|
"""Test of 1D arithmetic operations""" |
|
|
|
import pytest |
|
|
|
import numpy as np |
|
from numpy.testing import assert_equal, assert_allclose |
|
|
|
from scipy.sparse import coo_array, csr_array |
|
from scipy.sparse._sputils import isscalarlike |
|
|
|
|
|
spcreators = [coo_array, csr_array] |
|
math_dtypes = [np.int64, np.float64, np.complex128] |
|
|
|
|
|
def toarray(a): |
|
if isinstance(a, np.ndarray) or isscalarlike(a): |
|
return a |
|
return a.toarray() |
|
|
|
@pytest.fixture |
|
def dat1d(): |
|
return np.array([3, 0, 1, 0], 'd') |
|
|
|
|
|
@pytest.fixture |
|
def datsp_math_dtypes(dat1d): |
|
dat_dtypes = {dtype: dat1d.astype(dtype) for dtype in math_dtypes} |
|
return { |
|
sp: [(dtype, dat, sp(dat)) for dtype, dat in dat_dtypes.items()] |
|
for sp in spcreators |
|
} |
|
|
|
|
|
@pytest.mark.parametrize("spcreator", spcreators) |
|
class TestArithmetic1D: |
|
def test_empty_arithmetic(self, spcreator): |
|
shape = (5,) |
|
for mytype in [ |
|
np.dtype('int32'), |
|
np.dtype('float32'), |
|
np.dtype('float64'), |
|
np.dtype('complex64'), |
|
np.dtype('complex128'), |
|
]: |
|
a = spcreator(shape, dtype=mytype) |
|
b = a + a |
|
c = 2 * a |
|
assert isinstance(a @ a.tocsr(), np.ndarray) |
|
assert isinstance(a @ a.tocoo(), np.ndarray) |
|
for m in [a, b, c]: |
|
assert m @ m == a.toarray() @ a.toarray() |
|
assert m.dtype == mytype |
|
assert toarray(m).dtype == mytype |
|
|
|
def test_abs(self, spcreator): |
|
A = np.array([-1, 0, 17, 0, -5, 0, 1, -4, 0, 0, 0, 0], 'd') |
|
assert_equal(abs(A), abs(spcreator(A)).toarray()) |
|
|
|
def test_round(self, spcreator): |
|
A = np.array([-1.35, 0.56, 17.25, -5.98], 'd') |
|
Asp = spcreator(A) |
|
assert_equal(np.around(A, decimals=1), round(Asp, ndigits=1).toarray()) |
|
|
|
def test_elementwise_power(self, spcreator): |
|
A = np.array([-4, -3, -2, -1, 0, 1, 2, 3, 4], 'd') |
|
Asp = spcreator(A) |
|
assert_equal(np.power(A, 2), Asp.power(2).toarray()) |
|
|
|
|
|
with pytest.raises(NotImplementedError, match='input is not scalar'): |
|
spcreator(A).power(A) |
|
|
|
def test_real(self, spcreator): |
|
D = np.array([1 + 3j, 2 - 4j]) |
|
A = spcreator(D) |
|
assert_equal(A.real.toarray(), D.real) |
|
|
|
def test_imag(self, spcreator): |
|
D = np.array([1 + 3j, 2 - 4j]) |
|
A = spcreator(D) |
|
assert_equal(A.imag.toarray(), D.imag) |
|
|
|
def test_mul_scalar(self, spcreator, datsp_math_dtypes): |
|
for dtype, dat, datsp in datsp_math_dtypes[spcreator]: |
|
assert_equal(dat * 2, (datsp * 2).toarray()) |
|
assert_equal(dat * 17.3, (datsp * 17.3).toarray()) |
|
|
|
def test_rmul_scalar(self, spcreator, datsp_math_dtypes): |
|
for dtype, dat, datsp in datsp_math_dtypes[spcreator]: |
|
assert_equal(2 * dat, (2 * datsp).toarray()) |
|
assert_equal(17.3 * dat, (17.3 * datsp).toarray()) |
|
|
|
def test_sub(self, spcreator, datsp_math_dtypes): |
|
for dtype, dat, datsp in datsp_math_dtypes[spcreator]: |
|
if dtype == np.dtype('bool'): |
|
|
|
continue |
|
|
|
assert_equal((datsp - datsp).toarray(), np.zeros(4)) |
|
assert_equal((datsp - 0).toarray(), dat) |
|
|
|
A = spcreator([1, -4, 0, 2], dtype='d') |
|
assert_equal((datsp - A).toarray(), dat - A.toarray()) |
|
