|
""" |
|
Method agnostic utility functions for linear programming |
|
""" |
|
|
|
import numpy as np |
|
import scipy.sparse as sps |
|
from warnings import warn |
|
from ._optimize import OptimizeWarning |
|
from scipy.optimize._remove_redundancy import ( |
|
_remove_redundancy_svd, _remove_redundancy_pivot_sparse, |
|
_remove_redundancy_pivot_dense, _remove_redundancy_id |
|
) |
|
from collections import namedtuple |
|
|
|
_LPProblem = namedtuple('_LPProblem', |
|
'c A_ub b_ub A_eq b_eq bounds x0 integrality') |
|
_LPProblem.__new__.__defaults__ = (None,) * 7 |
|
_LPProblem.__doc__ = \ |
|
""" Represents a linear-programming problem. |
|
|
|
Attributes |
|
---------- |
|
c : 1D array |
|
The coefficients of the linear objective function to be minimized. |
|
A_ub : 2D array, optional |
|
The inequality constraint matrix. Each row of ``A_ub`` specifies the |
|
coefficients of a linear inequality constraint on ``x``. |
|
b_ub : 1D array, optional |
|
The inequality constraint vector. Each element represents an |
|
upper bound on the corresponding value of ``A_ub @ x``. |
|
A_eq : 2D array, optional |
|
The equality constraint matrix. Each row of ``A_eq`` specifies the |
|
coefficients of a linear equality constraint on ``x``. |
|
b_eq : 1D array, optional |
|
The equality constraint vector. Each element of ``A_eq @ x`` must equal |
|
the corresponding element of ``b_eq``. |
|
bounds : various valid formats, optional |
|
The bounds of ``x``, as ``min`` and ``max`` pairs. |
|
If bounds are specified for all N variables separately, valid formats |
|
are: |
|
* a 2D array (N x 2); |
|
* a sequence of N sequences, each with 2 values. |
|
If all variables have the same bounds, the bounds can be specified as |
|
a 1-D or 2-D array or sequence with 2 scalar values. |
|
If all variables have a lower bound of 0 and no upper bound, the bounds |
|
parameter can be omitted (or given as None). |
|
Absent lower and/or upper bounds can be specified as -numpy.inf (no |
|
lower bound), numpy.inf (no upper bound) or None (both). |
|
x0 : 1D array, optional |
|
Guess values of the decision variables, which will be refined by |
|
the optimization algorithm. This argument is currently used only by the |
|
'revised simplex' method, and can only be used if `x0` represents a |
|
basic feasible solution. |
|
integrality : 1-D array or int, optional |
|
Indicates the type of integrality constraint on each decision variable. |
|
|
|
``0`` : Continuous variable; no integrality constraint. |
|
|
|
``1`` : Integer variable; decision variable must be an integer |
|
within `bounds`. |
|
|
|
``2`` : Semi-continuous variable; decision variable must be within |
|
`bounds` or take value ``0``. |
|
|
|
``3`` : Semi-integer variable; decision variable must be an integer |
|
within `bounds` or take value ``0``. |
|
|
|
By default, all variables are continuous. |
|
|
|
For mixed integrality constraints, supply an array of shape `c.shape`. |
|
To infer a constraint on each decision variable from shorter inputs, |
|
the argument will be broadcast to `c.shape` using `np.broadcast_to`. |
|
|
|
This argument is currently used only by the ``'highs'`` method and |
|
ignored otherwise. |
|
|
|
Notes |
|
----- |
|
This namedtuple supports 2 ways of initialization: |
|
>>> lp1 = _LPProblem(c=[-1, 4], A_ub=[[-3, 1], [1, 2]], b_ub=[6, 4]) |
|
>>> lp2 = _LPProblem([-1, 4], [[-3, 1], [1, 2]], [6, 4]) |
|
|
|
Note that only ``c`` is a required argument here, whereas all other arguments |
|
``A_ub``, ``b_ub``, ``A_eq``, ``b_eq``, ``bounds``, ``x0`` are optional with |
|
default values of None. |
|
For example, ``A_eq`` and ``b_eq`` can be set without ``A_ub`` or ``b_ub``: |
|
>>> lp3 = _LPProblem(c=[-1, 4], A_eq=[[2, 1]], b_eq=[10]) |
|
""" |
|
|
|
|
|
def _check_sparse_inputs(options, meth, A_ub, A_eq): |
|
""" |
|
Check the provided ``A_ub`` and ``A_eq`` matrices conform to the specified |
|
optional sparsity variables. |
|
|
|
Parameters |
|
---------- |
|
A_ub : 2-D array, optional |
|
2-D array such that ``A_ub @ x`` gives the values of the upper-bound |
|
inequality constraints at ``x``. |
|
A_eq : 2-D array, optional |
|
2-D array such that ``A_eq @ x`` gives the values of the equality |
|
constraints at ``x``. |
|
options : dict |
|
A dictionary of solver options. All methods accept the following |
|
generic options: |
|
|
|
maxiter : int |
|
Maximum number of iterations to perform. |
|
disp : bool |
|
Set to True to print convergence messages. |
|
|
|
For method-specific options, see :func:`show_options('linprog')`. |
|
method : str, optional |
|
The algorithm used to solve the standard form problem. |
|
|
|
Returns |
|
------- |
|
A_ub : 2-D array, optional |
|
2-D array such that ``A_ub @ x`` gives the values of the upper-bound |
|
inequality constraints at ``x``. |
|
A_eq : 2-D array, optional |
|
2-D array such that ``A_eq @ x`` gives the values of the equality |
|
constraints at ``x``. |
|
options : dict |
|
A dictionary of solver options. All methods accept the following |
|
generic options: |
|
|
|
maxiter : int |
|
Maximum number of iterations to perform. |
|
disp : bool |
|
Set to True to print convergence messages. |
|
|
|
For method-specific options, see :func:`show_options('linprog')`. |
|
""" |
|
|
|
_sparse_presolve = options.pop('_sparse_presolve', False) |
|
if _sparse_presolve and A_eq is not None: |
|
A_eq = sps.coo_matrix(A_eq) |
|
if _sparse_presolve and A_ub is not None: |
|
A_ub = sps.coo_matrix(A_ub) |
|
|
|
sparse_constraint = sps.issparse(A_eq) or sps.issparse(A_ub) |
|
|
|
preferred_methods = {"highs", "highs-ds", "highs-ipm"} |
|
dense_methods = {"simplex", "revised simplex"} |
|
if meth in dense_methods and sparse_constraint: |
|
raise ValueError(f"Method '{meth}' does not support sparse " |
|
"constraint matrices. Please consider using one of " |
|
f"{preferred_methods}.") |
|
|
|
sparse = options.get('sparse', False) |
|
if not sparse and sparse_constraint and meth == 'interior-point': |
|
options['sparse'] = True |
|
warn("Sparse constraint matrix detected; setting 'sparse':True.", |
|
OptimizeWarning, stacklevel=4) |
|
return options, A_ub, A_eq |
|
|
|
|
|
def _format_A_constraints(A, n_x, sparse_lhs=False): |
|
"""Format the left hand side of the constraints to a 2-D array |
|
|
|
Parameters |
|
---------- |
