|
import logging |
|
import sys |
|
|
|
import numpy as np |
|
import time |
|
from multiprocessing import Pool |
|
from numpy.testing import assert_allclose, IS_PYPY |
|
import pytest |
|
from pytest import raises as assert_raises, warns |
|
from scipy.optimize import (shgo, Bounds, minimize_scalar, minimize, rosen, |
|
rosen_der, rosen_hess, NonlinearConstraint) |
|
from scipy.optimize._constraints import new_constraint_to_old |
|
from scipy.optimize._shgo import SHGO |
|
|
|
|
|
class StructTestFunction: |
|
def __init__(self, bounds, expected_x, expected_fun=None, |
|
expected_xl=None, expected_funl=None): |
|
self.bounds = bounds |
|
self.expected_x = expected_x |
|
self.expected_fun = expected_fun |
|
self.expected_xl = expected_xl |
|
self.expected_funl = expected_funl |
|
|
|
|
|
def wrap_constraints(g): |
|
cons = [] |
|
if g is not None: |
|
if not isinstance(g, (tuple, list)): |
|
g = (g,) |
|
else: |
|
pass |
|
for g in g: |
|
cons.append({'type': 'ineq', |
|
'fun': g}) |
|
cons = tuple(cons) |
|
else: |
|
cons = None |
|
return cons |
|
|
|
|
|
class StructTest1(StructTestFunction): |
|
def f(self, x): |
|
return x[0] ** 2 + x[1] ** 2 |
|
|
|
def g(x): |
|
return -(np.sum(x, axis=0) - 6.0) |
|
|
|
cons = wrap_constraints(g) |
|
|
|
|
|
test1_1 = StructTest1(bounds=[(-1, 6), (-1, 6)], |
|
expected_x=[0, 0]) |
|
test1_2 = StructTest1(bounds=[(0, 1), (0, 1)], |
|
expected_x=[0, 0]) |
|
test1_3 = StructTest1(bounds=[(None, None), (None, None)], |
|
expected_x=[0, 0]) |
|
|
|
|
|
class StructTest2(StructTestFunction): |
|
""" |
|
Scalar function with several minima to test all minimiser retrievals |
|
""" |
|
|
|
def f(self, x): |
|
return (x - 30) * np.sin(x) |
|
|
|
def g(x): |
|
return 58 - np.sum(x, axis=0) |
|
|
|
cons = wrap_constraints(g) |
|
|
|
|
|
test2_1 = StructTest2(bounds=[(0, 60)], |
|
expected_x=[1.53567906], |
|
expected_fun=-28.44677132, |
|
|
|
|
|
expected_xl=np.array([[1.53567906], |
|
[55.01782167], |
|
[7.80894889], |
|
[48.74797493], |
|
[14.07445705], |
|
[42.4913859], |
|
[20.31743841], |
|
[36.28607535], |
|
[26.43039605], |
|
[30.76371366]]), |
|
|
|
expected_funl=np.array([-28.44677132, -24.99785984, |
|
-22.16855376, -18.72136195, |
|
-15.89423937, -12.45154942, |
|
-9.63133158, -6.20801301, |
|
-3.43727232, -0.46353338]) |
|
) |
|
|
|
test2_2 = StructTest2(bounds=[(0, 4.5)], |
|
expected_x=[1.53567906], |
|
expected_fun=[-28.44677132], |
|
expected_xl=np.array([[1.53567906]]), |
|
expected_funl=np.array([-28.44677132]) |
|
) |
|
|
|
|
|
class StructTest3(StructTestFunction): |
|
""" |
|
Hock and Schittkowski 18 problem (HS18). Hoch and Schittkowski (1981) |
|
http://www.ai7.uni-bayreuth.de/test_problem_coll.pdf |
|
Minimize: f = 0.01 * (x_1)**2 + (x_2)**2 |
|
|
|
Subject to: x_1 * x_2 - 25.0 >= 0, |
|
(x_1)**2 + (x_2)**2 - 25.0 >= 0, |
|
2 <= x_1 <= 50, |
|
0 <= x_2 <= 50. |
|
|
|
Approx. Answer: |
|
f([(250)**0.5 , (2.5)**0.5]) = 5.0 |
|
|
|
|
|
""" |
|
|
|
|
|
def f(self, x): |
|
return 0.01 * (x[0]) ** 2 + (x[1]) ** 2 |
|
|
|
def g1(x): |
|
return x[0] * x[1] - 25.0 |
|
|
|
def g2(x): |
|
return x[0] ** 2 + x[1] ** 2 - 25.0 |
|
|
|
|
|
|
|
|
|
def g(x): |
|
return x[0] * x[1] - 25.0, x[0] ** 2 + x[1] ** 2 - 25.0 |
|
|
|
|
|
__nlc = NonlinearConstraint(g, 0, np.inf) |
|
cons = (__nlc,) |
|
|
|
test3_1 = StructTest3(bounds=[(2, 50), (0, 50)], |
|
expected_x=[250 ** 0.5, 2.5 ** 0.5], |
|
expected_fun=5.0 |
|
) |
|
|
|
|
|
class StructTest4(StructTestFunction): |
|
""" |
|
Hock and Schittkowski 11 problem (HS11). Hoch and Schittkowski (1981) |
|
|
|
NOTE: Did not find in original reference to HS collection, refer to |
|
Henderson (2015) problem 7 instead. 02.03.2016 |
|
""" |
|
|
|
def f(self, x): |
|
return ((x[0] - 10) ** 2 + 5 * (x[1] - 12) ** 2 + x[2] ** 4 |
|
+ 3 * (x[3] - 11) ** 2 + 10 * x[4] ** 6 + 7 * x[5] ** 2 + x[ |
|
6] ** 4 |
|
- 4 * x[5] * x[6] - 10 * x[5] - 8 * x[6] |
|
) |
|
|
|
def g1(x): |
|
return -(2 * x[0] ** 2 + 3 * x[1] ** 4 + x[2] + 4 * x[3] ** 2 |
|
+ 5 * x[4] - 127) |
|
|
|
def g2(x): |
|
return -(7 * x[0] + 3 * x[1] + 10 * x[2] ** 2 + x[3] - x[4] - 282.0) |
|
|
|
def g3(x): |
|
