|
import queue |
|
import threading |
|
import multiprocessing |
|
import numpy as np |
|
import pytest |
|
from numpy.random import random |
|
from numpy.testing import assert_array_almost_equal, assert_allclose |
|
from pytest import raises as assert_raises |
|
import scipy.fft as fft |
|
from scipy.conftest import array_api_compatible |
|
from scipy._lib._array_api import ( |
|
array_namespace, xp_size, xp_assert_close, xp_assert_equal |
|
) |
|
|
|
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_xp_backends")] |
|
skip_xp_backends = pytest.mark.skip_xp_backends |
|
|
|
|
|
|
|
|
|
|
|
def get_expected_input_dtype(func, xp): |
|
if func in [fft.fft, fft.fftn, fft.fft2, |
|
fft.ifft, fft.ifftn, fft.ifft2, |
|
fft.hfft, fft.hfftn, fft.hfft2, |
|
fft.irfft, fft.irfftn, fft.irfft2]: |
|
dtype = xp.complex128 |
|
elif func in [fft.rfft, fft.rfftn, fft.rfft2, |
|
fft.ihfft, fft.ihfftn, fft.ihfft2]: |
|
dtype = xp.float64 |
|
else: |
|
raise ValueError(f'Unknown FFT function: {func}') |
|
|
|
return dtype |
|
|
|
|
|
def fft1(x): |
|
L = len(x) |
|
phase = -2j*np.pi*(np.arange(L)/float(L)) |
|
phase = np.arange(L).reshape(-1, 1) * phase |
|
return np.sum(x*np.exp(phase), axis=1) |
|
|
|
class TestFFT: |
|
|
|
def test_identity(self, xp): |
|
maxlen = 512 |
|
x = xp.asarray(random(maxlen) + 1j*random(maxlen)) |
|
xr = xp.asarray(random(maxlen)) |
|
|
|
for i in [1, 2, 16, 128, 512, 53, 149, 281, 397]: |
|
xp_assert_close(fft.ifft(fft.fft(x[0:i])), x[0:i]) |
|
xp_assert_close(fft.irfft(fft.rfft(xr[0:i]), i), xr[0:i]) |
|
|
|
@skip_xp_backends(np_only=True, reason='significant overhead for some backends') |
|
def test_identity_extensive(self, xp): |
|
maxlen = 512 |
|
x = xp.asarray(random(maxlen) + 1j*random(maxlen)) |
|
xr = xp.asarray(random(maxlen)) |
|
for i in range(1, maxlen): |
|
xp_assert_close(fft.ifft(fft.fft(x[0:i])), x[0:i]) |
|
xp_assert_close(fft.irfft(fft.rfft(xr[0:i]), i), xr[0:i]) |
|
|
|
def test_fft(self, xp): |
|
x = random(30) + 1j*random(30) |
|
expect = xp.asarray(fft1(x)) |
|
x = xp.asarray(x) |
|
xp_assert_close(fft.fft(x), expect) |
|
xp_assert_close(fft.fft(x, norm="backward"), expect) |
|
xp_assert_close(fft.fft(x, norm="ortho"), |
|
expect / xp.sqrt(xp.asarray(30, dtype=xp.float64)),) |
|
xp_assert_close(fft.fft(x, norm="forward"), expect / 30) |
|
|
|
@skip_xp_backends(np_only=True, reason='some backends allow `n=0`') |
|
def test_fft_n(self, xp): |
|
x = xp.asarray([1, 2, 3], dtype=xp.complex128) |
|
assert_raises(ValueError, fft.fft, x, 0) |
|
|
|
def test_ifft(self, xp): |
|
x = xp.asarray(random(30) + 1j*random(30)) |
|
xp_assert_close(fft.ifft(fft.fft(x)), x) |
|
for norm in ["backward", "ortho", "forward"]: |
|
xp_assert_close(fft.ifft(fft.fft(x, norm=norm), norm=norm), x) |
|
|
|
def test_fft2(self, xp): |
|