|
A : 2-D array |
|
2-D array such that ``A @ x`` gives the values of the upper-bound |
|
(in)equality constraints at ``x``. |
|
n_x : int |
|
The number of variables in the linear programming problem. |
|
sparse_lhs : bool |
|
Whether either of `A_ub` or `A_eq` are sparse. If true return a |
|
coo_matrix instead of a numpy array. |
|
|
|
Returns |
|
------- |
|
np.ndarray or sparse.coo_matrix |
|
2-D array such that ``A @ x`` gives the values of the upper-bound |
|
(in)equality constraints at ``x``. |
|
|
|
""" |
|
if sparse_lhs: |
|
return sps.coo_matrix( |
|
(0, n_x) if A is None else A, dtype=float, copy=True |
|
) |
|
elif A is None: |
|
return np.zeros((0, n_x), dtype=float) |
|
else: |
|
return np.array(A, dtype=float, copy=True) |
|
|
|
|
|
def _format_b_constraints(b): |
|
"""Format the upper bounds of the constraints to a 1-D array |
|
|
|
Parameters |
|
---------- |
|
b : 1-D array |
|
1-D array of values representing the upper-bound of each (in)equality |
|
constraint (row) in ``A``. |
|
|
|
Returns |
|
------- |
|
1-D np.array |
|
1-D array of values representing the upper-bound of each (in)equality |
|
constraint (row) in ``A``. |
|
|
|
""" |
|
if b is None: |
|
return np.array([], dtype=float) |
|
b = np.array(b, dtype=float, copy=True).squeeze() |
|
return b if b.size != 1 else b.reshape(-1) |
|
|
|
|
|
def _clean_inputs(lp): |
|
""" |
|
Given user inputs for a linear programming problem, return the |
|
objective vector, upper bound constraints, equality constraints, |
|
and simple bounds in a preferred format. |
|
|
|
Parameters |
|
---------- |
|
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields: |
|
|
|
c : 1D array |
|
The coefficients of the linear objective function to be minimized. |
|
A_ub : 2D array, optional |
|
The inequality constraint matrix. Each row of ``A_ub`` specifies the |
|
coefficients of a linear inequality constraint on ``x``. |
|
b_ub : 1D array, optional |
|
The inequality constraint vector. Each element represents an |
|
upper bound on the corresponding value of ``A_ub @ x``. |
|
A_eq : 2D array, optional |
|
The equality constraint matrix. Each row of ``A_eq`` specifies the |
|
coefficients of a linear equality constraint on ``x``. |
|
b_eq : 1D array, optional |
|
The equality constraint vector. Each element of ``A_eq @ x`` must equal |
|
the corresponding element of ``b_eq``. |
|
bounds : various valid formats, optional |
|
The bounds of ``x``, as ``min`` and ``max`` pairs. |
|
If bounds are specified for all N variables separately, valid formats are: |
|
* a 2D array (2 x N or N x 2); |
|
* a sequence of N sequences, each with 2 values. |
|
If all variables have the same bounds, a single pair of values can |
|
be specified. Valid formats are: |
|
* a sequence with 2 scalar values; |
|
* a sequence with a single element containing 2 scalar values. |
|
If all variables have a lower bound of 0 and no upper bound, the bounds |
|
parameter can be omitted (or given as None). |
|
x0 : 1D array, optional |
|
Guess values of the decision variables, which will be refined by |
|
the optimization algorithm. This argument is currently used only by the |
|
'revised simplex' method, and can only be used if `x0` represents a |
|
basic feasible solution. |
|
|
|
Returns |
|
------- |
|
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields: |
|
|
|
c : 1D array |
|
The coefficients of the linear objective function to be minimized. |
|
A_ub : 2D array, optional |
|
The inequality constraint matrix. Each row of ``A_ub`` specifies the |
|
coefficients of a linear inequality constraint on ``x``. |
|
b_ub : 1D array, optional |
|
The inequality constraint vector. Each element represents an |
|
upper bound on the corresponding value of ``A_ub @ x``. |
|
A_eq : 2D array, optional |
|
The equality constraint matrix. Each row of ``A_eq`` specifies the |
|
coefficients of a linear equality constraint on ``x``. |
|
b_eq : 1D array, optional |
|
The equality constraint vector. Each element of ``A_eq @ x`` must equal |
|
the corresponding element of ``b_eq``. |
|
bounds : 2D array |
|
The bounds of ``x``, as ``min`` and ``max`` pairs, one for each of the N |
|
elements of ``x``. The N x 2 array contains lower bounds in the first |
|
column and upper bounds in the 2nd. Unbounded variables have lower |
|
bound -np.inf and/or upper bound np.inf. |
|
x0 : 1D array, optional |
|
Guess values of the decision variables, which will be refined by |
|
the optimization algorithm. This argument is currently used only by the |
|
'revised simplex' method, and can only be used if `x0` represents a |
|
basic feasible solution. |
|
|
|
""" |
|
c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality = lp |
|
|
|
if c is None: |
|
raise TypeError |
|
|
|
try: |
|
c = np.array(c, dtype=np.float64, copy=True).squeeze() |
|
except ValueError as e: |
|
raise TypeError( |
|
"Invalid input for linprog: c must be a 1-D array of numerical " |
|
"coefficients") from e |
|
else: |
|
|
|
if c.size == 1: |
|
c = c.reshape(-1) |
|
|
|
n_x = len(c) |
|
if n_x == 0 or len(c.shape) != 1: |
|
raise ValueError( |
|
"Invalid input for linprog: c must be a 1-D array and must " |
|
"not have more than one non-singleton dimension") |
|
if not np.isfinite(c).all(): |
|
raise ValueError( |
|
"Invalid input for linprog: c must not contain values " |
|
"inf, nan, or None") |
|
|
|
sparse_lhs = sps.issparse(A_eq) or sps.issparse(A_ub) |
|
try: |
|
A_ub = _format_A_constraints(A_ub, n_x, sparse_lhs=sparse_lhs) |
|
except ValueError as e: |
|
raise TypeError( |
|
"Invalid input for linprog: A_ub must be a 2-D array " |
|
"of numerical values") from e |
|
else: |
|
n_ub = A_ub.shape[0] |
|
if len(A_ub.shape) != 2 or A_ub.shape[1] != n_x: |
|
raise ValueError( |
|
"Invalid input for linprog: A_ub must have exactly two " |
|
"dimensions, and the number of columns in A_ub must be " |
|
"equal to the size of c") |
|
if (sps.issparse(A_ub) and not np.isfinite(A_ub.data).all() |
|
or not sps.issparse(A_ub) and not np.isfinite(A_ub).all()): |
|
raise ValueError( |
|
"Invalid input for linprog: A_ub must not contain values " |
|
"inf, nan, or None") |
|
|
|
try: |
|
b_ub = _format_b_constraints(b_ub) |
|
except ValueError as e: |
|
raise TypeError( |
|
"Invalid input for linprog: b_ub must be a 1-D array of " |