return -(23 * x[0] + x[1] ** 2 + 6 * x[5] ** 2 - 8 * x[6] - 196) |
|
|
|
def g4(x): |
|
return -(4 * x[0] ** 2 + x[1] ** 2 - 3 * x[0] * x[1] + 2 * x[2] ** 2 |
|
+ 5 * x[5] - 11 * x[6]) |
|
|
|
g = (g1, g2, g3, g4) |
|
|
|
cons = wrap_constraints(g) |
|
|
|
|
|
test4_1 = StructTest4(bounds=[(-10, 10), ] * 7, |
|
expected_x=[2.330499, 1.951372, -0.4775414, |
|
4.365726, -0.6244870, 1.038131, 1.594227], |
|
expected_fun=680.6300573 |
|
) |
|
|
|
|
|
class StructTest5(StructTestFunction): |
|
def f(self, x): |
|
return ( |
|
-(x[1] + 47.0)*np.sin(np.sqrt(abs(x[0]/2.0 + (x[1] + 47.0)))) |
|
- x[0]*np.sin(np.sqrt(abs(x[0] - (x[1] + 47.0)))) |
|
) |
|
|
|
g = None |
|
cons = wrap_constraints(g) |
|
|
|
|
|
test5_1 = StructTest5(bounds=[(-512, 512), (-512, 512)], |
|
expected_fun=[-959.64066272085051], |
|
expected_x=[512., 404.23180542]) |
|
|
|
|
|
class StructTestLJ(StructTestFunction): |
|
""" |
|
LennardJones objective function. Used to test symmetry constraints |
|
settings. |
|
""" |
|
|
|
def f(self, x, *args): |
|
print(f'x = {x}') |
|
self.N = args[0] |
|
k = int(self.N / 3) |
|
s = 0.0 |
|
|
|
for i in range(k - 1): |
|
for j in range(i + 1, k): |
|
a = 3 * i |
|
b = 3 * j |
|
xd = x[a] - x[b] |
|
yd = x[a + 1] - x[b + 1] |
|
zd = x[a + 2] - x[b + 2] |
|
ed = xd * xd + yd * yd + zd * zd |
|
ud = ed * ed * ed |
|
if ed > 0.0: |
|
s += (1.0 / ud - 2.0) / ud |
|
|
|
return s |
|
|
|
g = None |
|
cons = wrap_constraints(g) |
|
|
|
|
|
N = 6 |
|
boundsLJ = list(zip([-4.0] * 6, [4.0] * 6)) |
|
|
|
testLJ = StructTestLJ(bounds=boundsLJ, |
|
expected_fun=[-1.0], |
|
expected_x=None, |
|
|
|
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
class StructTestS(StructTestFunction): |
|
def f(self, x): |
|
return ((x[0] - 0.5) ** 2 + (x[1] - 0.5) ** 2 |
|
+ (x[2] - 0.5) ** 2 + (x[3] - 0.5) ** 2) |
|
|
|
g = None |
|
cons = wrap_constraints(g) |
|
|
|
|
|
test_s = StructTestS(bounds=[(0, 2.0), ] * 4, |
|
expected_fun=0.0, |
|
expected_x=np.ones(4) - 0.5 |
|
) |
|
|
|
|
|
class StructTestTable(StructTestFunction): |
|
def f(self, x): |
|
if x[0] == 3.0 and x[1] == 3.0: |
|
return 50 |
|
else: |
|
return 100 |
|
|
|
g = None |
|
cons = wrap_constraints(g) |
|
|
|
|
|
test_table = StructTestTable(bounds=[(-10, 10), (-10, 10)], |
|
expected_fun=[50], |
|
expected_x=[3.0, 3.0]) |
|
|
|
|
|
class StructTestInfeasible(StructTestFunction): |
|
""" |
|
Test function with no feasible domain. |
|
""" |
|
|
|
def f(self, x, *args): |
|
return x[0] ** 2 + x[1] ** 2 |
|
|
|
def g1(x): |
|
return x[0] + x[1] - 1 |
|
|
|
def g2(x): |
|
return -(x[0] + x[1] - 1) |
|
|
|
def g3(x): |
|
return -x[0] + x[1] - 1 |
|
|
|
def g4(x): |
|
return -(-x[0] + x[1] - 1) |
|
|
|
g = (g1, g2, g3, g4) |
|
cons = wrap_constraints(g) |
|
|
|
|
|
test_infeasible = StructTestInfeasible(bounds=[(2, 50), (-1, 1)], |
|
expected_fun=None, |
|
expected_x=None |
|
) |
|
|
|
|
|
@pytest.mark.skip("Not a test") |
|
def run_test(test, args=(), test_atol=1e-5, n=100, iters=None, |
|
callback=None, minimizer_kwargs=None, options=None, |
|
sampling_method='sobol', workers=1): |
|
res = shgo(test.f, test.bounds, args=args, constraints=test.cons, |
|
n=n, iters=iters, callback=callback, |
|
minimizer_kwargs=minimizer_kwargs, options=options, |
|
sampling_method=sampling_method, workers=workers) |
|
|
|
print(f'res = {res}') |
|
logging.info(f'res = {res}') |
|
if test.expected_x is not None: |
|
np.testing.assert_allclose(res.x, test.expected_x, |
|
rtol=test_atol, |
|
atol=test_atol) |
|
|
|
|
|
if test.expected_fun is not None: |
|
np.testing.assert_allclose(res.fun, |
|
test.expected_fun, |
|
atol=test_atol) |
|
|
|
if test.expected_xl is not None: |
|
np.testing.assert_allclose(res.xl, |
|
test.expected_xl, |
|
atol=test_atol) |
|
|
|
if test.expected_funl is not None: |
|
np.testing.assert_allclose(res.funl, |
|
test.expected_funl, |
|
atol=test_atol) |
|
return |
|
|
|
|
|
|
|
class TestShgoSobolTestFunctions: |
|
""" |
|
Global optimisation tests with Sobol sampling: |
|
""" |
|
|
|
|
|
def test_f1_1_sobol(self): |
|
"""Multivariate test function 1: |
|
x[0]**2 + x[1]**2 with bounds=[(-1, 6), (-1, 6)]""" |
|
run_test(test1_1) |
|
|
|