x = xp.asarray(random((30, 20)) + 1j*random((30, 20))) |
|
expect = fft.fft(fft.fft(x, axis=1), axis=0) |
|
xp_assert_close(fft.fft2(x), expect) |
|
xp_assert_close(fft.fft2(x, norm="backward"), expect) |
|
xp_assert_close(fft.fft2(x, norm="ortho"), |
|
expect / xp.sqrt(xp.asarray(30 * 20, dtype=xp.float64))) |
|
xp_assert_close(fft.fft2(x, norm="forward"), expect / (30 * 20)) |
|
|
|
def test_ifft2(self, xp): |
|
x = xp.asarray(random((30, 20)) + 1j*random((30, 20))) |
|
expect = fft.ifft(fft.ifft(x, axis=1), axis=0) |
|
xp_assert_close(fft.ifft2(x), expect) |
|
xp_assert_close(fft.ifft2(x, norm="backward"), expect) |
|
xp_assert_close(fft.ifft2(x, norm="ortho"), |
|
expect * xp.sqrt(xp.asarray(30 * 20, dtype=xp.float64))) |
|
xp_assert_close(fft.ifft2(x, norm="forward"), expect * (30 * 20)) |
|
|
|
def test_fftn(self, xp): |
|
x = xp.asarray(random((30, 20, 10)) + 1j*random((30, 20, 10))) |
|
expect = fft.fft(fft.fft(fft.fft(x, axis=2), axis=1), axis=0) |
|
xp_assert_close(fft.fftn(x), expect) |
|
xp_assert_close(fft.fftn(x, norm="backward"), expect) |
|
xp_assert_close(fft.fftn(x, norm="ortho"), |
|
expect / xp.sqrt(xp.asarray(30 * 20 * 10, dtype=xp.float64))) |
|
xp_assert_close(fft.fftn(x, norm="forward"), expect / (30 * 20 * 10)) |
|
|
|
def test_ifftn(self, xp): |
|
x = xp.asarray(random((30, 20, 10)) + 1j*random((30, 20, 10))) |
|
expect = fft.ifft(fft.ifft(fft.ifft(x, axis=2), axis=1), axis=0) |
|
xp_assert_close(fft.ifftn(x), expect, rtol=1e-7) |
|
xp_assert_close(fft.ifftn(x, norm="backward"), expect, rtol=1e-7) |
|
xp_assert_close( |
|
fft.ifftn(x, norm="ortho"), |
|
fft.ifftn(x) * xp.sqrt(xp.asarray(30 * 20 * 10, dtype=xp.float64)) |
|
) |
|
xp_assert_close(fft.ifftn(x, norm="forward"), |
|
expect * (30 * 20 * 10), |
|
rtol=1e-7) |
|
|
|
def test_rfft(self, xp): |
|
x = xp.asarray(random(29), dtype=xp.float64) |
|
for n in [xp_size(x), 2*xp_size(x)]: |
|
for norm in [None, "backward", "ortho", "forward"]: |
|
xp_assert_close(fft.rfft(x, n=n, norm=norm), |
|
fft.fft(xp.asarray(x, dtype=xp.complex128), |
|
n=n, norm=norm)[:(n//2 + 1)]) |
|
xp_assert_close( |
|
fft.rfft(x, n=n, norm="ortho"), |
|
fft.rfft(x, n=n) / xp.sqrt(xp.asarray(n, dtype=xp.float64)) |
|
) |
|
|
|
def test_irfft(self, xp): |
|
x = xp.asarray(random(30)) |
|
xp_assert_close(fft.irfft(fft.rfft(x)), x) |
|
for norm in ["backward", "ortho", "forward"]: |
|
xp_assert_close(fft.irfft(fft.rfft(x, norm=norm), norm=norm), x) |
|
|
|
def test_rfft2(self, xp): |
|
x = xp.asarray(random((30, 20)), dtype=xp.float64) |
|
expect = fft.fft2(xp.asarray(x, dtype=xp.complex128))[:, :11] |
|
xp_assert_close(fft.rfft2(x), expect) |
|
xp_assert_close(fft.rfft2(x, norm="backward"), expect) |
|
xp_assert_close(fft.rfft2(x, norm="ortho"), |
|
expect / xp.sqrt(xp.asarray(30 * 20, dtype=xp.float64))) |
|