|
"numerical values, each representing the upper bound of an " |
|
"inequality constraint (row) in A_ub") from e |
|
else: |
|
if b_ub.shape != (n_ub,): |
|
raise ValueError( |
|
"Invalid input for linprog: b_ub must be a 1-D array; b_ub " |
|
"must not have more than one non-singleton dimension and " |
|
"the number of rows in A_ub must equal the number of values " |
|
"in b_ub") |
|
if not np.isfinite(b_ub).all(): |
|
raise ValueError( |
|
"Invalid input for linprog: b_ub must not contain values " |
|
"inf, nan, or None") |
|
|
|
try: |
|
A_eq = _format_A_constraints(A_eq, n_x, sparse_lhs=sparse_lhs) |
|
except ValueError as e: |
|
raise TypeError( |
|
"Invalid input for linprog: A_eq must be a 2-D array " |
|
"of numerical values") from e |
|
else: |
|
n_eq = A_eq.shape[0] |
|
if len(A_eq.shape) != 2 or A_eq.shape[1] != n_x: |
|
raise ValueError( |
|
"Invalid input for linprog: A_eq must have exactly two " |
|
"dimensions, and the number of columns in A_eq must be " |
|
"equal to the size of c") |
|
|
|
if (sps.issparse(A_eq) and not np.isfinite(A_eq.data).all() |
|
or not sps.issparse(A_eq) and not np.isfinite(A_eq).all()): |
|
raise ValueError( |
|
"Invalid input for linprog: A_eq must not contain values " |
|
"inf, nan, or None") |
|
|
|
try: |
|
b_eq = _format_b_constraints(b_eq) |
|
except ValueError as e: |
|
raise TypeError( |
|
"Invalid input for linprog: b_eq must be a dense, 1-D array of " |
|
"numerical values, each representing the right hand side of an " |
|
"equality constraint (row) in A_eq") from e |
|
else: |
|
if b_eq.shape != (n_eq,): |
|
raise ValueError( |
|
"Invalid input for linprog: b_eq must be a 1-D array; b_eq " |
|
"must not have more than one non-singleton dimension and " |
|
"the number of rows in A_eq must equal the number of values " |
|
"in b_eq") |
|
if not np.isfinite(b_eq).all(): |
|
raise ValueError( |
|
"Invalid input for linprog: b_eq must not contain values " |
|
"inf, nan, or None") |
|
|
|
|
|
|
|
if x0 is not None: |
|
try: |
|
x0 = np.array(x0, dtype=float, copy=True).squeeze() |
|
except ValueError as e: |
|
raise TypeError( |
|
"Invalid input for linprog: x0 must be a 1-D array of " |
|
"numerical coefficients") from e |
|
if x0.ndim == 0: |
|
x0 = x0.reshape(-1) |
|
if len(x0) == 0 or x0.ndim != 1: |
|
raise ValueError( |
|
"Invalid input for linprog: x0 should be a 1-D array; it " |
|
"must not have more than one non-singleton dimension") |
|
if not x0.size == c.size: |
|
raise ValueError( |
|
"Invalid input for linprog: x0 and c should contain the " |
|
"same number of elements") |
|
if not np.isfinite(x0).all(): |
|
raise ValueError( |
|
"Invalid input for linprog: x0 must not contain values " |
|
"inf, nan, or None") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bounds_clean = np.zeros((n_x, 2), dtype=float) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if bounds is None or np.array_equal(bounds, []) or np.array_equal(bounds, [[]]): |
|
bounds = (0, np.inf) |
|
try: |
|
bounds_conv = np.atleast_2d(np.array(bounds, dtype=float)) |
|
except ValueError as e: |
|
raise ValueError( |
|
"Invalid input for linprog: unable to interpret bounds, " |
|
"check values and dimensions: " + e.args[0]) from e |
|
except TypeError as e: |
|
raise TypeError( |
|
"Invalid input for linprog: unable to interpret bounds, " |
|
"check values and dimensions: " + e.args[0]) from e |
|
|
|
|
|
bsh = bounds_conv.shape |
|
if len(bsh) > 2: |
|
|
|
raise ValueError( |
|
"Invalid input for linprog: provide a 2-D array for bounds, " |
|
f"not a {len(bsh):d}-D array.") |
|
elif np.all(bsh == (n_x, 2)): |
|
|
|
bounds_clean = bounds_conv |
|
elif (np.all(bsh == (2, 1)) or np.all(bsh == (1, 2))): |
|
|
|
bounds_flat = bounds_conv.flatten() |
|
bounds_clean[:, 0] = bounds_flat[0] |
|
bounds_clean[:, 1] = bounds_flat[1] |
|
elif np.all(bsh == (2, n_x)): |
|
|
|
raise ValueError( |
|
f"Invalid input for linprog: provide a {n_x:d} x 2 array for bounds, " |
|
f"not a 2 x {n_x:d} array.") |
|
else: |
|
raise ValueError( |
|
"Invalid input for linprog: unable to interpret bounds with this " |
|
f"dimension tuple: {bsh}.") |
|
|
|
|
|
|
|
|
|
i_none = np.isnan(bounds_clean[:, 0]) |
|
bounds_clean[i_none, 0] = -np.inf |
|
i_none = np.isnan(bounds_clean[:, 1]) |
|
bounds_clean[i_none, 1] = np.inf |
|
|
|
return _LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds_clean, x0, integrality) |
|
|
|
|
|
def _presolve(lp, rr, rr_method, tol=1e-9): |
|
""" |
|
Given inputs for a linear programming problem in preferred format, |
|
presolve the problem: identify trivial infeasibilities, redundancies, |
|
and unboundedness, tighten bounds where possible, and eliminate fixed |
|
variables. |
|
|
|
Parameters |
|
---------- |
|
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields: |
|
|
|
c : 1D array |
|
The coefficients of the linear objective function to be minimized. |
|
A_ub : 2D array, optional |
|
The inequality constraint matrix. Each row of ``A_ub`` specifies the |
|
coefficients of a linear inequality constraint on ``x``. |
|
b_ub : 1D array, optional |
|
The inequality constraint vector. Each element represents an |
|
upper bound on the corresponding value of ``A_ub @ x``. |
|
A_eq : 2D array, optional |
|
The equality constraint matrix. Each row of ``A_eq`` specifies the |
|
coefficients of a linear equality constraint on ``x``. |
|
b_eq : 1D array, optional |
|
The equality constraint vector. Each element of ``A_eq @ x`` must equal |
|
the corresponding element of ``b_eq``. |
|
bounds : 2D array |
|
The bounds of ``x``, as ``min`` and ``max`` pairs, one for each of the N |
|
elements of ``x``. The N x 2 array contains lower bounds in the first |
|
column and upper bounds in the 2nd. Unbounded variables have lower |
|
bound -np.inf and/or upper bound np.inf. |
|
x0 : 1D array, optional |
|
Guess values of the decision variables, which will be refined by |
|
the optimization algorithm. This argument is currently used only by the |
|
'revised simplex' method, and can only be used if `x0` represents a |
|
basic feasible solution. |
|
|
|
rr : bool |
|
If ``True`` attempts to eliminate any redundant rows in ``A_eq``. |
|
Set False if ``A_eq`` is known to be of full row rank, or if you are |
|
looking for a potential speedup (at the expense of reliability). |
|