def test_f1_2_sobol(self): |
|
"""Multivariate test function 1: |
|
x[0]**2 + x[1]**2 with bounds=[(0, 1), (0, 1)]""" |
|
run_test(test1_2) |
|
|
|
def test_f1_3_sobol(self): |
|
"""Multivariate test function 1: |
|
x[0]**2 + x[1]**2 with bounds=[(None, None),(None, None)]""" |
|
options = {'disp': True} |
|
run_test(test1_3, options=options) |
|
|
|
def test_f2_1_sobol(self): |
|
"""Univariate test function on |
|
f(x) = (x - 30) * sin(x) with bounds=[(0, 60)]""" |
|
run_test(test2_1) |
|
|
|
def test_f2_2_sobol(self): |
|
"""Univariate test function on |
|
f(x) = (x - 30) * sin(x) bounds=[(0, 4.5)]""" |
|
run_test(test2_2) |
|
|
|
def test_f3_sobol(self): |
|
"""NLP: Hock and Schittkowski problem 18""" |
|
run_test(test3_1) |
|
|
|
@pytest.mark.slow |
|
def test_f4_sobol(self): |
|
"""NLP: (High dimensional) Hock and Schittkowski 11 problem (HS11)""" |
|
options = {'infty_constraints': False} |
|
|
|
run_test(test4_1, n=990 * 2, options=options) |
|
|
|
def test_f5_1_sobol(self): |
|
"""NLP: Eggholder, multimodal""" |
|
|
|
run_test(test5_1, n=60) |
|
|
|
def test_f5_2_sobol(self): |
|
"""NLP: Eggholder, multimodal""" |
|
|
|
run_test(test5_1, n=60, iters=5) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestShgoSimplicialTestFunctions: |
|
""" |
|
Global optimisation tests with Simplicial sampling: |
|
""" |
|
|
|
def test_f1_1_simplicial(self): |
|
"""Multivariate test function 1: |
|
x[0]**2 + x[1]**2 with bounds=[(-1, 6), (-1, 6)]""" |
|
run_test(test1_1, n=1, sampling_method='simplicial') |
|
|
|
def test_f1_2_simplicial(self): |
|
"""Multivariate test function 1: |
|
x[0]**2 + x[1]**2 with bounds=[(0, 1), (0, 1)]""" |
|
run_test(test1_2, n=1, sampling_method='simplicial') |
|
|
|
def test_f1_3_simplicial(self): |
|
"""Multivariate test function 1: x[0]**2 + x[1]**2 |
|
with bounds=[(None, None),(None, None)]""" |
|
run_test(test1_3, n=5, sampling_method='simplicial') |
|
|
|
def test_f2_1_simplicial(self): |
|
"""Univariate test function on |
|
f(x) = (x - 30) * sin(x) with bounds=[(0, 60)]""" |
|
options = {'minimize_every_iter': False} |
|
run_test(test2_1, n=200, iters=7, options=options, |
|
sampling_method='simplicial') |
|
|
|
def test_f2_2_simplicial(self): |
|
"""Univariate test function on |
|
f(x) = (x - 30) * sin(x) bounds=[(0, 4.5)]""" |
|
run_test(test2_2, n=1, sampling_method='simplicial') |
|
|
|
def test_f3_simplicial(self): |
|
"""NLP: Hock and Schittkowski problem 18""" |
|
run_test(test3_1, n=1, sampling_method='simplicial') |
|
|
|
@pytest.mark.slow |
|
def test_f4_simplicial(self): |
|
"""NLP: (High dimensional) Hock and Schittkowski 11 problem (HS11)""" |
|
run_test(test4_1, n=1, sampling_method='simplicial') |
|
|
|
def test_lj_symmetry_old(self): |
|
"""LJ: Symmetry-constrained test function""" |
|
options = {'symmetry': True, |
|
'disp': True} |
|
args = (6,) |
|
run_test(testLJ, args=args, n=300, |
|
options=options, iters=1, |
|
sampling_method='simplicial') |
|
|
|
def test_f5_1_lj_symmetry(self): |
|
"""LJ: Symmetry constrained test function""" |
|
options = {'symmetry': [0, ] * 6, |
|
'disp': True} |
|
args = (6,) |
|
|
|
run_test(testLJ, args=args, n=300, |
|
options=options, iters=1, |
|
sampling_method='simplicial') |
|
|
|
def test_f5_2_cons_symmetry(self): |
|
"""Symmetry constrained test function""" |
|
options = {'symmetry': [0, 0], |
|
'disp': True} |
|
|
|
run_test(test1_1, n=200, |
|
options=options, iters=1, |
|
sampling_method='simplicial') |
|
|
|
@pytest.mark.fail_slow(10) |
|
def test_f5_3_cons_symmetry(self): |
|
"""Asymmetrically constrained test function""" |
|
options = {'symmetry': [0, 0, 0, 3], |
|
'disp': True} |
|
|
|
run_test(test_s, n=10000, |
|
options=options, |
|
iters=1, |
|
sampling_method='simplicial') |
|
|
|
@pytest.mark.skip("Not a test") |
|
def test_f0_min_variance(self): |
|
"""Return a minimum on a perfectly symmetric problem, based on |
|
gh10429""" |
|
avg = 0.5 |
|
cons = {'type': 'eq', 'fun': lambda x: np.mean(x) - avg} |
|
|
|
|
|
res = shgo(np.var, bounds=6 * [(0, 1)], constraints=cons) |
|
assert res.success |
|
assert_allclose(res.fun, 0, atol=1e-15) |
|
assert_allclose(res.x, 0.5) |
