 = ica2.transform(X) | |
# XXX: we have to set atol for this test to pass for all seeds when | |
# fitting with float32 data. Is this revealing a bug? | |
if global_dtype: | |
atol = np.abs(Xt2).mean() / 1e6 | |
else: | |
atol = 0.0 # the default rtol is enough for float64 data | |
assert_allclose(Xt, Xt2, atol=atol) | |
def test_inverse_transform( | |
whiten, n_components, expected_mixing_shape, global_random_seed, global_dtype | |
): | |
# Test FastICA.inverse_transform | |
n_samples = 100 | |
rng = np.random.RandomState(global_random_seed) | |
X = rng.random_sample((n_samples, 10)).astype(global_dtype) | |
ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten) | |
with warnings.catch_warnings(): | |
# For some dataset (depending on the value of global_dtype) the model | |
# can fail to converge but this should not impact the definition of | |
# a valid inverse transform. | |
warnings.simplefilter("ignore", ConvergenceWarning) | |
Xt = ica.fit_transform(X) | |
assert ica.mixing_.shape == expected_mixing_shape | |
X2 = ica.inverse_transform(Xt) | |
assert X.shape == X2.shape | |
# reversibility test in non-reduction case | |
if n_components == X.shape[1]: | |
# XXX: we have to set atol for this test to pass for all seeds when | |
# fitting with float32 data. Is this revealing a bug? | |
if global_dtype: | |
# XXX: dividing by a smaller number makes | |
# tests fail for some seeds. | |
atol = np.abs(X2).mean() / 1e5 | |
else: | |
atol = 0.0 # the default rtol is enough for float64 data | |
assert_allclose(X, X2, atol=atol) | |
def test_fastica_errors(): | |
n_features = 3 | |
n_samples = 10 | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((n_samples, n_features)) | |
w_init = rng.randn(n_features + 1, n_features + 1) | |
with pytest.raises(ValueError, match=r"alpha must be in \[1,2\]"): | |
fastica(X, fun_args={"alpha": 0}) | |
with pytest.raises( | |
ValueError, match="w_init has invalid shape.+" r"should be \(3L?, 3L?\)" | |
): | |
fastica(X, w_init=w_init) | |
def test_fastica_whiten_unit_variance(): | |
"""Test unit variance of transformed data using FastICA algorithm. | |
Bug #13056 | |
""" | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((100, 10)) | |
n_components = X.shape[1] | |
ica = FastICA(n_components=n_components, whiten="unit-variance", random_state=0) | |
Xt = ica.fit_transform(X) | |
assert np.var(Xt) == pytest.approx(1.0) | |
def test_fastica_output_shape(whiten, return_X_mean, return_n_iter): | |
n_features = 3 | |
n_samples = 10 | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((n_samples, n_features)) | |
expected_len = 3 + return_X_mean + return_n_iter | |
out = fastica( | |
X, whiten=whiten, return_n_iter=return_n_iter, return_X_mean=return_X_mean | |
) | |
assert len(out) == expected_len | |
if not whiten: | |
assert out[0] is None | |
def test_fastica_simple_different_solvers(add_noise, global_random_seed): | |
"""Test FastICA is consistent between whiten_solvers.""" | |
rng = np.random.RandomState(global_random_seed) | |
n_samples = 1000 | |
# Generate two sources: | |
s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 | |
s2 = stats.t.rvs(1, size=n_samples, random_state=rng) | |
s = np.c_[s1, s2].T | |
center_and_norm(s) | |
s1, s2 = s | |
# Mixing angle | |
phi = rng.rand() * 2 * np.pi | |
mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) | |
m = np.dot(mixing, s) | |
if add_noise: | |
m += 0.1 * rng.randn(2, 1000) | |
center_and_norm(m) | |
outs = {} | |
for solver in ("svd", "eigh"): | |
ica = FastICA(random_state=0, whiten="unit-variance", whiten_solver=solver) | |
sources = ica.fit_transform(m.T) | |
outs[solver] = sources | |
assert ica.components_.shape == (2, 2) | |
assert sources.shape == (1000, 2) | |
# compared numbers are not all on the same magnitude. Using a small atol to | |
# make the test less brittle | |
assert_allclose(outs["eigh"], outs["svd"], atol=1e-12) | |
def test_fastica_eigh_low_rank_warning(global_random_seed): | |
"""Test FastICA eigh solver raises warning for low-rank data.""" | |
rng = np.random.RandomState(global_random_seed) | |
A = rng.randn(10, 2) | |
X = A @ A.T | |
ica = FastICA(random_state=0, whiten="unit-variance", whiten_solver="eigh") | |
msg = "There are some small singular values" | |
with pytest.warns(UserWarning, match=msg): | |
with ignore_warnings(category=ConvergenceWarning): | |
# The FastICA solver may not converge for some data with specific | |
# random seeds but this happens after the whiten step so this is | |
# not want we want to test here. | |
ica.fit(X) | |