rr_method : string |
|
Method used to identify and remove redundant rows from the |
|
equality constraint matrix after presolve. |
|
tol : float |
|
The tolerance which determines when a solution is "close enough" to |
|
zero in Phase 1 to be considered a basic feasible solution or close |
|
enough to positive to serve as an optimal solution. |
|
|
|
Returns |
|
------- |
|
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields: |
|
|
|
c : 1D array |
|
The coefficients of the linear objective function to be minimized. |
|
A_ub : 2D array, optional |
|
The inequality constraint matrix. Each row of ``A_ub`` specifies the |
|
coefficients of a linear inequality constraint on ``x``. |
|
b_ub : 1D array, optional |
|
The inequality constraint vector. Each element represents an |
|
upper bound on the corresponding value of ``A_ub @ x``. |
|
A_eq : 2D array, optional |
|
The equality constraint matrix. Each row of ``A_eq`` specifies the |
|
coefficients of a linear equality constraint on ``x``. |
|
b_eq : 1D array, optional |
|
The equality constraint vector. Each element of ``A_eq @ x`` must equal |
|
the corresponding element of ``b_eq``. |
|
bounds : 2D array |
|
The bounds of ``x``, as ``min`` and ``max`` pairs, possibly tightened. |
|
x0 : 1D array, optional |
|
Guess values of the decision variables, which will be refined by |
|
the optimization algorithm. This argument is currently used only by the |
|
'revised simplex' method, and can only be used if `x0` represents a |
|
basic feasible solution. |
|
|
|
c0 : 1D array |
|
Constant term in objective function due to fixed (and eliminated) |
|
variables. |
|
x : 1D array |
|
Solution vector (when the solution is trivial and can be determined |
|
in presolve) |
|
revstack: list of functions |
|
the functions in the list reverse the operations of _presolve() |
|
the function signature is x_org = f(x_mod), where x_mod is the result |
|
of a presolve step and x_org the value at the start of the step |
|
(currently, the revstack contains only one function) |
|
complete: bool |
|
Whether the solution is complete (solved or determined to be infeasible |
|
or unbounded in presolve) |
|
status : int |
|
An integer representing the exit status of the optimization:: |
|
|
|
0 : Optimization terminated successfully |
|
1 : Iteration limit reached |
|
2 : Problem appears to be infeasible |
|
3 : Problem appears to be unbounded |
|
4 : Serious numerical difficulties encountered |
|
|
|
message : str |
|
A string descriptor of the exit status of the optimization. |
|
|
|
References |
|
---------- |
|
.. [5] Andersen, Erling D. "Finding all linearly dependent rows in |
|
large-scale linear programming." Optimization Methods and Software |
|
6.3 (1995): 219-227. |
|
.. [8] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear |
|
programming." Mathematical Programming 71.2 (1995): 221-245. |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c, A_ub, b_ub, A_eq, b_eq, bounds, x0, _ = lp |
|
|
|
revstack = [] |
|
|
|
c0 = 0 |
|
complete = False |
|
x = np.zeros(c.shape) |
|
|
|
status = 0 |
|
message = "" |
|
|
|
|
|
lb = bounds[:, 0].copy() |
|
ub = bounds[:, 1].copy() |
|
|
|
m_eq, n = A_eq.shape |
|
m_ub, n = A_ub.shape |
|
|
|
if (rr_method is not None |
|
and rr_method.lower() not in {"svd", "pivot", "id"}): |
|
message = ("'" + str(rr_method) + "' is not a valid option " |
|
"for redundancy removal. Valid options are 'SVD', " |
|
"'pivot', and 'ID'.") |
|
raise ValueError(message) |
|
|
|
if sps.issparse(A_eq): |
|
A_eq = A_eq.tocsr() |
|
A_ub = A_ub.tocsr() |
|
|
|
def where(A): |
|
return A.nonzero() |
|
|
|
vstack = sps.vstack |
|
else: |
|
where = np.where |
|
vstack = np.vstack |
|
|
|
|
|
if np.any(ub < lb) or np.any(lb == np.inf) or np.any(ub == -np.inf): |
|
status = 2 |
|
message = ("The problem is (trivially) infeasible since one " |
|
"or more upper bounds are smaller than the corresponding " |
|
"lower bounds, a lower bound is np.inf or an upper bound " |
|
"is -np.inf.") |
|
complete = True |
|
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0), |
|
c0, x, revstack, complete, status, message) |
|
|
|
|
|
zero_row = np.array(np.sum(A_eq != 0, axis=1) == 0).flatten() |
|
if np.any(zero_row): |
|
if np.any( |
|
np.logical_and( |
|
zero_row, |
|
np.abs(b_eq) > tol)): |
|
|
|
status = 2 |
|
message = ("The problem is (trivially) infeasible due to a row " |
|
"of zeros in the equality constraint matrix with a " |
|
"nonzero corresponding constraint value.") |
|
complete = True |
|
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0), |
|
c0, x, revstack, complete, status, message) |
|
else: |
|
|
|
A_eq = A_eq[np.logical_not(zero_row), :] |
|
b_eq = b_eq[np.logical_not(zero_row)] |
|
|
|
|
|
zero_row = np.array(np.sum(A_ub != 0, axis=1) == 0).flatten() |
|
if np.any(zero_row): |
|
if np.any(np.logical_and(zero_row, b_ub < -tol)): |
|
|
|
status = 2 |
|
message = ("The problem is (trivially) infeasible due to a row " |
|
"of zeros in the equality constraint matrix with a " |
|
"nonzero corresponding constraint value.") |
|
complete = True |
|
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0), |
|
c0, x, revstack, complete, status, message) |
|
else: |
|
|
|
A_ub = A_ub[np.logical_not(zero_row), :] |
|
b_ub = b_ub[np.logical_not(zero_row)] |
|
|
|
|
|
|
|
A = vstack((A_eq, A_ub)) |
|
if A.shape[0] > 0: |
|
zero_col = np.array(np.sum(A != 0, axis=0) == 0).flatten() |
|
|
|
x[np.logical_and(zero_col, c < 0)] = ub[ |
|
np.logical_and(zero_col, c < 0)] |
|
x[np.logical_and(zero_col, c > 0)] = lb[ |
|
np.logical_and(zero_col, c > 0)] |
|
if np.any(np.isinf(x)): |
|
status = 3 |
|
message = ("If feasible, the problem is (trivially) unbounded " |
|
"due to a zero column in the constraint matrices. If " |
|
"you wish to check whether the problem is infeasible, " |
|
"turn presolve off.") |
|
complete = True |
|
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0), |
|
c0, x, revstack, complete, status, message) |
|
|
|
lb[np.logical_and(zero_col, c < 0)] = ub[ |
|
np.logical_and(zero_col, c < 0)] |
|
ub[np.logical_and(zero_col, c > 0)] = lb[ |
|
np.logical_and(zero_col, c > 0)] |
|
|
|
|
|
|
|
singleton_row = np.array(np.sum(A_eq != 0, axis=1) == 1).flatten() |
|
rows = where(singleton_row)[0] |
|
cols = where(A_eq[rows, :])[1] |
|