|
|
|
@pytest.mark.skip("Not a test") |
|
def test_f0_min_variance_1D(self): |
|
"""Return a minimum on a perfectly symmetric 1D problem, based on |
|
gh10538""" |
|
|
|
def fun(x): |
|
return x * (x - 1.0) * (x - 0.5) |
|
|
|
bounds = [(0, 1)] |
|
res = shgo(fun, bounds=bounds) |
|
ref = minimize_scalar(fun, bounds=bounds[0]) |
|
assert res.success |
|
assert_allclose(res.fun, ref.fun) |
|
assert_allclose(res.x, ref.x, rtol=1e-6) |
|
|
|
|
|
class TestShgoArguments: |
|
def test_1_1_simpl_iter(self): |
|
"""Iterative simplicial sampling on TestFunction 1 (multivariate)""" |
|
run_test(test1_2, n=None, iters=2, sampling_method='simplicial') |
|
|
|
def test_1_2_simpl_iter(self): |
|
"""Iterative simplicial on TestFunction 2 (univariate)""" |
|
options = {'minimize_every_iter': False} |
|
run_test(test2_1, n=None, iters=9, options=options, |
|
sampling_method='simplicial') |
|
|
|
def test_2_1_sobol_iter(self): |
|
"""Iterative Sobol sampling on TestFunction 1 (multivariate)""" |
|
run_test(test1_2, n=None, iters=1, sampling_method='sobol') |
|
|
|
def test_2_2_sobol_iter(self): |
|
"""Iterative Sobol sampling on TestFunction 2 (univariate)""" |
|
res = shgo(test2_1.f, test2_1.bounds, constraints=test2_1.cons, |
|
n=None, iters=1, sampling_method='sobol') |
|
|
|
np.testing.assert_allclose(res.x, test2_1.expected_x, rtol=1e-5, atol=1e-5) |
|
np.testing.assert_allclose(res.fun, test2_1.expected_fun, atol=1e-5) |
|
|
|
def test_3_1_disp_simplicial(self): |
|
"""Iterative sampling on TestFunction 1 and 2 (multi and univariate) |
|
""" |
|
|
|
def callback_func(x): |
|
print("Local minimization callback test") |
|
|
|
for test in [test1_1, test2_1]: |
|
shgo(test.f, test.bounds, iters=1, |
|
sampling_method='simplicial', |
|
callback=callback_func, options={'disp': True}) |
|
shgo(test.f, test.bounds, n=1, sampling_method='simplicial', |
|
callback=callback_func, options={'disp': True}) |
|
|
|
def test_3_2_disp_sobol(self): |
|
"""Iterative sampling on TestFunction 1 and 2 (multi and univariate)""" |
|
|
|
def callback_func(x): |
|
print("Local minimization callback test") |
|
|
|
for test in [test1_1, test2_1]: |
|
shgo(test.f, test.bounds, iters=1, sampling_method='sobol', |
|
callback=callback_func, options={'disp': True}) |
|
|
|
shgo(test.f, test.bounds, n=1, sampling_method='simplicial', |
|
callback=callback_func, options={'disp': True}) |
|
|
|
def test_args_gh14589(self): |
|
"""Using `args` used to cause `shgo` to fail; see #14589, #15986, |
|
#16506""" |
|
res = shgo(func=lambda x, y, z: x * z + y, bounds=[(0, 3)], args=(1, 2) |
|
) |
|
ref = shgo(func=lambda x: 2 * x + 1, bounds=[(0, 3)]) |
|
assert_allclose(res.fun, ref.fun) |
|
assert_allclose(res.x, ref.x) |
|
|
|
@pytest.mark.slow |
|
def test_4_1_known_f_min(self): |
|
"""Test known function minima stopping criteria""" |
|
|
|
options = {'f_min': test4_1.expected_fun, |
|
'f_tol': 1e-6, |
|
'minimize_every_iter': True} |
|
|
|
run_test(test4_1, n=None, test_atol=1e-5, options=options, |
|
sampling_method='simplicial') |
|
|
|
@pytest.mark.slow |
|
def test_4_2_known_f_min(self): |
|
"""Test Global mode limiting local evaluations""" |
|
options = { |
|
'f_min': test4_1.expected_fun, |
|
'f_tol': 1e-6, |
|
|
|
'minimize_every_iter': True, |
|
'local_iter': 1} |
|
|
|
run_test(test4_1, n=None, test_atol=1e-5, options=options, |
|
sampling_method='simplicial') |
|
|
|
def test_4_4_known_f_min(self): |
|
"""Test Global mode limiting local evaluations for 1D funcs""" |
|
options = { |
|
'f_min': test2_1.expected_fun, |
|
'f_tol': 1e-6, |
|
|
|
'minimize_every_iter': True, |
|
'local_iter': 1, |
|
'infty_constraints': False} |
|
|
|
res = shgo(test2_1.f, test2_1.bounds, constraints=test2_1.cons, |
|
n=None, iters=None, options=options, |
|
sampling_method='sobol') |
|
np.testing.assert_allclose(res.x, test2_1.expected_x, rtol=1e-5, atol=1e-5) |
|
|
|
def test_5_1_simplicial_argless(self): |
|
"""Test Default simplicial sampling settings on TestFunction 1""" |
|
res = shgo(test1_1.f, test1_1.bounds, constraints=test1_1.cons) |
|
np.testing.assert_allclose(res.x, test1_1.expected_x, rtol=1e-5, atol=1e-5) |
