|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#pragma once |
|
|
|
#include "../config.h" |
|
#include "../error.h" |
|
#include "const.h" |
|
#include "ellpk.h" |
|
|
|
namespace xsf { |
|
namespace cephes { |
|
|
|
namespace detail { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
XSF_HOST_DEVICE inline double ellik_neg_m(double phi, double m) { |
|
double x, y, z, x1, y1, z1, A0, A, Q, X, Y, Z, E2, E3, scale; |
|
int n = 0; |
|
double mpp = (m * phi) * phi; |
|
|
|
if (-mpp < 1e-6 && phi < -m) { |
|
return phi + (-mpp * phi * phi / 30.0 + 3.0 * mpp * mpp / 40.0 + mpp / 6.0) * phi; |
|
} |
|
|
|
if (-mpp > 4e7) { |
|
double sm = std::sqrt(-m); |
|
double sp = std::sin(phi); |
|
double cp = std::cos(phi); |
|
|
|
double a = std::log(4 * sp * sm / (1 + cp)); |
|
double b = -(1 + cp / sp / sp - a) / 4 / m; |
|
return (a + b) / sm; |
|
} |
|
|
|
if (phi > 1e-153 && m > -1e305) { |
|
double s = std::sin(phi); |
|
double csc2 = 1.0 / (s * s); |
|
scale = 1.0; |
|
x = 1.0 / (std::tan(phi) * std::tan(phi)); |
|
y = csc2 - m; |
|
z = csc2; |
|
} else { |
|
scale = phi; |
|
x = 1.0; |
|
y = 1 - m * scale * scale; |
|
z = 1.0; |
|
} |
|
|
|
if (x == y && x == z) { |
|
return scale / std::sqrt(x); |
|
} |
|
|
|
A0 = (x + y + z) / 3.0; |
|
A = A0; |
|
x1 = x; |
|
y1 = y; |
|
z1 = z; |
|
|
|
|
|
Q = 400.0 * std::fmax(std::abs(A0 - x), std::fmax(std::abs(A0 - y), std::abs(A0 - z))); |
|
|
|
while (Q > std::abs(A) && n <= 100) { |
|
double sx = std::sqrt(x1); |
|
double sy = std::sqrt(y1); |
|
double sz = std::sqrt(z1); |
|
double lam = sx * sy + sx * sz + sy * sz; |
|
x1 = (x1 + lam) / 4.0; |
|
y1 = (y1 + lam) / 4.0; |
|
z1 = (z1 + lam) / 4.0; |
|
A = (x1 + y1 + z1) / 3.0; |
|
n += 1; |
|
Q /= 4; |
|
} |
|
X = (A0 - x) / A / (1 << 2 * n); |
|
Y = (A0 - y) / A / (1 << 2 * n); |
|
Z = -(X + Y); |
|
|
|
E2 = X * Y - Z * Z; |
|
E3 = X * Y * Z; |
|
|
|
return scale * (1.0 - E2 / 10.0 + E3 / 14.0 + E2 * E2 / 24.0 - 3.0 * E2 * E3 / 44.0) / sqrt(A); |
|
} |
|
|
|
} |
|
|
|
XSF_HOST_DEVICE inline double ellik(double phi, double m) { |
|
double a, b, c, e, temp, t, K, denom, npio2; |
|
int d, mod, sign; |
|
|
|
if (std::isnan(phi) || std::isnan(m)) |
|
return std::numeric_limits<double>::quiet_NaN(); |
|
if (m > 1.0) |
|
return std::numeric_limits<double>::quiet_NaN(); |
|
if (std::isinf(phi) || std::isinf(m)) { |
|
if (std::isinf(m) && std::isfinite(phi)) |
|
return 0.0; |
|
else if (std::isinf(phi) && std::isfinite(m)) |
|
return phi; |
|
else |
|
return std::numeric_limits<double>::quiet_NaN(); |
|
} |
|
if (m == 0.0) |
|
return (phi); |
|
a = 1.0 - m; |
|
if (a == 0.0) { |
|
if (std::abs(phi) >= (double) M_PI_2) { |
|
set_error("ellik", SF_ERROR_SINGULAR, NULL); |
|
return (std::numeric_limits<double>::infinity()); |
|
} |
|
|
|
return std::asinh(std::tan(phi)); |
|
} |
|
npio2 = floor(phi / M_PI_2); |
|
if (std::fmod(std::abs(npio2), 2.0) == 1.0) |
|
npio2 += 1; |
|
if (npio2 != 0.0) { |
|
K = ellpk(a); |
|
phi = phi - npio2 * M_PI_2; |
|
} else |
|
K = 0.0; |
|
if (phi < 0.0) { |
|
phi = -phi; |
|
sign = -1; |
|
} else |
|
sign = 0; |
|
if (a > 1.0) { |
|
temp = detail::ellik_neg_m(phi, m); |
|
goto done; |
|
} |
|
b = std::sqrt(a); |
|
t = std::tan(phi); |
|
if (std::abs(t) > 10.0) { |
|
|
|
e = 1.0 / (b * t); |
|
|
|
if (std::abs(e) < 10.0) { |
|
e = std::atan(e); |
|
if (npio2 == 0) |
|
K = ellpk(a); |
|
temp = K - ellik(e, m); |
|
goto done; |
|
} |
|
} |
|
a = 1.0; |
|
c = std::sqrt(m); |
|
d = 1; |
|
mod = 0; |
|
|
|
while (std::abs(c / a) > detail::MACHEP) { |
|
temp = b / a; |
|
phi = phi + atan(t * temp) + mod * M_PI; |
|
denom = 1.0 - temp * t * t; |
|
if (std::abs(denom) > 10 * detail::MACHEP) { |
|
t = t * (1.0 + temp) / denom; |
|
mod = (phi + M_PI_2) / M_PI; |
|
} else { |
|
t = std::tan(phi); |
|
mod = static_cast<int>(std::floor((phi - std::atan(t)) / M_PI)); |
|
} |
|
c = (a - b) / 2.0; |
|
temp = std::sqrt(a * b); |
|
a = (a + b) / 2.0; |
|
b = temp; |
|
d += d; |
|
} |
|
|
|
temp = (std::atan(t) + mod * M_PI) / (d * a); |
|
|
|
done: |
|
if (sign < 0) |
|
temp = -temp; |
|
temp += npio2 * K; |
|
return (temp); |
|
} |
|
|
|
} |
|
} |
|
|