if len(rows) > 0: |
|
for row, col in zip(rows, cols): |
|
val = b_eq[row] / A_eq[row, col] |
|
if not lb[col] - tol <= val <= ub[col] + tol: |
|
|
|
status = 2 |
|
message = ("The problem is (trivially) infeasible because a " |
|
"singleton row in the equality constraints is " |
|
"inconsistent with the bounds.") |
|
complete = True |
|
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0), |
|
c0, x, revstack, complete, status, message) |
|
else: |
|
|
|
|
|
lb[col] = val |
|
ub[col] = val |
|
A_eq = A_eq[np.logical_not(singleton_row), :] |
|
b_eq = b_eq[np.logical_not(singleton_row)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
singleton_row = np.array(np.sum(A_ub != 0, axis=1) == 1).flatten() |
|
cols = where(A_ub[singleton_row, :])[1] |
|
rows = where(singleton_row)[0] |
|
if len(rows) > 0: |
|
for row, col in zip(rows, cols): |
|
val = b_ub[row] / A_ub[row, col] |
|
if A_ub[row, col] > 0: |
|
if val < lb[col] - tol: |
|
complete = True |
|
elif val < ub[col]: |
|
ub[col] = val |
|
else: |
|
if val > ub[col] + tol: |
|
complete = True |
|
elif val > lb[col]: |
|
lb[col] = val |
|
if complete: |
|
status = 2 |
|
message = ("The problem is (trivially) infeasible because a " |
|
"singleton row in the upper bound constraints is " |
|
"inconsistent with the bounds.") |
|
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0), |
|
c0, x, revstack, complete, status, message) |
|
A_ub = A_ub[np.logical_not(singleton_row), :] |
|
b_ub = b_ub[np.logical_not(singleton_row)] |
|
|
|
|
|
i_f = np.abs(lb - ub) < tol |
|
i_nf = np.logical_not(i_f) |
|
|
|
|
|
if np.all(i_f): |
|
residual = b_eq - A_eq.dot(lb) |
|
slack = b_ub - A_ub.dot(lb) |
|
if ((A_ub.size > 0 and np.any(slack < 0)) or |
|
(A_eq.size > 0 and not np.allclose(residual, 0))): |
|
status = 2 |
|
message = ("The problem is (trivially) infeasible because the " |
|
"bounds fix all variables to values inconsistent with " |
|
"the constraints") |
|
complete = True |
|
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0), |
|
c0, x, revstack, complete, status, message) |
|
|
|
ub_mod = ub |
|
lb_mod = lb |
|
if np.any(i_f): |
|
c0 += c[i_f].dot(lb[i_f]) |
|
b_eq = b_eq - A_eq[:, i_f].dot(lb[i_f]) |
|
b_ub = b_ub - A_ub[:, i_f].dot(lb[i_f]) |
|
c = c[i_nf] |
|
x_undo = lb[i_f] |
|
x = x[i_nf] |
|
|
|
if x0 is not None: |
|
x0 = x0[i_nf] |
|
A_eq = A_eq[:, i_nf] |
|
A_ub = A_ub[:, i_nf] |
|
|
|
lb_mod = lb[i_nf] |
|
ub_mod = ub[i_nf] |
|
|
|
def rev(x_mod): |
|
|
|
|
|
|
|
|
|
i = np.flatnonzero(i_f) |
|
|
|
N = len(i) |
|
index_offset = np.arange(N) |
|
|
|
insert_indices = i - index_offset |
|
x_rev = np.insert(x_mod.astype(float), insert_indices, x_undo) |
|
return x_rev |
|
|
|
|
|
revstack.append(rev) |
|
|
|
|
|
if A_eq.size == 0 and A_ub.size == 0: |
|
b_eq = np.array([]) |
|
b_ub = np.array([]) |
|
|
|
if c.size == 0: |
|
status = 0 |
|
message = ("The solution was determined in presolve as there are " |
|
"no non-trivial constraints.") |
|
elif (np.any(np.logical_and(c < 0, ub_mod == np.inf)) or |
|
np.any(np.logical_and(c > 0, lb_mod == -np.inf))): |
|
|
|
|
|
|
|
status = 3 |
|
message = ("The problem is (trivially) unbounded " |
|
"because there are no non-trivial constraints and " |
|
"a) at least one decision variable is unbounded " |
|
"above and its corresponding cost is negative, or " |
|
"b) at least one decision variable is unbounded below " |
|
"and its corresponding cost is positive. ") |
|
else: |
|
status = 0 |
|
message = ("The solution was determined in presolve as there are " |
|
"no non-trivial constraints.") |
|
complete = True |
|
x[c < 0] = ub_mod[c < 0] |
|
x[c > 0] = lb_mod[c > 0] |
|
|
|
x_zero_c = ub_mod[c == 0] |
|
x_zero_c[np.isinf(x_zero_c)] = ub_mod[c == 0][np.isinf(x_zero_c)] |
|
x_zero_c[np.isinf(x_zero_c)] = 0 |
|
x[c == 0] = x_zero_c |
|
|
|
|
|
|
|
|
|
bounds = np.hstack((lb_mod[:, np.newaxis], ub_mod[:, np.newaxis])) |
|
|
|
|
|
n_rows_A = A_eq.shape[0] |
|
redundancy_warning = ("A_eq does not appear to be of full row rank. To " |
|
"improve performance, check the problem formulation " |
|
"for redundant equality constraints.") |
|
if (sps.issparse(A_eq)): |
|
if rr and A_eq.size > 0: |
|
rr_res = _remove_redundancy_pivot_sparse(A_eq, b_eq) |
|
A_eq, b_eq, status, message = rr_res |
|
if A_eq.shape[0] < n_rows_A: |
|
warn(redundancy_warning, OptimizeWarning, stacklevel=1) |
|
if status != 0: |
|
complete = True |
|
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0), |
|
c0, x, revstack, complete, status, message) |
|
|
|
|
|
|
|
small_nullspace = 5 |
|
if rr and A_eq.size > 0: |
|
try: |
|
rank = np.linalg.matrix_rank(A_eq) |
|
|
|
except Exception: |
|
rank = 0 |
|
if rr and A_eq.size > 0 and rank < A_eq.shape[0]: |
|
warn(redundancy_warning, OptimizeWarning, stacklevel=3) |
|
dim_row_nullspace = A_eq.shape[0]-rank |
|
if rr_method is None: |
|
if dim_row_nullspace <= small_nullspace: |
|
rr_res = _remove_redundancy_svd(A_eq, b_eq) |
|
A_eq, b_eq, status, message = rr_res |
|
if dim_row_nullspace > small_nullspace or status == 4: |
|
rr_res = _remove_redundancy_pivot_dense(A_eq, b_eq) |
|
A_eq, b_eq, status, message = rr_res |
|
|
|
else: |
|
rr_method = rr_method.lower() |
|
if rr_method == "svd": |
|
rr_res = _remove_redundancy_svd(A_eq, b_eq) |
|
A_eq, b_eq, status, message = rr_res |
|
elif rr_method == "pivot": |
|
rr_res = _remove_redundancy_pivot_dense(A_eq, b_eq) |
|
A_eq, b_eq, status, message = rr_res |
|
elif rr_method == "id": |
|
rr_res = _remove_redundancy_id(A_eq, b_eq, rank) |
|
A_eq, b_eq, status, message = rr_res |
|
else: |
|
pass |
|
if A_eq.shape[0] < rank: |
|
message = ("Due to numerical issues, redundant equality " |
|
"constraints could not be removed automatically. " |
|
"Try providing your constraint matrices as sparse " |
|
"matrices to activate sparse presolve, try turning " |
|
"off redundancy removal, or try turning off presolve " |
|
"altogether.") |
|
status = 4 |
|
if status != 0: |
|
complete = True |
|
return (_LPProblem(c, A_ub, b_ub, A_eq, b_eq, bounds, x0), |
|
c0, x, revstack, complete, status, message) |
|
|
|
|
|
def _parse_linprog(lp, options, meth): |
|
""" |
|
Parse the provided linear programming problem |
|
|
|
``_parse_linprog`` employs two main steps ``_check_sparse_inputs`` and |
|
``_clean_inputs``. ``_check_sparse_inputs`` checks for sparsity in the |