|
|
|
def test_5_2_sobol_argless(self): |
|
"""Test Default sobol sampling settings on TestFunction 1""" |
|
res = shgo(test1_1.f, test1_1.bounds, constraints=test1_1.cons, |
|
sampling_method='sobol') |
|
np.testing.assert_allclose(res.x, test1_1.expected_x, rtol=1e-5, atol=1e-5) |
|
|
|
def test_6_1_simplicial_max_iter(self): |
|
"""Test that maximum iteration option works on TestFunction 3""" |
|
options = {'max_iter': 2} |
|
res = shgo(test3_1.f, test3_1.bounds, constraints=test3_1.cons, |
|
options=options, sampling_method='simplicial') |
|
np.testing.assert_allclose(res.x, test3_1.expected_x, rtol=1e-5, atol=1e-5) |
|
np.testing.assert_allclose(res.fun, test3_1.expected_fun, atol=1e-5) |
|
|
|
def test_6_2_simplicial_min_iter(self): |
|
"""Test that maximum iteration option works on TestFunction 3""" |
|
options = {'min_iter': 2} |
|
res = shgo(test3_1.f, test3_1.bounds, constraints=test3_1.cons, |
|
options=options, sampling_method='simplicial') |
|
np.testing.assert_allclose(res.x, test3_1.expected_x, rtol=1e-5, atol=1e-5) |
|
np.testing.assert_allclose(res.fun, test3_1.expected_fun, atol=1e-5) |
|
|
|
def test_7_1_minkwargs(self): |
|
"""Test the minimizer_kwargs arguments for solvers with constraints""" |
|
|
|
for solver in ['COBYLA', 'COBYQA', 'SLSQP']: |
|
|
|
|
|
minimizer_kwargs = {'method': solver, |
|
'constraints': test3_1.cons} |
|
run_test(test3_1, n=100, test_atol=1e-3, |
|
minimizer_kwargs=minimizer_kwargs, |
|
sampling_method='sobol') |
|
|
|
def test_7_2_minkwargs(self): |
|
"""Test the minimizer_kwargs default inits""" |
|
minimizer_kwargs = {'ftol': 1e-5} |
|
options = {'disp': True} |
|
SHGO(test3_1.f, test3_1.bounds, constraints=test3_1.cons[0], |
|
minimizer_kwargs=minimizer_kwargs, options=options) |
|
|
|
def test_7_3_minkwargs(self): |
|
"""Test minimizer_kwargs arguments for solvers without constraints""" |
|
for solver in ['Nelder-Mead', 'Powell', 'CG', 'BFGS', 'Newton-CG', |
|
'L-BFGS-B', 'TNC', 'dogleg', 'trust-ncg', 'trust-exact', |
|
'trust-krylov']: |
|
def jac(x): |
|
return np.array([2 * x[0], 2 * x[1]]).T |
|
|
|
def hess(x): |
|
return np.array([[2, 0], [0, 2]]) |
|
|
|
minimizer_kwargs = {'method': solver, |
|
'jac': jac, |
|
'hess': hess} |
|
logging.info(f"Solver = {solver}") |
|
logging.info("=" * 100) |
|
run_test(test1_1, n=100, test_atol=1e-3, |
|
minimizer_kwargs=minimizer_kwargs, |
|
sampling_method='sobol') |
|
|
|
def test_8_homology_group_diff(self): |
|
options = {'minhgrd': 1, |
|
'minimize_every_iter': True} |
|
|
|
run_test(test1_1, n=None, iters=None, options=options, |
|
sampling_method='simplicial') |
|
|
|
def test_9_cons_g(self): |
|
"""Test single function constraint passing""" |
|
SHGO(test3_1.f, test3_1.bounds, constraints=test3_1.cons[0]) |
|
|
|
@pytest.mark.xfail(IS_PYPY and sys.platform == 'win32', |
|
reason="Failing and fix in PyPy not planned (see gh-18632)") |
|
def test_10_finite_time(self): |
|
"""Test single function constraint passing""" |
|
options = {'maxtime': 1e-15} |
|
|
|
def f(x): |
|
time.sleep(1e-14) |
|
return 0.0 |
|
|
|
res = shgo(f, test1_1.bounds, iters=5, options=options) |
|
|
|
assert res.nit == 1 |
|
|
|
def test_11_f_min_0(self): |
|
"""Test to cover the case where f_lowest == 0""" |
|
options = {'f_min': 0.0, |
|
'disp': True} |
|
res = shgo(test1_2.f, test1_2.bounds, n=10, iters=None, |
|
options=options, sampling_method='sobol') |
|
np.testing.assert_equal(0, res.x[0]) |
|
np.testing.assert_equal(0, res.x[1]) |
|
|
|
|
|
@pytest.mark.skip(reason="no way of currently testing this") |
|
def test_12_sobol_inf_cons(self): |
|
"""Test to cover the case where f_lowest == 0""" |
|
|
|
|
|
|
|
options = {'maxtime': 1e-15, |
|
'f_min': 0.0} |
|
res = shgo(test1_2.f, test1_2.bounds, n=1, iters=None, |
|
options=options, sampling_method='sobol') |
|
np.testing.assert_equal(0.0, res.fun) |
|
|
|
def test_13_high_sobol(self): |
|
"""Test init of high-dimensional sobol sequences""" |
|
|
|
def f(x): |
|
return 0 |
|
|
|
bounds = [(None, None), ] * 41 |
|
SHGOc = SHGO(f, bounds, sampling_method='sobol') |
|
|
|
SHGOc.sampling_function(2, 50) |
|
|
|
def test_14_local_iter(self): |