assert_equal((A - datsp).toarray(), A.toarray() - dat) |
|
|
|
|
|
assert_equal(datsp.toarray() - dat[0], dat - dat[0]) |
|
|
|
def test_add0(self, spcreator, datsp_math_dtypes): |
|
for dtype, dat, datsp in datsp_math_dtypes[spcreator]: |
|
|
|
assert_equal((datsp + 0).toarray(), dat) |
|
|
|
sumS = sum([k * datsp for k in range(1, 3)]) |
|
sumD = sum([k * dat for k in range(1, 3)]) |
|
assert_allclose(sumS.toarray(), sumD) |
|
|
|
def test_elementwise_multiply(self, spcreator): |
|
|
|
A = np.array([4, 0, 9]) |
|
B = np.array([0, 7, -1]) |
|
Asp = spcreator(A) |
|
Bsp = spcreator(B) |
|
assert_allclose(Asp.multiply(Bsp).toarray(), A * B) |
|
assert_allclose(Asp.multiply(B).toarray(), A * B) |
|
|
|
|
|
C = np.array([1 - 2j, 0 + 5j, -1 + 0j]) |
|
D = np.array([5 + 2j, 7 - 3j, -2 + 1j]) |
|
Csp = spcreator(C) |
|
Dsp = spcreator(D) |
|
assert_allclose(Csp.multiply(Dsp).toarray(), C * D) |
|
assert_allclose(Csp.multiply(D).toarray(), C * D) |
|
|
|
|
|
assert_allclose(Asp.multiply(Dsp).toarray(), A * D) |
|
assert_allclose(Asp.multiply(D).toarray(), A * D) |
|
|
|
def test_elementwise_multiply_broadcast(self, spcreator): |
|
A = np.array([4]) |
|
B = np.array([[-9]]) |
|
C = np.array([1, -1, 0]) |
|
D = np.array([[7, 9, -9]]) |
|
E = np.array([[3], [2], [1]]) |
|
F = np.array([[8, 6, 3], [-4, 3, 2], [6, 6, 6]]) |
|
G = [1, 2, 3] |
|
H = np.ones((3, 4)) |
|
J = H.T |
|
K = np.array([[0]]) |
|
L = np.array([[[1, 2], [0, 1]]]) |
|
|
|
|
|
|
|
Asp = spcreator(A) |
|
Csp = spcreator(C) |
|
Gsp = spcreator(G) |
|
|
|
Bsp = spcreator(B) |
|
Dsp = spcreator(D) |
|
Esp = spcreator(E) |
|
Fsp = spcreator(F) |
|
Hsp = spcreator(H) |
|
Hspp = spcreator(H[0, None]) |
|
Jsp = spcreator(J) |
|
Jspp = spcreator(J[:, 0, None]) |
|
Ksp = spcreator(K) |
|
|
|
matrices = [A, B, C, D, E, F, G, H, J, K, L] |
|
spmatrices = [Asp, Bsp, Csp, Dsp, Esp, Fsp, Gsp, Hsp, Hspp, Jsp, Jspp, Ksp] |
|
sp1dmatrices = [Asp, Csp, Gsp] |
|
|
|
|
|
for i in sp1dmatrices: |
|
for j in spmatrices: |
|
try: |
|
dense_mult = i.toarray() * j.toarray() |
|
except ValueError: |
|
with pytest.raises(ValueError, match='inconsistent shapes'): |
|
i.multiply(j) |
|
continue |
|
sp_mult = i.multiply(j) |
|
assert_allclose(sp_mult.toarray(), dense_mult) |
|
|
|
|
|
for i in sp1dmatrices: |
|
for j in matrices: |
|
try: |
|
dense_mult = i.toarray() * j |
|
except TypeError: |
|
continue |
|
except ValueError: |
|
matchme = 'broadcast together|inconsistent shapes' |
|
with pytest.raises(ValueError, match=matchme): |
|
i.multiply(j) |
|
continue |
|
sp_mult = i.multiply(j) |
|
assert_allclose(toarray(sp_mult), dense_mult) |
|
|
|
def test_elementwise_divide(self, spcreator, dat1d): |
|
datsp = spcreator(dat1d) |
|
expected = np.array([1, np.nan, 1, np.nan]) |
|
actual = datsp / datsp |
|
|
|
np.testing.assert_array_equal(actual, expected) |
|
|
|
denom = spcreator([1, 0, 0, 4], dtype='d') |
|
expected = [3, np.nan, np.inf, 0] |
|
np.testing.assert_array_equal(datsp / denom, expected) |
|
|
|
|
|
A = np.array([1 - 2j, 0 + 5j, -1 + 0j]) |
|
B = np.array([5 + 2j, 7 - 3j, -2 + 1j]) |
|
Asp = spcreator(A) |
|
Bsp = spcreator(B) |
|
assert_allclose(Asp / Bsp, A / B) |
|
|
|
|
|
