|
""" |
|
Differential and pseudo-differential operators. |
|
""" |
|
|
|
|
|
__all__ = ['diff', |
|
'tilbert','itilbert','hilbert','ihilbert', |
|
'cs_diff','cc_diff','sc_diff','ss_diff', |
|
'shift'] |
|
|
|
import threading |
|
|
|
from numpy import pi, asarray, sin, cos, sinh, cosh, tanh, iscomplexobj |
|
from . import convolve |
|
|
|
from scipy.fft._pocketfft.helper import _datacopied |
|
|
|
|
|
_cache = threading.local() |
|
|
|
|
|
def diff(x,order=1,period=None, _cache=_cache): |
|
""" |
|
Return kth derivative (or integral) of a periodic sequence x. |
|
|
|
If x_j and y_j are Fourier coefficients of periodic functions x |
|
and y, respectively, then:: |
|
|
|
y_j = pow(sqrt(-1)*j*2*pi/period, order) * x_j |
|
y_0 = 0 if order is not 0. |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
Input array. |
|
order : int, optional |
|
The order of differentiation. Default order is 1. If order is |
|
negative, then integration is carried out under the assumption |
|
that ``x_0 == 0``. |
|
period : float, optional |
|
The assumed period of the sequence. Default is ``2*pi``. |
|
|
|
Notes |
|
----- |
|
If ``sum(x, axis=0) = 0`` then ``diff(diff(x, k), -k) == x`` (within |
|
numerical accuracy). |
|
|
|
For odd order and even ``len(x)``, the Nyquist mode is taken zero. |
|
|
|
""" |
|
if isinstance(_cache, threading.local): |
|
if not hasattr(_cache, 'diff_cache'): |
|
_cache.diff_cache = {} |
|
_cache = _cache.diff_cache |
|
|
|
tmp = asarray(x) |
|
if order == 0: |
|
return tmp |
|
if iscomplexobj(tmp): |
|
return diff(tmp.real, order, period, _cache)+1j*diff( |
|
tmp.imag, order, period, _cache) |
|
if period is not None: |
|
c = 2*pi/period |
|
else: |
|
c = 1.0 |
|
n = len(x) |
|
omega = _cache.get((n,order,c)) |
|
if omega is None: |
|
if len(_cache) > 20: |
|
while _cache: |
|
_cache.popitem() |
|
|
|
def kernel(k,order=order,c=c): |
|
if k: |
|
return pow(c*k,order) |
|
return 0 |
|
omega = convolve.init_convolution_kernel(n,kernel,d=order, |
|
zero_nyquist=1) |
|
_cache[(n,order,c)] = omega |
|
overwrite_x = _datacopied(tmp, x) |
|
return convolve.convolve(tmp,omega,swap_real_imag=order % 2, |
|
overwrite_x=overwrite_x) |
|
|
|
|
|
def tilbert(x, h, period=None, _cache=_cache): |
|
""" |
|
Return h-Tilbert transform of a periodic sequence x. |
|
|
|
If x_j and y_j are Fourier coefficients of periodic functions x |
|
and y, respectively, then:: |
|
|
|
y_j = sqrt(-1)*coth(j*h*2*pi/period) * x_j |
|
y_0 = 0 |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
The input array to transform. |
|
h : float |
|
Defines the parameter of the Tilbert transform. |
|
period : float, optional |
|
The assumed period of the sequence. Default period is ``2*pi``. |
|
|
|
Returns |
|
------- |
|
tilbert : ndarray |
|
The result of the transform. |
|
|
|
Notes |
|
----- |
|
If ``sum(x, axis=0) == 0`` and ``n = len(x)`` is odd, then |
|
``tilbert(itilbert(x)) == x``. |
|
|
|
If ``2 * pi * h / period`` is approximately 10 or larger, then |
|
numerically ``tilbert == hilbert`` |
|
(theoretically oo-Tilbert == Hilbert). |
|
|
|
For even ``len(x)``, the Nyquist mode of ``x`` is taken zero. |
|
|
|
""" |
|
if isinstance(_cache, threading.local): |
|
if not hasattr(_cache, 'tilbert_cache'): |
|
_cache.tilbert_cache = {} |
|
_cache = _cache.tilbert_cache |
|
|
|
tmp = asarray(x) |
|
if iscomplexobj(tmp): |
|
return tilbert(tmp.real, h, period, _cache) + \ |
|
1j * tilbert(tmp.imag, h, period, _cache) |
|
|
|
if period is not None: |
|
h = h * 2 * pi / period |
|
|
|
n = len(x) |
|
omega = _cache.get((n, h)) |
|
if omega is None: |
|
if len(_cache) > 20: |
|
while _cache: |
|
_cache.popitem() |
|
|
|
def kernel(k, h=h): |
|
if k: |
|