|
"""Test limited local iterations for a pseudo-global mode""" |
|
options = {'local_iter': 4} |
|
run_test(test5_1, n=60, options=options) |
|
|
|
def test_15_min_every_iter(self): |
|
"""Test minimize every iter options and cover function cache""" |
|
options = {'minimize_every_iter': True} |
|
run_test(test1_1, n=1, iters=7, options=options, |
|
sampling_method='sobol') |
|
|
|
def test_16_disp_bounds_minimizer(self, capsys): |
|
"""Test disp=True with minimizers that do not support bounds """ |
|
options = {'disp': True} |
|
minimizer_kwargs = {'method': 'nelder-mead'} |
|
run_test(test1_2, sampling_method='simplicial', |
|
options=options, minimizer_kwargs=minimizer_kwargs) |
|
|
|
def test_17_custom_sampling(self): |
|
"""Test the functionality to add custom sampling methods to shgo""" |
|
|
|
def sample(n, d): |
|
return np.random.uniform(size=(n, d)) |
|
|
|
run_test(test1_1, n=30, sampling_method=sample) |
|
|
|
def test_18_bounds_class(self): |
|
|
|
def f(x): |
|
return np.square(x).sum() |
|
|
|
lb = [-6., 1., -5.] |
|
ub = [-1., 3., 5.] |
|
bounds_old = list(zip(lb, ub)) |
|
bounds_new = Bounds(lb, ub) |
|
|
|
res_old_bounds = shgo(f, bounds_old) |
|
res_new_bounds = shgo(f, bounds_new) |
|
|
|
assert res_new_bounds.nfev == res_old_bounds.nfev |
|
assert res_new_bounds.message == res_old_bounds.message |
|
assert res_new_bounds.success == res_old_bounds.success |
|
x_opt = np.array([-1., 1., 0.]) |
|
np.testing.assert_allclose(res_new_bounds.x, x_opt) |
|
np.testing.assert_allclose(res_new_bounds.x, res_old_bounds.x) |
|
|
|
@pytest.mark.fail_slow(10) |
|
def test_19_parallelization(self): |
|
"""Test the functionality to add custom sampling methods to shgo""" |
|
|
|
with Pool(2) as p: |
|
run_test(test1_1, n=30, workers=p.map) |
|
run_test(test1_1, n=30, workers=map) |
|
with Pool(2) as p: |
|
run_test(test_s, n=30, workers=p.map) |
|
run_test(test_s, n=30, workers=map) |
|
|
|
def test_20_constrained_args(self): |
|
"""Test that constraints can be passed to arguments""" |
|
|
|
def eggholder(x): |
|
return ( |
|
-(x[1] + 47.0)*np.sin(np.sqrt(abs(x[0] / 2.0 + (x[1] + 47.0)))) |
|
- x[0]*np.sin(np.sqrt(abs(x[0] - (x[1] + 47.0)))) |
|
) |
|
|
|
def f(x): |
|
return 24.55 * x[0] + 26.75 * x[1] + 39 * x[2] + 40.50 * x[3] |
|
|
|
bounds = [(0, 1.0), ] * 4 |
|
|
|
def g1_modified(x, i): |
|
return i * 2.3 * x[0] + i * 5.6 * x[1] + 11.1 * x[2] + 1.3 * x[ |
|
3] - 5 |
|
|
|
def g2(x): |
|
return ( |
|
12*x[0] + 11.9*x[1] + 41.8*x[2] + 52.1*x[3] - 21 |
|
- 1.645*np.sqrt( |
|
0.28*x[0]**2 + 0.19*x[1]**2 + 20.5*x[2]**2 + 0.62*x[3]**2 |
|
) |
|
) |
|
|
|
def h1(x): |
|
return x[0] + x[1] + x[2] + x[3] - 1 |
|
|
|
cons = ({'type': 'ineq', 'fun': g1_modified, "args": (0,)}, |
|
{'type': 'ineq', 'fun': g2}, |
|
{'type': 'eq', 'fun': h1}) |
|
|
|
shgo(f, bounds, n=300, iters=1, constraints=cons) |
|
|
|
shgo(f, bounds, n=300, iters=1, constraints=cons, |
|
sampling_method='sobol') |
|
|
|
def test_21_1_jac_true(self): |
|
"""Test that shgo can handle objective functions that return the |
|
gradient alongside the objective value. Fixes gh-13547""" |
|
|
|
def func(x): |
|
return np.sum(np.power(x, 2)), 2 * x |
|
|
|
shgo( |
|
func, |
|
bounds=[[-1, 1], [1, 2]], |
|
n=100, iters=5, |
|
sampling_method="sobol", |
|
minimizer_kwargs={'method': 'SLSQP', 'jac': True} |
|
) |
|
|
|
|
|
def func(x): |
|
return np.sum(x ** 2), 2 * x |
|
|
|
bounds = [[-1, 1], [1, 2], [-1, 1], [1, 2], [0, 3]] |
|
|
|
res = shgo(func, bounds=bounds, sampling_method="sobol", |
|
minimizer_kwargs={'method': 'SLSQP', 'jac': True}) |
|
ref = minimize(func, x0=[1, 1, 1, 1, 1], bounds=bounds, |
|
jac=True) |
|
assert res.success |
|
assert_allclose(res.fun, ref.fun) |
|
assert_allclose(res.x, ref.x, atol=1e-15) |
|
|
|
@pytest.mark.parametrize('derivative', ['jac', 'hess', 'hessp']) |
|
def test_21_2_derivative_options(self, derivative): |
|
"""shgo used to raise an error when passing `options` with 'jac' |
|
# see gh-12963. check that this is resolved |
|
""" |
|
|
|
def objective(x): |
|
return 3 * x[0] * x[0] + 2 * x[0] + 5 |
|
|
|
def gradient(x): |
|
return 6 * x[0] + 2 |
|
|
|
