|
""" |
|
Unit tests for trust-region optimization routines. |
|
|
|
""" |
|
import pytest |
|
import numpy as np |
|
from numpy.testing import assert_, assert_equal, assert_allclose |
|
from scipy.optimize import (minimize, rosen, rosen_der, rosen_hess, |
|
rosen_hess_prod) |
|
|
|
|
|
class Accumulator: |
|
""" This is for testing callbacks.""" |
|
def __init__(self): |
|
self.count = 0 |
|
self.accum = None |
|
|
|
def __call__(self, x): |
|
self.count += 1 |
|
if self.accum is None: |
|
self.accum = np.array(x) |
|
else: |
|
self.accum += x |
|
|
|
|
|
class TestTrustRegionSolvers: |
|
|
|
def setup_method(self): |
|
self.x_opt = [1.0, 1.0] |
|
self.easy_guess = [2.0, 2.0] |
|
self.hard_guess = [-1.2, 1.0] |
|
|
|
def test_dogleg_accuracy(self): |
|
|
|
x0 = self.hard_guess |
|
r = minimize(rosen, x0, jac=rosen_der, hess=rosen_hess, tol=1e-8, |
|
method='dogleg', options={'return_all': True},) |
|
assert_allclose(x0, r['allvecs'][0]) |
|
assert_allclose(r['x'], r['allvecs'][-1]) |
|
assert_allclose(r['x'], self.x_opt) |
|
|
|
def test_dogleg_callback(self): |
|
|
|
accumulator = Accumulator() |
|
maxiter = 5 |
|
r = minimize(rosen, self.hard_guess, jac=rosen_der, hess=rosen_hess, |
|
callback=accumulator, method='dogleg', |
|
options={'return_all': True, 'maxiter': maxiter},) |
|
assert_equal(accumulator.count, maxiter) |
|
assert_equal(len(r['allvecs']), maxiter+1) |
|
assert_allclose(r['x'], r['allvecs'][-1]) |
|
assert_allclose(sum(r['allvecs'][1:]), accumulator.accum) |
|
|
|
@pytest.mark.thread_unsafe |
|
def test_dogleg_user_warning(self): |
|
with pytest.warns(RuntimeWarning, |
|
match=r'Maximum number of iterations'): |
|
minimize(rosen, self.hard_guess, jac=rosen_der, |
|
hess=rosen_hess, method='dogleg', |
|
options={'disp': True, 'maxiter': 1}, ) |
|
|
|
def test_solver_concordance(self): |
|
|
|
|
|
|
|
|
|
f = rosen |
|
g = rosen_der |
|
h = rosen_hess |
|
for x0 in (self.easy_guess, self.hard_guess): |
|
r_dogleg = minimize(f, x0, jac=g, hess=h, tol=1e-8, |
|
method='dogleg', options={'return_all': True}) |
|
r_trust_ncg = minimize(f, x0, jac=g, hess=h, tol=1e-8, |
|
method='trust-ncg', |
|
options={'return_all': True}) |
|
r_trust_krylov = minimize(f, x0, jac=g, hess=h, tol=1e-8, |
|
method='trust-krylov', |
|
options={'return_all': True}) |
|
r_ncg = minimize(f, x0, jac=g, hess=h, tol=1e-8, |
|
method='newton-cg', options={'return_all': True}) |
|
r_iterative = minimize(f, x0, jac=g, hess=h, tol=1e-8, |
|
method='trust-exact', |
|
options={'return_all': True}) |
|
assert_allclose(self.x_opt, r_dogleg['x']) |
|
assert_allclose(self.x_opt, r_trust_ncg['x']) |
|
assert_allclose(self.x_opt, r_trust_krylov['x']) |
|
assert_allclose(self.x_opt, r_ncg['x']) |
|
assert_allclose(self.x_opt, r_iterative['x']) |
|
assert_(len(r_dogleg['allvecs']) < len(r_ncg['allvecs'])) |
|
|
|
def test_trust_ncg_hessp(self): |
|
for x0 in (self.easy_guess, self.hard_guess, self.x_opt): |
|
r = minimize(rosen, x0, jac=rosen_der, hessp=rosen_hess_prod, |
|
tol=1e-8, method='trust-ncg') |
|
assert_allclose(self.x_opt, r['x']) |
|
|
|
def test_trust_ncg_start_in_optimum(self): |
|
r = minimize(rosen, x0=self.x_opt, jac=rosen_der, hess=rosen_hess, |
|
tol=1e-8, method='trust-ncg') |
|
assert_allclose(self.x_opt, r['x']) |
|
|
|
def test_trust_krylov_start_in_optimum(self): |
|
r = minimize(rosen, x0=self.x_opt, jac=rosen_der, hess=rosen_hess, |
|
tol=1e-8, method='trust-krylov') |
|
assert_allclose(self.x_opt, r['x']) |
|
|
|
def test_trust_exact_start_in_optimum(self): |
|
r = minimize(rosen, x0=self.x_opt, jac=rosen_der, hess=rosen_hess, |
|
tol=1e-8, method='trust-exact') |
|
assert_allclose(self.x_opt, r['x']) |
|
|