|
provided constraints (``A_ub`` and ``A_eq) and if these match the provided |
|
sparsity optional values. |
|
|
|
``_clean inputs`` checks of the provided inputs. If no violations are |
|
identified the objective vector, upper bound constraints, equality |
|
constraints, and simple bounds are returned in the expected format. |
|
|
|
Parameters |
|
---------- |
|
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields: |
|
|
|
c : 1D array |
|
The coefficients of the linear objective function to be minimized. |
|
A_ub : 2D array, optional |
|
The inequality constraint matrix. Each row of ``A_ub`` specifies the |
|
coefficients of a linear inequality constraint on ``x``. |
|
b_ub : 1D array, optional |
|
The inequality constraint vector. Each element represents an |
|
upper bound on the corresponding value of ``A_ub @ x``. |
|
A_eq : 2D array, optional |
|
The equality constraint matrix. Each row of ``A_eq`` specifies the |
|
coefficients of a linear equality constraint on ``x``. |
|
b_eq : 1D array, optional |
|
The equality constraint vector. Each element of ``A_eq @ x`` must equal |
|
the corresponding element of ``b_eq``. |
|
bounds : various valid formats, optional |
|
The bounds of ``x``, as ``min`` and ``max`` pairs. |
|
If bounds are specified for all N variables separately, valid formats are: |
|
* a 2D array (2 x N or N x 2); |
|
* a sequence of N sequences, each with 2 values. |
|
If all variables have the same bounds, a single pair of values can |
|
be specified. Valid formats are: |
|
* a sequence with 2 scalar values; |
|
* a sequence with a single element containing 2 scalar values. |
|
If all variables have a lower bound of 0 and no upper bound, the bounds |
|
parameter can be omitted (or given as None). |
|
x0 : 1D array, optional |
|
Guess values of the decision variables, which will be refined by |
|
the optimization algorithm. This argument is currently used only by the |
|
'revised simplex' method, and can only be used if `x0` represents a |
|
basic feasible solution. |
|
|
|
options : dict |
|
A dictionary of solver options. All methods accept the following |
|
generic options: |
|
|
|
maxiter : int |
|
Maximum number of iterations to perform. |
|
disp : bool |
|
Set to True to print convergence messages. |
|
|
|
For method-specific options, see :func:`show_options('linprog')`. |
|
|
|
Returns |
|
------- |
|
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields: |
|
|
|
c : 1D array |
|
The coefficients of the linear objective function to be minimized. |
|
A_ub : 2D array, optional |
|
The inequality constraint matrix. Each row of ``A_ub`` specifies the |
|
coefficients of a linear inequality constraint on ``x``. |
|
b_ub : 1D array, optional |
|
The inequality constraint vector. Each element represents an |
|
upper bound on the corresponding value of ``A_ub @ x``. |
|
A_eq : 2D array, optional |
|
The equality constraint matrix. Each row of ``A_eq`` specifies the |
|
coefficients of a linear equality constraint on ``x``. |
|
b_eq : 1D array, optional |
|
The equality constraint vector. Each element of ``A_eq @ x`` must equal |
|
the corresponding element of ``b_eq``. |
|
bounds : 2D array |
|
The bounds of ``x``, as ``min`` and ``max`` pairs, one for each of the N |
|
elements of ``x``. The N x 2 array contains lower bounds in the first |
|
column and upper bounds in the 2nd. Unbounded variables have lower |
|
bound -np.inf and/or upper bound np.inf. |
|
x0 : 1D array, optional |
|
Guess values of the decision variables, which will be refined by |
|
the optimization algorithm. This argument is currently used only by the |
|
'revised simplex' method, and can only be used if `x0` represents a |
|
basic feasible solution. |
|
|
|
options : dict, optional |
|
A dictionary of solver options. All methods accept the following |
|
generic options: |
|
|
|
maxiter : int |
|
Maximum number of iterations to perform. |
|
disp : bool |
|
Set to True to print convergence messages. |
|
|
|
For method-specific options, see :func:`show_options('linprog')`. |
|
|
|
""" |
|
if options is None: |
|
options = {} |
|
|
|
solver_options = {k: v for k, v in options.items()} |
|
solver_options, A_ub, A_eq = _check_sparse_inputs(solver_options, meth, |
|
lp.A_ub, lp.A_eq) |
|
|
|
lp = _clean_inputs(lp._replace(A_ub=A_ub, A_eq=A_eq)) |
|
return lp, solver_options |
|
|
|
|
|
def _get_Abc(lp, c0): |
|
""" |
|
Given a linear programming problem of the form: |
|
|
|
Minimize:: |
|
|
|
c @ x |
|
|
|
Subject to:: |
|
|
|
A_ub @ x <= b_ub |
|
A_eq @ x == b_eq |
|
lb <= x <= ub |
|
|
|
where ``lb = 0`` and ``ub = None`` unless set in ``bounds``. |
|
|
|
Return the problem in standard form: |
|
|
|
Minimize:: |
|
|
|
c @ x |
|
|
|
Subject to:: |
|
|
|
A @ x == b |
|
x >= 0 |
|
|
|
by adding slack variables and making variable substitutions as necessary. |
|
|
|
Parameters |
|
---------- |
|
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields: |
|
|
|
c : 1D array |
|
The coefficients of the linear objective function to be minimized. |
|
A_ub : 2D array, optional |
|
The inequality constraint matrix. Each row of ``A_ub`` specifies the |
|
coefficients of a linear inequality constraint on ``x``. |
|
b_ub : 1D array, optional |
|
The inequality constraint vector. Each element represents an |
|
upper bound on the corresponding value of ``A_ub @ x``. |
|
A_eq : 2D array, optional |
|
The equality constraint matrix. Each row of ``A_eq`` specifies the |
|
coefficients of a linear equality constraint on ``x``. |
|
b_eq : 1D array, optional |
|
The equality constraint vector. Each element of ``A_eq @ x`` must equal |
|
the corresponding element of ``b_eq``. |
|
bounds : 2D array |
|
The bounds of ``x``, lower bounds in the 1st column, upper |
|
bounds in the 2nd column. The bounds are possibly tightened |
|
by the presolve procedure. |
|
x0 : 1D array, optional |
|
Guess values of the decision variables, which will be refined by |
|
the optimization algorithm. This argument is currently used only by the |
|
'revised simplex' method, and can only be used if `x0` represents a |
|
basic feasible solution. |
|
|
|
c0 : float |
|
Constant term in objective function due to fixed (and eliminated) |
|
variables. |
|
|
|
Returns |
|
------- |
|
A : 2-D array |
|