return 1.0/tanh(h*k) |
|
|
|
return 0 |
|
|
|
omega = convolve.init_convolution_kernel(n, kernel, d=1) |
|
_cache[(n,h)] = omega |
|
|
|
overwrite_x = _datacopied(tmp, x) |
|
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x) |
|
|
|
|
|
def itilbert(x,h,period=None, _cache=_cache): |
|
""" |
|
Return inverse h-Tilbert transform of a periodic sequence x. |
|
|
|
If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x |
|
and y, respectively, then:: |
|
|
|
y_j = -sqrt(-1)*tanh(j*h*2*pi/period) * x_j |
|
y_0 = 0 |
|
|
|
For more details, see `tilbert`. |
|
|
|
""" |
|
if isinstance(_cache, threading.local): |
|
if not hasattr(_cache, 'itilbert_cache'): |
|
_cache.itilbert_cache = {} |
|
_cache = _cache.itilbert_cache |
|
|
|
tmp = asarray(x) |
|
if iscomplexobj(tmp): |
|
return itilbert(tmp.real, h, period, _cache) + \ |
|
1j*itilbert(tmp.imag, h, period, _cache) |
|
if period is not None: |
|
h = h*2*pi/period |
|
n = len(x) |
|
omega = _cache.get((n,h)) |
|
if omega is None: |
|
if len(_cache) > 20: |
|
while _cache: |
|
_cache.popitem() |
|
|
|
def kernel(k,h=h): |
|
if k: |
|
return -tanh(h*k) |
|
return 0 |
|
omega = convolve.init_convolution_kernel(n,kernel,d=1) |
|
_cache[(n,h)] = omega |
|
overwrite_x = _datacopied(tmp, x) |
|
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x) |
|
|
|
|
|
def hilbert(x, _cache=_cache): |
|
""" |
|
Return Hilbert transform of a periodic sequence x. |
|
|
|
If x_j and y_j are Fourier coefficients of periodic functions x |
|
and y, respectively, then:: |
|
|
|
y_j = sqrt(-1)*sign(j) * x_j |
|
y_0 = 0 |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
The input array, should be periodic. |
|
_cache : dict, optional |
|
Dictionary that contains the kernel used to do a convolution with. |
|
|
|
Returns |
|
------- |
|
y : ndarray |
|
The transformed input. |
|
|
|
See Also |
|
-------- |
|
scipy.signal.hilbert : Compute the analytic signal, using the Hilbert |
|
transform. |
|
|
|
Notes |
|
----- |
|
If ``sum(x, axis=0) == 0`` then ``hilbert(ihilbert(x)) == x``. |
|
|
|
For even len(x), the Nyquist mode of x is taken zero. |
|
|
|
The sign of the returned transform does not have a factor -1 that is more |
|
often than not found in the definition of the Hilbert transform. Note also |
|
that `scipy.signal.hilbert` does have an extra -1 factor compared to this |
|
function. |
|
|
|
""" |
|
if isinstance(_cache, threading.local): |
|
if not hasattr(_cache, 'hilbert_cache'): |
|
_cache.hilbert_cache = {} |
|
_cache = _cache.hilbert_cache |
|
|
|
tmp = asarray(x) |
|
if iscomplexobj(tmp): |
|
return hilbert(tmp.real, _cache) + 1j * hilbert(tmp.imag, _cache) |
|
n = len(x) |
|
omega = _cache.get(n) |
|
if omega is None: |
|
if len(_cache) > 20: |
|
while _cache: |
|
_cache.popitem() |
|
|
|
def kernel(k): |
|
if k > 0: |
|
return 1.0 |
|
elif k < 0: |
|
return -1.0 |
|
return 0.0 |
|
omega = convolve.init_convolution_kernel(n,kernel,d=1) |
|
_cache[n] = omega |
|
overwrite_x = _datacopied(tmp, x) |
|
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x) |
|
|
|
|
|
def ihilbert(x, _cache=_cache): |
|
""" |
|
Return inverse Hilbert transform of a periodic sequence x. |
|
|
|
If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x |
|
and y, respectively, then:: |
|
|
|
y_j = -sqrt(-1)*sign(j) * x_j |
|
y_0 = 0 |
|
|
|
""" |
|
if isinstance(_cache, threading.local): |
|
if not hasattr(_cache, 'ihilbert_cache'): |
|
_cache.ihilbert_cache = {} |
|
_cache = _cache.ihilbert_cache |
|
return -hilbert(x, _cache) |
|
|
|
|
|
def cs_diff(x, a, b, period=None, _cache=_cache): |
|
""" |
|
Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence. |
|
|
|
If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x |