A = np.array([1, 2, 3]) |
|
B = np.array([0, 1, 2]) |
|
Asp = spcreator(A) |
|
Bsp = spcreator(B) |
|
with np.errstate(divide='ignore'): |
|
assert_equal(Asp / Bsp, A / B) |
|
|
|
|
|
A = np.array([0, 1]) |
|
B = np.array([1, 0]) |
|
Asp = spcreator(A) |
|
Bsp = spcreator(B) |
|
with np.errstate(divide='ignore', invalid='ignore'): |
|
assert_equal(Asp / Bsp, A / B) |
|
|
|
def test_pow(self, spcreator): |
|
A = np.array([1, 0, 2, 0]) |
|
B = spcreator(A) |
|
|
|
|
|
with pytest.raises(ValueError, match='negative integer powers'): |
|
B**-1 |
|
with pytest.raises(NotImplementedError, match='zero power'): |
|
B**0 |
|
|
|
for exponent in [1, 2, 3, 2.2]: |
|
ret_sp = B**exponent |
|
ret_np = A**exponent |
|
assert_equal(ret_sp.toarray(), ret_np) |
|
assert_equal(ret_sp.dtype, ret_np.dtype) |
|
|
|
def test_dot_scalar(self, spcreator, dat1d): |
|
A = spcreator(dat1d) |
|
scalar = 10 |
|
actual = A.dot(scalar) |
|
expected = A * scalar |
|
|
|
assert_allclose(actual.toarray(), expected.toarray()) |
|
|
|
def test_matmul(self, spcreator): |
|
Msp = spcreator([2, 0, 3.0]) |
|
B = spcreator(np.array([[0, 1], [1, 0], [0, 2]], 'd')) |
|
col = np.array([[1, 2, 3]]).T |
|
|
|
|
|
assert_allclose(Msp @ col, Msp.toarray() @ col) |
|
|
|
|
|
assert_allclose((Msp @ B).toarray(), (Msp @ B).toarray()) |
|
assert_allclose(Msp.toarray() @ B, (Msp @ B).toarray()) |
|
assert_allclose(Msp @ B.toarray(), (Msp @ B).toarray()) |
|
|
|
|
|
V = np.array([0, 0, 1]) |
|
assert_allclose(Msp @ V, Msp.toarray() @ V) |
|
|
|
Vsp = spcreator(V) |
|
Msp_Vsp = Msp @ Vsp |
|
assert isinstance(Msp_Vsp, np.ndarray) |
|
assert Msp_Vsp.shape == () |
|
|
|
|
|
assert_allclose(np.array(3), Msp_Vsp) |
|
assert_allclose(np.array(3), Msp.toarray() @ Vsp) |
|
assert_allclose(np.array(3), Msp @ Vsp.toarray()) |
|
assert_allclose(np.array(3), Msp.toarray() @ Vsp.toarray()) |
|
|
|
|
|
with pytest.raises(ValueError, match='Scalar operands are not allowed'): |
|
Msp @ 1 |
|
with pytest.raises(ValueError, match='Scalar operands are not allowed'): |
|
1 @ Msp |
|
|
|
def test_sub_dense(self, spcreator, datsp_math_dtypes): |
|
|
|
for dtype, dat, datsp in datsp_math_dtypes[spcreator]: |
|
if dtype == np.dtype('bool'): |
|
|
|
continue |
|
|
|
|
|
|
|
sum1 = (dat + dat + dat) - datsp |
|
assert_equal(sum1, dat + dat) |
|
sum2 = (datsp + datsp + datsp) - dat |
|
assert_equal(sum2, dat + dat) |
|
|
|
def test_size_zero_matrix_arithmetic(self, spcreator): |
|
|
|
mat = np.array([]) |
|
a = mat.reshape(0) |
|
d = mat.reshape((1, 0)) |
|
f = np.ones([5, 5]) |
|
|
|
asp = spcreator(a) |
|
dsp = spcreator(d) |
|
|
|
with pytest.raises(ValueError, match='inconsistent shapes'): |
|
asp.__add__(dsp) |
|
|
|
|
|
assert_equal(asp.dot(asp), np.dot(a, a)) |
|
|
|
|
|
with pytest.raises(ValueError, match='dimension mismatch'): |
|
asp.dot(f) |
|
|
|
|
|
assert_equal(asp.multiply(asp).toarray(), np.multiply(a, a)) |
|
|
|
assert_equal(asp.multiply(a).toarray(), np.multiply(a, a)) |
|
|
|
assert_equal(asp.multiply(6).toarray(), np.multiply(a, 6)) |
|
|
|
|
|
with pytest.raises(ValueError, match='inconsistent shapes'): |
|
asp.multiply(f) |
|
|
|
|
|
assert_equal(asp.__add__(asp).toarray(), a.__add__(a)) |
|
|