xp_assert_close(fft.rfft2(x, norm="forward"), expect / (30 * 20)) |
|
|
|
def test_irfft2(self, xp): |
|
x = xp.asarray(random((30, 20))) |
|
xp_assert_close(fft.irfft2(fft.rfft2(x)), x) |
|
for norm in ["backward", "ortho", "forward"]: |
|
xp_assert_close(fft.irfft2(fft.rfft2(x, norm=norm), norm=norm), x) |
|
|
|
def test_rfftn(self, xp): |
|
x = xp.asarray(random((30, 20, 10)), dtype=xp.float64) |
|
expect = fft.fftn(xp.asarray(x, dtype=xp.complex128))[:, :, :6] |
|
xp_assert_close(fft.rfftn(x), expect) |
|
xp_assert_close(fft.rfftn(x, norm="backward"), expect) |
|
xp_assert_close(fft.rfftn(x, norm="ortho"), |
|
expect / xp.sqrt(xp.asarray(30 * 20 * 10, dtype=xp.float64))) |
|
xp_assert_close(fft.rfftn(x, norm="forward"), expect / (30 * 20 * 10)) |
|
|
|
def test_irfftn(self, xp): |
|
x = xp.asarray(random((30, 20, 10))) |
|
xp_assert_close(fft.irfftn(fft.rfftn(x)), x) |
|
for norm in ["backward", "ortho", "forward"]: |
|
xp_assert_close(fft.irfftn(fft.rfftn(x, norm=norm), norm=norm), x) |
|
|
|
def test_hfft(self, xp): |
|
x = random(14) + 1j*random(14) |
|
x_herm = np.concatenate((random(1), x, random(1))) |
|
x = np.concatenate((x_herm, x[::-1].conj())) |
|
x = xp.asarray(x) |
|
x_herm = xp.asarray(x_herm) |
|
expect = xp.real(fft.fft(x)) |
|
xp_assert_close(fft.hfft(x_herm), expect) |
|
xp_assert_close(fft.hfft(x_herm, norm="backward"), expect) |
|
xp_assert_close(fft.hfft(x_herm, norm="ortho"), |
|
expect / xp.sqrt(xp.asarray(30, dtype=xp.float64))) |
|
xp_assert_close(fft.hfft(x_herm, norm="forward"), expect / 30) |
|
|
|
def test_ihfft(self, xp): |
|
x = random(14) + 1j*random(14) |
|
x_herm = np.concatenate((random(1), x, random(1))) |
|
x = np.concatenate((x_herm, x[::-1].conj())) |
|
x = xp.asarray(x) |
|
x_herm = xp.asarray(x_herm) |
|
xp_assert_close(fft.ihfft(fft.hfft(x_herm)), x_herm) |
|
for norm in ["backward", "ortho", "forward"]: |
|
xp_assert_close(fft.ihfft(fft.hfft(x_herm, norm=norm), norm=norm), x_herm) |
|
|
|
def test_hfft2(self, xp): |
|
x = xp.asarray(random((30, 20))) |
|
xp_assert_close(fft.hfft2(fft.ihfft2(x)), x) |
|
for norm in ["backward", "ortho", "forward"]: |
|
xp_assert_close(fft.hfft2(fft.ihfft2(x, norm=norm), norm=norm), x) |
|
|
|
def test_ihfft2(self, xp): |
|
x = xp.asarray(random((30, 20)), dtype=xp.float64) |
|
expect = fft.ifft2(xp.asarray(x, dtype=xp.complex128))[:, :11] |
|
xp_assert_close(fft.ihfft2(x), expect) |
|
xp_assert_close(fft.ihfft2(x, norm="backward"), expect) |
|
xp_assert_close( |
|
fft.ihfft2(x, norm="ortho"), |
|
expect * xp.sqrt(xp.asarray(30 * 20, dtype=xp.float64)) |
|
) |
|
xp_assert_close(fft.ihfft2(x, norm="forward"), expect * (30 * 20)) |
|
|
|
def test_hfftn(self, xp): |
|
x = xp.asarray(random((30, 20, 10))) |
|
xp_assert_close(fft.hfftn(fft.ihfftn(x)), x) |
|
for norm in ["backward", "ortho", "forward"]: |
|