|
and y, respectively, then:: |
|
|
|
y_j = -sqrt(-1)*cosh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j |
|
y_0 = 0 |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
The array to take the pseudo-derivative from. |
|
a, b : float |
|
Defines the parameters of the cosh/sinh pseudo-differential |
|
operator. |
|
period : float, optional |
|
The period of the sequence. Default period is ``2*pi``. |
|
|
|
Returns |
|
------- |
|
cs_diff : ndarray |
|
Pseudo-derivative of periodic sequence `x`. |
|
|
|
Notes |
|
----- |
|
For even len(`x`), the Nyquist mode of `x` is taken as zero. |
|
|
|
""" |
|
if isinstance(_cache, threading.local): |
|
if not hasattr(_cache, 'cs_diff_cache'): |
|
_cache.cs_diff_cache = {} |
|
_cache = _cache.cs_diff_cache |
|
|
|
tmp = asarray(x) |
|
if iscomplexobj(tmp): |
|
return cs_diff(tmp.real, a, b, period, _cache) + \ |
|
1j*cs_diff(tmp.imag, a, b, period, _cache) |
|
if period is not None: |
|
a = a*2*pi/period |
|
b = b*2*pi/period |
|
n = len(x) |
|
omega = _cache.get((n,a,b)) |
|
if omega is None: |
|
if len(_cache) > 20: |
|
while _cache: |
|
_cache.popitem() |
|
|
|
def kernel(k,a=a,b=b): |
|
if k: |
|
return -cosh(a*k)/sinh(b*k) |
|
return 0 |
|
omega = convolve.init_convolution_kernel(n,kernel,d=1) |
|
_cache[(n,a,b)] = omega |
|
overwrite_x = _datacopied(tmp, x) |
|
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x) |
|
|
|
|
|
def sc_diff(x, a, b, period=None, _cache=_cache): |
|
""" |
|
Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence x. |
|
|
|
If x_j and y_j are Fourier coefficients of periodic functions x |
|
and y, respectively, then:: |
|
|
|
y_j = sqrt(-1)*sinh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j |
|
y_0 = 0 |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
Input array. |
|
a,b : float |
|
Defines the parameters of the sinh/cosh pseudo-differential |
|
operator. |
|
period : float, optional |
|
The period of the sequence x. Default is 2*pi. |
|
|
|
Notes |
|
----- |
|
``sc_diff(cs_diff(x,a,b),b,a) == x`` |
|
For even ``len(x)``, the Nyquist mode of x is taken as zero. |
|
|
|
""" |
|
if isinstance(_cache, threading.local): |
|
if not hasattr(_cache, 'sc_diff_cache'): |
|
_cache.sc_diff_cache = {} |
|
_cache = _cache.sc_diff_cache |
|
|
|
tmp = asarray(x) |
|
if iscomplexobj(tmp): |
|
return sc_diff(tmp.real, a, b, period, _cache) + \ |
|
1j * sc_diff(tmp.imag, a, b, period, _cache) |
|
if period is not None: |
|
a = a*2*pi/period |
|
b = b*2*pi/period |
|
n = len(x) |
|
omega = _cache.get((n,a,b)) |
|
if omega is None: |
|
if len(_cache) > 20: |
|
while _cache: |
|
_cache.popitem() |
|
|
|
def kernel(k,a=a,b=b): |
|
if k: |
|
return sinh(a*k)/cosh(b*k) |
|
return 0 |
|
omega = convolve.init_convolution_kernel(n,kernel,d=1) |
|
_cache[(n,a,b)] = omega |
|
overwrite_x = _datacopied(tmp, x) |
|
return convolve.convolve(tmp,omega,swap_real_imag=1,overwrite_x=overwrite_x) |
|
|
|
|
|
def ss_diff(x, a, b, period=None, _cache=_cache): |
|
""" |
|
Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x. |
|
|
|
If x_j and y_j are Fourier coefficients of periodic functions x |
|
and y, respectively, then:: |
|
|
|
y_j = sinh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j |
|
y_0 = a/b * x_0 |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
The array to take the pseudo-derivative from. |
|
a,b |
|
Defines the parameters of the sinh/sinh pseudo-differential |
|
operator. |
|
period : float, optional |
|
The period of the sequence x. Default is ``2*pi``. |
|
|
|
Notes |
|
----- |
|
``ss_diff(ss_diff(x,a,b),b,a) == x`` |
|
|
|
""" |
|
if isinstance(_cache, threading.local): |
|
if not hasattr(_cache, 'ss_diff_cache'): |
|