2-D array such that ``A`` @ ``x``, gives the values of the equality |
|
constraints at ``x``. |
|
b : 1-D array |
|
1-D array of values representing the RHS of each equality constraint |
|
(row) in A (for standard form problem). |
|
c : 1-D array |
|
Coefficients of the linear objective function to be minimized (for |
|
standard form problem). |
|
c0 : float |
|
Constant term in objective function due to fixed (and eliminated) |
|
variables. |
|
x0 : 1-D array |
|
Starting values of the independent variables, which will be refined by |
|
the optimization algorithm |
|
|
|
References |
|
---------- |
|
.. [9] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear |
|
programming." Athena Scientific 1 (1997): 997. |
|
|
|
""" |
|
c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality = lp |
|
|
|
if sps.issparse(A_eq): |
|
sparse = True |
|
A_eq = sps.csr_matrix(A_eq) |
|
A_ub = sps.csr_matrix(A_ub) |
|
|
|
def hstack(blocks): |
|
return sps.hstack(blocks, format="csr") |
|
|
|
def vstack(blocks): |
|
return sps.vstack(blocks, format="csr") |
|
|
|
zeros = sps.csr_matrix |
|
eye = sps.eye |
|
else: |
|
sparse = False |
|
hstack = np.hstack |
|
vstack = np.vstack |
|
zeros = np.zeros |
|
eye = np.eye |
|
|
|
|
|
|
|
bounds = np.array(bounds, copy=True) |
|
|
|
|
|
lbs = bounds[:, 0] |
|
ubs = bounds[:, 1] |
|
m_ub, n_ub = A_ub.shape |
|
|
|
lb_none = np.equal(lbs, -np.inf) |
|
ub_none = np.equal(ubs, np.inf) |
|
lb_some = np.logical_not(lb_none) |
|
ub_some = np.logical_not(ub_none) |
|
|
|
|
|
|
|
l_nolb_someub = np.logical_and(lb_none, ub_some) |
|
i_nolb = np.nonzero(l_nolb_someub)[0] |
|
lbs[l_nolb_someub], ubs[l_nolb_someub] = ( |
|
-ubs[l_nolb_someub], -lbs[l_nolb_someub]) |
|
lb_none = np.equal(lbs, -np.inf) |
|
ub_none = np.equal(ubs, np.inf) |
|
lb_some = np.logical_not(lb_none) |
|
ub_some = np.logical_not(ub_none) |
|
c[i_nolb] *= -1 |
|
if x0 is not None: |
|
x0[i_nolb] *= -1 |
|
if len(i_nolb) > 0: |
|
if A_ub.shape[0] > 0: |
|
A_ub[:, i_nolb] *= -1 |
|
if A_eq.shape[0] > 0: |
|
A_eq[:, i_nolb] *= -1 |
|
|
|
|
|
i_newub, = ub_some.nonzero() |
|
ub_newub = ubs[ub_some] |
|
n_bounds = len(i_newub) |
|
if n_bounds > 0: |
|
shape = (n_bounds, A_ub.shape[1]) |
|
if sparse: |
|
idxs = (np.arange(n_bounds), i_newub) |
|
A_ub = vstack((A_ub, sps.csr_matrix((np.ones(n_bounds), idxs), |
|
shape=shape))) |
|
else: |
|
A_ub = vstack((A_ub, np.zeros(shape))) |
|
A_ub[np.arange(m_ub, A_ub.shape[0]), i_newub] = 1 |
|
b_ub = np.concatenate((b_ub, np.zeros(n_bounds))) |
|
b_ub[m_ub:] = ub_newub |
|
|
|
A1 = vstack((A_ub, A_eq)) |
|
b = np.concatenate((b_ub, b_eq)) |
|
c = np.concatenate((c, np.zeros((A_ub.shape[0],)))) |
|
if x0 is not None: |
|
x0 = np.concatenate((x0, np.zeros((A_ub.shape[0],)))) |
|
|
|
l_free = np.logical_and(lb_none, ub_none) |
|
i_free = np.nonzero(l_free)[0] |
|
n_free = len(i_free) |
|
c = np.concatenate((c, np.zeros(n_free))) |
|
if x0 is not None: |
|
x0 = np.concatenate((x0, np.zeros(n_free))) |
|
A1 = hstack((A1[:, :n_ub], -A1[:, i_free])) |
|
c[n_ub:n_ub+n_free] = -c[i_free] |
|
if x0 is not None: |
|
i_free_neg = x0[i_free] < 0 |
|
x0[np.arange(n_ub, A1.shape[1])[i_free_neg]] = -x0[i_free[i_free_neg]] |
|
x0[i_free[i_free_neg]] = 0 |
|
|
|
|
|
A2 = vstack([eye(A_ub.shape[0]), zeros((A_eq.shape[0], A_ub.shape[0]))]) |
|
|
|
A = hstack([A1, A2]) |
|
|
|
|
|
|
|
i_shift = np.nonzero(lb_some)[0] |
|
lb_shift = lbs[lb_some].astype(float) |
|
c0 += np.sum(lb_shift * c[i_shift]) |
|
if sparse: |
|
b = b.reshape(-1, 1) |
|
A = A.tocsc() |
|
b -= (A[:, i_shift] @ sps.diags(lb_shift)).sum(axis=1) |
|
b = b.ravel() |
|
else: |
|
b -= (A[:, i_shift] * lb_shift).sum(axis=1) |
|
if x0 is not None: |
|
x0[i_shift] -= lb_shift |
|
|
|
return A, b, c, c0, x0 |
|
|
|
|
|
def _round_to_power_of_two(x): |
|
""" |
|
Round elements of the array to the nearest power of two. |
|
""" |
|
return 2**np.around(np.log2(x)) |
|
|
|
|
|
def _autoscale(A, b, c, x0): |
|
""" |
|
Scales the problem according to equilibration from [12]. |
|
Also normalizes the right hand side vector by its maximum element. |
|
""" |
|
m, n = A.shape |
|
|
|
C = 1 |
|
R = 1 |
|
|
|
if A.size > 0: |
|
|
|
R = np.max(np.abs(A), axis=1) |
|
if sps.issparse(A): |
|
R = R.toarray().flatten() |
|
R[R == 0] = 1 |
|
R = 1/_round_to_power_of_two(R) |
|
A = sps.diags(R)@A if sps.issparse(A) else A*R.reshape(m, 1) |
|
b = b*R |
|
|
|
C = np.max(np.abs(A), axis=0) |
|
if sps.issparse(A): |
|
C = C.toarray().flatten() |
|
C[C == 0] = 1 |
|
C = 1/_round_to_power_of_two(C) |
|
A = [email protected](C) if sps.issparse(A) else A*C |
|
c = c*C |
|
|
|
b_scale = np.max(np.abs(b)) if b.size > 0 else 1 |
|
if b_scale == 0: |
|
b_scale = 1. |
|
b = b/b_scale |
|
|
|
if x0 is not None: |
|
x0 = x0/b_scale*(1/C) |
|
return A, b, c, x0, C, b_scale |
|
|
|
|
|
def _unscale(x, C, b_scale): |
|
""" |
|
Converts solution to _autoscale problem -> solution to original problem. |
|
""" |
|
|
|
try: |
|
n = len(C) |
|
|
|
|
|
except TypeError: |
|
n = len(x) |
|
|
|
return x[:n]*b_scale*C |
|
|
|
|
|
def _display_summary(message, status, fun, iteration): |
|
""" |
|
Print the termination summary of the linear program |
|
|
|
Parameters |
|
---------- |
|
message : str |
|
A string descriptor of the exit status of the optimization. |
|
status : int |
|
An integer representing the exit status of the optimization:: |
|
|
|
0 : Optimization terminated successfully |
|
1 : Iteration limit reached |
|
2 : Problem appears to be infeasible |
|
3 : Problem appears to be unbounded |
|
4 : Serious numerical difficulties encountered |
|
|
|
fun : float |
|
Value of the objective function. |
|
iteration : iteration |
|
The number of iterations performed. |
|
""" |
|
print(message) |
|
if status in (0, 1): |
|
print(f" Current function value: {fun: <12.6f}") |
|
print(f" Iterations: {iteration:d}") |
|
|
|
|
|
def _postsolve(x, postsolve_args, complete=False): |
|
""" |
|
Given solution x to presolved, standard form linear program x, add |
|
fixed variables back into the problem and undo the variable substitutions |
|
to get solution to original linear program. Also, calculate the objective |
|
function value, slack in original upper bound constraints, and residuals |
|
in original equality constraints. |
|
|
|
Parameters |
|
---------- |
|
x : 1-D array |
|
Solution vector to the standard-form problem. |