def hess(x): |
|
return 6 |
|
|
|
def hessp(x, p): |
|
return 6 * p |
|
|
|
derivative_funcs = {'jac': gradient, 'hess': hess, 'hessp': hessp} |
|
options = {derivative: derivative_funcs[derivative]} |
|
minimizer_kwargs = {'method': 'trust-constr'} |
|
|
|
bounds = [(-100, 100)] |
|
res = shgo(objective, bounds, minimizer_kwargs=minimizer_kwargs, |
|
options=options) |
|
ref = minimize(objective, x0=[0], bounds=bounds, **minimizer_kwargs, |
|
**options) |
|
|
|
assert res.success |
|
np.testing.assert_allclose(res.fun, ref.fun) |
|
np.testing.assert_allclose(res.x, ref.x) |
|
|
|
def test_21_3_hess_options_rosen(self): |
|
"""Ensure the Hessian gets passed correctly to the local minimizer |
|
routine. Previous report gh-14533. |
|
""" |
|
bounds = [(0, 1.6), (0, 1.6), (0, 1.4), (0, 1.4), (0, 1.4)] |
|
options = {'jac': rosen_der, 'hess': rosen_hess} |
|
minimizer_kwargs = {'method': 'Newton-CG'} |
|
res = shgo(rosen, bounds, minimizer_kwargs=minimizer_kwargs, |
|
options=options) |
|
ref = minimize(rosen, np.zeros(5), method='Newton-CG', |
|
**options) |
|
assert res.success |
|
assert_allclose(res.fun, ref.fun) |
|
assert_allclose(res.x, ref.x, atol=1e-15) |
|
|
|
def test_21_arg_tuple_sobol(self): |
|
"""shgo used to raise an error when passing `args` with Sobol sampling |
|
# see gh-12114. check that this is resolved""" |
|
|
|
def fun(x, k): |
|
return x[0] ** k |
|
|
|
constraints = ({'type': 'ineq', 'fun': lambda x: x[0] - 1}) |
|
|
|
bounds = [(0, 10)] |
|
res = shgo(fun, bounds, args=(1,), constraints=constraints, |
|
sampling_method='sobol') |
|
ref = minimize(fun, np.zeros(1), bounds=bounds, args=(1,), |
|
constraints=constraints) |
|
assert res.success |
|
assert_allclose(res.fun, ref.fun) |
|
assert_allclose(res.x, ref.x) |
|
|
|
|
|
|
|
class TestShgoFailures: |
|
def test_1_maxiter(self): |
|
"""Test failure on insufficient iterations""" |
|
options = {'maxiter': 2} |
|
res = shgo(test4_1.f, test4_1.bounds, n=2, iters=None, |
|
options=options, sampling_method='sobol') |
|
|
|
np.testing.assert_equal(False, res.success) |
|
|
|
np.testing.assert_equal(4, res.tnev) |
|
|
|
def test_2_sampling(self): |
|
"""Rejection of unknown sampling method""" |
|
assert_raises(ValueError, shgo, test1_1.f, test1_1.bounds, |
|
sampling_method='not_Sobol') |
|
|
|
def test_3_1_no_min_pool_sobol(self): |
|
"""Check that the routine stops when no minimiser is found |
|
after maximum specified function evaluations""" |
|
options = {'maxfev': 10, |
|
|
|
'disp': True} |
|
res = shgo(test_table.f, test_table.bounds, n=3, options=options, |
|
sampling_method='sobol') |
|
np.testing.assert_equal(False, res.success) |
|
|
|
np.testing.assert_equal(12, res.nfev) |
|
|
|
def test_3_2_no_min_pool_simplicial(self): |
|
"""Check that the routine stops when no minimiser is found |
|
after maximum specified sampling evaluations""" |
|
options = {'maxev': 10, |
|
'disp': True} |
|
res = shgo(test_table.f, test_table.bounds, n=3, options=options, |
|
sampling_method='simplicial') |
|
np.testing.assert_equal(False, res.success) |
|
|
|
def test_4_1_bound_err(self): |
|
"""Specified bounds ub > lb""" |
|
bounds = [(6, 3), (3, 5)] |
|
assert_raises(ValueError, shgo, test1_1.f, bounds) |
|
|
|
def test_4_2_bound_err(self): |
|
"""Specified bounds are of the form (lb, ub)""" |
|
bounds = [(3, 5, 5), (3, 5)] |
|
assert_raises(ValueError, shgo, test1_1.f, bounds) |
|
|
|
def test_5_1_1_infeasible_sobol(self): |
|
"""Ensures the algorithm terminates on infeasible problems |
|
after maxev is exceeded. Use infty constraints option""" |
|
options = {'maxev': 100, |
|
'disp': True} |
|
|
|
res = shgo(test_infeasible.f, test_infeasible.bounds, |
|
constraints=test_infeasible.cons, n=100, options=options, |
|
sampling_method='sobol') |
|
|
|
np.testing.assert_equal(False, res.success) |
|
|
|
def test_5_1_2_infeasible_sobol(self): |
|
"""Ensures the algorithm terminates on infeasible problems |
|
after maxev is exceeded. Do not use infty constraints option""" |
|
options = {'maxev': 100, |
|
'disp': True, |
|
'infty_constraints': False} |
|
|
|
res = shgo(test_infeasible.f, test_infeasible.bounds, |
|