_cache.ss_diff_cache = {} |
|
_cache = _cache.ss_diff_cache |
|
|
|
tmp = asarray(x) |
|
if iscomplexobj(tmp): |
|
return ss_diff(tmp.real, a, b, period, _cache) + \ |
|
1j*ss_diff(tmp.imag, a, b, period, _cache) |
|
if period is not None: |
|
a = a*2*pi/period |
|
b = b*2*pi/period |
|
n = len(x) |
|
omega = _cache.get((n,a,b)) |
|
if omega is None: |
|
if len(_cache) > 20: |
|
while _cache: |
|
_cache.popitem() |
|
|
|
def kernel(k,a=a,b=b): |
|
if k: |
|
return sinh(a*k)/sinh(b*k) |
|
return float(a)/b |
|
omega = convolve.init_convolution_kernel(n,kernel) |
|
_cache[(n,a,b)] = omega |
|
overwrite_x = _datacopied(tmp, x) |
|
return convolve.convolve(tmp,omega,overwrite_x=overwrite_x) |
|
|
|
|
|
def cc_diff(x, a, b, period=None, _cache=_cache): |
|
""" |
|
Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence. |
|
|
|
If x_j and y_j are Fourier coefficients of periodic functions x |
|
and y, respectively, then:: |
|
|
|
y_j = cosh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
The array to take the pseudo-derivative from. |
|
a,b : float |
|
Defines the parameters of the sinh/sinh pseudo-differential |
|
operator. |
|
period : float, optional |
|
The period of the sequence x. Default is ``2*pi``. |
|
|
|
Returns |
|
------- |
|
cc_diff : ndarray |
|
Pseudo-derivative of periodic sequence `x`. |
|
|
|
Notes |
|
----- |
|
``cc_diff(cc_diff(x,a,b),b,a) == x`` |
|
|
|
""" |
|
if isinstance(_cache, threading.local): |
|
if not hasattr(_cache, 'cc_diff_cache'): |
|
_cache.cc_diff_cache = {} |
|
_cache = _cache.cc_diff_cache |
|
|
|
tmp = asarray(x) |
|
if iscomplexobj(tmp): |
|
return cc_diff(tmp.real, a, b, period, _cache) + \ |
|
1j * cc_diff(tmp.imag, a, b, period, _cache) |
|
if period is not None: |
|
a = a*2*pi/period |
|
b = b*2*pi/period |
|
n = len(x) |
|
omega = _cache.get((n,a,b)) |
|
if omega is None: |
|
if len(_cache) > 20: |
|
while _cache: |
|
_cache.popitem() |
|
|
|
def kernel(k,a=a,b=b): |
|
return cosh(a*k)/cosh(b*k) |
|
omega = convolve.init_convolution_kernel(n,kernel) |
|
_cache[(n,a,b)] = omega |
|
overwrite_x = _datacopied(tmp, x) |
|
return convolve.convolve(tmp,omega,overwrite_x=overwrite_x) |
|
|
|
|
|
def shift(x, a, period=None, _cache=_cache): |
|
""" |
|
Shift periodic sequence x by a: y(u) = x(u+a). |
|
|
|
If x_j and y_j are Fourier coefficients of periodic functions x |
|
and y, respectively, then:: |
|
|
|
y_j = exp(j*a*2*pi/period*sqrt(-1)) * x_f |
|
|
|
Parameters |
|
---------- |
|
x : array_like |
|
The array to take the pseudo-derivative from. |
|
a : float |
|
Defines the parameters of the sinh/sinh pseudo-differential |
|
period : float, optional |
|
The period of the sequences x and y. Default period is ``2*pi``. |
|
""" |
|
if isinstance(_cache, threading.local): |
|
if not hasattr(_cache, 'shift_cache'): |
|
_cache.shift_cache = {} |
|
_cache = _cache.shift_cache |
|
|
|
tmp = asarray(x) |
|
if iscomplexobj(tmp): |
|
return shift(tmp.real, a, period, _cache) + 1j * shift( |
|
tmp.imag, a, period, _cache) |
|
if period is not None: |
|
a = a*2*pi/period |
|
n = len(x) |
|
omega = _cache.get((n,a)) |
|
if omega is None: |
|
if len(_cache) > 20: |
|
while _cache: |
|
_cache.popitem() |
|
|
|
def kernel_real(k,a=a): |
|
return cos(a*k) |
|
|
|
def kernel_imag(k,a=a): |
|
return sin(a*k) |
|
omega_real = convolve.init_convolution_kernel(n,kernel_real,d=0, |
|
zero_nyquist=0) |
|
omega_imag = convolve.init_convolution_kernel(n,kernel_imag,d=1, |
|
zero_nyquist=0) |
|
_cache[(n,a)] = omega_real,omega_imag |
|
else: |
|
omega_real,omega_imag = omega |
|
overwrite_x = _datacopied(tmp, x) |
|
return convolve.convolve_z(tmp,omega_real,omega_imag, |
|
overwrite_x=overwrite_x) |
|
|
|
|