|
postsolve_args : tuple |
|
Data needed by _postsolve to convert the solution to the standard-form |
|
problem into the solution to the original problem, including: |
|
|
|
lp : A `scipy.optimize._linprog_util._LPProblem` consisting of the following fields: |
|
|
|
c : 1D array |
|
The coefficients of the linear objective function to be minimized. |
|
A_ub : 2D array, optional |
|
The inequality constraint matrix. Each row of ``A_ub`` specifies the |
|
coefficients of a linear inequality constraint on ``x``. |
|
b_ub : 1D array, optional |
|
The inequality constraint vector. Each element represents an |
|
upper bound on the corresponding value of ``A_ub @ x``. |
|
A_eq : 2D array, optional |
|
The equality constraint matrix. Each row of ``A_eq`` specifies the |
|
coefficients of a linear equality constraint on ``x``. |
|
b_eq : 1D array, optional |
|
The equality constraint vector. Each element of ``A_eq @ x`` must equal |
|
the corresponding element of ``b_eq``. |
|
bounds : 2D array |
|
The bounds of ``x``, lower bounds in the 1st column, upper |
|
bounds in the 2nd column. The bounds are possibly tightened |
|
by the presolve procedure. |
|
x0 : 1D array, optional |
|
Guess values of the decision variables, which will be refined by |
|
the optimization algorithm. This argument is currently used only by the |
|
'revised simplex' method, and can only be used if `x0` represents a |
|
basic feasible solution. |
|
|
|
revstack: list of functions |
|
the functions in the list reverse the operations of _presolve() |
|
the function signature is x_org = f(x_mod), where x_mod is the result |
|
of a presolve step and x_org the value at the start of the step |
|
complete : bool |
|
Whether the solution is was determined in presolve (``True`` if so) |
|
|
|
Returns |
|
------- |
|
x : 1-D array |
|
Solution vector to original linear programming problem |
|
fun: float |
|
optimal objective value for original problem |
|
slack : 1-D array |
|
The (non-negative) slack in the upper bound constraints, that is, |
|
``b_ub - A_ub @ x`` |
|
con : 1-D array |
|
The (nominally zero) residuals of the equality constraints, that is, |
|
``b - A_eq @ x`` |
|
""" |
|
|
|
|
|
|
|
c, A_ub, b_ub, A_eq, b_eq, bounds, x0, integrality = postsolve_args[0] |
|
revstack, C, b_scale = postsolve_args[1:] |
|
|
|
x = _unscale(x, C, b_scale) |
|
|
|
|
|
|
|
n_x = bounds.shape[0] |
|
if not complete and bounds is not None: |
|
n_unbounded = 0 |
|
for i, bi in enumerate(bounds): |
|
lbi = bi[0] |
|
ubi = bi[1] |
|
if lbi == -np.inf and ubi == np.inf: |
|
n_unbounded += 1 |
|
x[i] = x[i] - x[n_x + n_unbounded - 1] |
|
else: |
|
if lbi == -np.inf: |
|
x[i] = ubi - x[i] |
|
else: |
|
x[i] += lbi |
|
|
|
x = x[:n_x] |
|
|
|
|
|
|
|
|
|
for rev in reversed(revstack): |
|
x = rev(x) |
|
|
|
fun = x.dot(c) |
|
slack = b_ub - A_ub.dot(x) |
|
|
|
con = b_eq - A_eq.dot(x) |
|
|
|
return x, fun, slack, con |
|
|
|
|
|
def _check_result(x, fun, status, slack, con, bounds, tol, message, |
|
integrality): |
|
""" |
|
Check the validity of the provided solution. |
|
|
|
A valid (optimal) solution satisfies all bounds, all slack variables are |
|
negative and all equality constraint residuals are strictly non-zero. |
|
Further, the lower-bounds, upper-bounds, slack and residuals contain |
|
no nan values. |
|
|
|
Parameters |
|
---------- |
|
x : 1-D array |
|
Solution vector to original linear programming problem |
|
fun: float |
|
optimal objective value for original problem |
|
status : int |
|
An integer representing the exit status of the optimization:: |
|
|
|
0 : Optimization terminated successfully |
|
1 : Iteration limit reached |
|
2 : Problem appears to be infeasible |
|
3 : Problem appears to be unbounded |
|
4 : Serious numerical difficulties encountered |
|
|
|
slack : 1-D array |
|
The (non-negative) slack in the upper bound constraints, that is, |
|
``b_ub - A_ub @ x`` |
|
con : 1-D array |
|
The (nominally zero) residuals of the equality constraints, that is, |
|
``b - A_eq @ x`` |
|
bounds : 2D array |
|
The bounds on the original variables ``x`` |
|
message : str |
|
A string descriptor of the exit status of the optimization. |
|
tol : float |
|
Termination tolerance; see [1]_ Section 4.5. |
|
|
|
Returns |
|
------- |
|
status : int |
|
An integer representing the exit status of the optimization:: |
|
|
|
0 : Optimization terminated successfully |
|
1 : Iteration limit reached |
|
2 : Problem appears to be infeasible |
|
3 : Problem appears to be unbounded |
|
4 : Serious numerical difficulties encountered |
|
|
|
message : str |
|
A string descriptor of the exit status of the optimization. |
|
""" |
|
|
|
tol = np.sqrt(tol) * 10 |
|
|
|
if x is None: |
|
|
|
if status == 0: |
|
status = 4 |
|
message = ("The solver did not provide a solution nor did it " |
|
"report a failure. Please submit a bug report.") |
|
return status, message |
|
|
|
contains_nans = ( |
|
np.isnan(x).any() |
|
or np.isnan(fun) |
|
or np.isnan(slack).any() |
|
or np.isnan(con).any() |
|
) |
|
|
|
if contains_nans: |
|
is_feasible = False |
|
else: |
|
if integrality is None: |
|
integrality = 0 |
|
valid_bounds = (x >= bounds[:, 0] - tol) & (x <= bounds[:, 1] + tol) |
|
|
|
valid_bounds |= (integrality > 1) & np.isclose(x, 0, atol=tol) |
|
invalid_bounds = not np.all(valid_bounds) |
|
|
|
invalid_slack = status != 3 and (slack < -tol).any() |
|
invalid_con = status != 3 and (np.abs(con) > tol).any() |
|
is_feasible = not (invalid_bounds or invalid_slack or invalid_con) |
|
|
|
if status == 0 and not is_feasible: |
|
status = 4 |
|
message = ("The solution does not satisfy the constraints within the " |
|
"required tolerance of " + f"{tol:.2E}" + ", yet " |
|
"no errors were raised and there is no certificate of " |
|
"infeasibility or unboundedness. Check whether " |
|
"the slack and constraint residuals are acceptable; " |
|
"if not, consider enabling presolve, adjusting the " |
|
"tolerance option(s), and/or using a different method. " |
|
"Please consider submitting a bug report.") |
|
elif status == 2 and is_feasible: |
|
|
|
|
|
|
|
status = 4 |
|
message = ("The solution is feasible, but the solver did not report " |
|
"that the solution was optimal. Please try a different " |
|
"method.") |
|
|
|
return status, message |
|
|