constraints=test_infeasible.cons, n=100, options=options, |
|
sampling_method='sobol') |
|
|
|
np.testing.assert_equal(False, res.success) |
|
|
|
def test_5_2_infeasible_simplicial(self): |
|
"""Ensures the algorithm terminates on infeasible problems |
|
after maxev is exceeded.""" |
|
options = {'maxev': 1000, |
|
'disp': False} |
|
|
|
res = shgo(test_infeasible.f, test_infeasible.bounds, |
|
constraints=test_infeasible.cons, n=100, options=options, |
|
sampling_method='simplicial') |
|
|
|
np.testing.assert_equal(False, res.success) |
|
|
|
@pytest.mark.thread_unsafe |
|
def test_6_1_lower_known_f_min(self): |
|
"""Test Global mode limiting local evaluations with f* too high""" |
|
options = { |
|
'f_min': test2_1.expected_fun + 2.0, |
|
'f_tol': 1e-6, |
|
|
|
'minimize_every_iter': True, |
|
'local_iter': 1, |
|
'infty_constraints': False} |
|
args = (test2_1.f, test2_1.bounds) |
|
kwargs = {'constraints': test2_1.cons, |
|
'n': None, |
|
'iters': None, |
|
'options': options, |
|
'sampling_method': 'sobol' |
|
} |
|
warns(UserWarning, shgo, *args, **kwargs) |
|
|
|
def test(self): |
|
from scipy.optimize import rosen, shgo |
|
bounds = [(0, 2), (0, 2), (0, 2), (0, 2), (0, 2)] |
|
|
|
def fun(x): |
|
fun.nfev += 1 |
|
return rosen(x) |
|
|
|
fun.nfev = 0 |
|
|
|
result = shgo(fun, bounds) |
|
print(result.x, result.fun, fun.nfev) |
|
|
|
|
|
|
|
class TestShgoReturns: |
|
def test_1_nfev_simplicial(self): |
|
bounds = [(0, 2), (0, 2), (0, 2), (0, 2), (0, 2)] |
|
|
|
def fun(x): |
|
fun.nfev += 1 |
|
return rosen(x) |
|
|
|
fun.nfev = 0 |
|
|
|
result = shgo(fun, bounds) |
|
np.testing.assert_equal(fun.nfev, result.nfev) |
|
|
|
def test_1_nfev_sobol(self): |
|
bounds = [(0, 2), (0, 2), (0, 2), (0, 2), (0, 2)] |
|
|
|
def fun(x): |
|
fun.nfev += 1 |
|
return rosen(x) |
|
|
|
fun.nfev = 0 |
|
|
|
result = shgo(fun, bounds, sampling_method='sobol') |
|
np.testing.assert_equal(fun.nfev, result.nfev) |
|
|
|
|
|
def test_vector_constraint(): |
|
|
|
def quad(x): |
|
x = np.asarray(x) |
|
return [np.sum(x ** 2)] |
|
|
|
nlc = NonlinearConstraint(quad, [2.2], [3]) |
|
oldc = new_constraint_to_old(nlc, np.array([1.0, 1.0])) |
|
|
|
res = shgo(rosen, [(0, 10), (0, 10)], constraints=oldc, sampling_method='sobol') |
|
assert np.all(np.sum((res.x)**2) >= 2.2) |
|
assert np.all(np.sum((res.x) ** 2) <= 3.0) |
|
assert res.success |
|
|
|
|
|
@pytest.mark.filterwarnings("ignore:delta_grad") |
|
def test_trust_constr(): |
|
def quad(x): |
|
x = np.asarray(x) |
|
return [np.sum(x ** 2)] |
|
|
|
nlc = NonlinearConstraint(quad, [2.6], [3]) |
|
minimizer_kwargs = {'method': 'trust-constr'} |
|
|
|
|
|
|
|
res = shgo( |
|
rosen, |
|
[(0, 10), (0, 10)], |
|
constraints=nlc, |
|
sampling_method='sobol', |
|
minimizer_kwargs=minimizer_kwargs |
|
) |
|
assert np.all(np.sum((res.x)**2) >= 2.6) |
|
assert np.all(np.sum((res.x) ** 2) <= 3.0) |
|
assert res.success |
|
|
|
|
|
def test_equality_constraints(): |
|
|
|
bounds = [(0.9, 4.0)] * 2 |
|
|
|
def faulty(x): |
|
return x[0] + x[1] |
|
|
|
nlc = NonlinearConstraint(faulty, 3.9, 3.9) |
|
res = shgo(rosen, bounds=bounds, constraints=nlc) |
|
assert_allclose(np.sum(res.x), 3.9) |
|
|
|
def faulty(x): |
|
return x[0] + x[1] - 3.9 |
|
|
|
constraints = {'type': 'eq', 'fun': faulty} |
|
res = shgo(rosen, bounds=bounds, constraints=constraints) |
|
assert_allclose(np.sum(res.x), 3.9) |
|
|
|
bounds = [(0, 1.0)] * 4 |
|
|
|
def faulty(x): |
|
return x[0] + x[1] + x[2] + x[3] - 1 |
|
|
|
|
|
constraints = {'type': 'eq', 'fun': faulty} |
|
res = shgo( |
|
lambda x: - np.prod(x), |
|
bounds=bounds, |
|
constraints=constraints, |
|
sampling_method='sobol' |
|
) |
|
assert_allclose(np.sum(res.x), 1.0) |
|
|
|
def test_gh16971(): |
|
def cons(x): |
|
return np.sum(x**2) - 0 |
|
|
|
c = {'fun': cons, 'type': 'ineq'} |
|
minimizer_kwargs = { |
|
'method': 'COBYLA', |
|
'options': {'rhobeg': 5, 'tol': 5e-1, 'catol': 0.05} |
|
} |
|
|
|
s = SHGO( |
|
rosen, [(0, 10)]*2, constraints=c, minimizer_kwargs=minimizer_kwargs |
|
) |
|
|
|
assert s.minimizer_kwargs['method'].lower() == 'cobyla' |
|
assert s.minimizer_kwargs['options']['catol'] == 0.05 |
|
|