|
import numpy as np |
|
from numpy.testing import assert_array_almost_equal, assert_ |
|
from scipy.sparse import csr_matrix, csc_matrix, lil_matrix |
|
|
|
import pytest |
|
|
|
|
|
def test_csc_getrow(): |
|
N = 10 |
|
np.random.seed(0) |
|
X = np.random.random((N, N)) |
|
X[X > 0.7] = 0 |
|
Xcsc = csc_matrix(X) |
|
|
|
for i in range(N): |
|
arr_row = X[i:i + 1, :] |
|
csc_row = Xcsc.getrow(i) |
|
|
|
assert_array_almost_equal(arr_row, csc_row.toarray()) |
|
assert_(type(csc_row) is csr_matrix) |
|
|
|
|
|
def test_csc_getcol(): |
|
N = 10 |
|
np.random.seed(0) |
|
X = np.random.random((N, N)) |
|
X[X > 0.7] = 0 |
|
Xcsc = csc_matrix(X) |
|
|
|
for i in range(N): |
|
arr_col = X[:, i:i + 1] |
|
csc_col = Xcsc.getcol(i) |
|
|
|
assert_array_almost_equal(arr_col, csc_col.toarray()) |
|
assert_(type(csc_col) is csc_matrix) |
|
|
|
@pytest.mark.parametrize("matrix_input, axis, expected_shape", |
|
[(csc_matrix([[1, 0], |
|
[0, 0], |
|
[0, 2]]), |
|
0, (0, 2)), |
|
(csc_matrix([[1, 0], |
|
[0, 0], |
|
[0, 2]]), |
|
1, (3, 0)), |
|
(csc_matrix([[1, 0], |
|
[0, 0], |
|
[0, 2]]), |
|
'both', (0, 0)), |
|
(csc_matrix([[0, 1, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 2, 3, 0, 1]]), |
|
0, (0, 6))]) |
|
def test_csc_empty_slices(matrix_input, axis, expected_shape): |
|
|
|
slice_1 = matrix_input.toarray().shape[0] - 1 |
|
slice_2 = slice_1 |
|
slice_3 = slice_2 - 1 |
|
|
|
if axis == 0: |
|
actual_shape_1 = matrix_input[slice_1:slice_2, :].toarray().shape |
|
actual_shape_2 = matrix_input[slice_1:slice_3, :].toarray().shape |
|
elif axis == 1: |
|
actual_shape_1 = matrix_input[:, slice_1:slice_2].toarray().shape |
|
actual_shape_2 = matrix_input[:, slice_1:slice_3].toarray().shape |
|
elif axis == 'both': |
|
actual_shape_1 = matrix_input[slice_1:slice_2, slice_1:slice_2].toarray().shape |
|
actual_shape_2 = matrix_input[slice_1:slice_3, slice_1:slice_3].toarray().shape |
|
|
|
assert actual_shape_1 == expected_shape |
|
assert actual_shape_1 == actual_shape_2 |
|
|
|
|
|
@pytest.mark.parametrize('ax', (-2, -1, 0, 1, None)) |
|
def test_argmax_overflow(ax): |
|
|
|
dim = (100000, 100000) |
|
A = lil_matrix(dim) |
|
A[-2, -2] = 42 |
|
A[-3, -3] = 0.1234 |
|
A = csc_matrix(A) |
|
idx = A.argmax(axis=ax) |
|
|
|
if ax is None: |
|
|
|
|
|
|
|
|
|
ii = idx % dim[0] |
|
jj = idx // dim[0] |
|
else: |
|
|
|
|
|
|
|
assert np.count_nonzero(idx) == A.nnz |
|
ii, jj = np.max(idx), np.argmax(idx) |
|
|
|
assert A[ii, jj] == A[-2, -2] |
|
|