xp_assert_close(fft.hfftn(fft.ihfftn(x, norm=norm), norm=norm), x) |
|
|
|
def test_ihfftn(self, xp): |
|
x = xp.asarray(random((30, 20, 10)), dtype=xp.float64) |
|
expect = fft.ifftn(xp.asarray(x, dtype=xp.complex128))[:, :, :6] |
|
xp_assert_close(expect, fft.ihfftn(x)) |
|
xp_assert_close(expect, fft.ihfftn(x, norm="backward")) |
|
xp_assert_close( |
|
fft.ihfftn(x, norm="ortho"), |
|
expect * xp.sqrt(xp.asarray(30 * 20 * 10, dtype=xp.float64)) |
|
) |
|
xp_assert_close(fft.ihfftn(x, norm="forward"), expect * (30 * 20 * 10)) |
|
|
|
def _check_axes(self, op, xp): |
|
dtype = get_expected_input_dtype(op, xp) |
|
x = xp.asarray(random((30, 20, 10)), dtype=dtype) |
|
axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)] |
|
xp_test = array_namespace(x) |
|
for a in axes: |
|
op_tr = op(xp_test.permute_dims(x, axes=a)) |
|
tr_op = xp_test.permute_dims(op(x, axes=a), axes=a) |
|
xp_assert_close(op_tr, tr_op) |
|
|
|
@pytest.mark.parametrize("op", [fft.fftn, fft.ifftn, fft.rfftn, fft.irfftn]) |
|
def test_axes_standard(self, op, xp): |
|
self._check_axes(op, xp) |
|
|
|
@pytest.mark.parametrize("op", [fft.hfftn, fft.ihfftn]) |
|
def test_axes_non_standard(self, op, xp): |
|
self._check_axes(op, xp) |
|
|
|
@pytest.mark.parametrize("op", [fft.fftn, fft.ifftn, |
|
fft.rfftn, fft.irfftn]) |
|
def test_axes_subset_with_shape_standard(self, op, xp): |
|
dtype = get_expected_input_dtype(op, xp) |
|
x = xp.asarray(random((16, 8, 4)), dtype=dtype) |
|
axes = [(0, 1, 2), (0, 2, 1), (1, 2, 0)] |
|
xp_test = array_namespace(x) |
|
for a in axes: |
|
|
|
shape = tuple([2*x.shape[ax] if ax in a[:2] else x.shape[ax] |
|
for ax in range(x.ndim)]) |
|
|
|
op_tr = op(xp_test.permute_dims(x, axes=a), |
|
s=shape[:2], axes=(0, 1)) |
|
tr_op = xp_test.permute_dims(op(x, s=shape[:2], axes=a[:2]), |
|
axes=a) |
|
xp_assert_close(op_tr, tr_op) |
|
|
|
@pytest.mark.parametrize("op", [fft.fft2, fft.ifft2, |
|
fft.rfft2, fft.irfft2, |
|
fft.hfft2, fft.ihfft2, |
|
fft.hfftn, fft.ihfftn]) |
|
def test_axes_subset_with_shape_non_standard(self, op, xp): |
|
dtype = get_expected_input_dtype(op, xp) |
|
x = xp.asarray(random((16, 8, 4)), dtype=dtype) |
|
axes = [(0, 1, 2), (0, 2, 1), (1, 2, 0)] |
|
xp_test = array_namespace(x) |
|
for a in axes: |
|
|
|
shape = tuple([2*x.shape[ax] if ax in a[:2] else x.shape[ax] |
|
for ax in range(x.ndim)]) |
|
|
|
op_tr = op(xp_test.permute_dims(x, axes=a), s=shape[:2], axes=(0, 1)) |
|
tr_op = xp_test.permute_dims(op(x, s=shape[:2], axes=a[:2]), axes=a) |
|
xp_assert_close(op_tr, tr_op) |
|
|
|
def test_all_1d_norm_preserving(self, xp): |
|
|
|
x = xp.asarray(random(30), dtype=xp.float64) |
|
xp_test = array_namespace(x) |
|
x_norm = xp_test.linalg.vector_norm(x) |
|
n = xp_size(x) * 2 |
|
func_pairs = [(fft.rfft, fft.irfft), |
|
|
|
|
|
(fft.ihfft, fft.hfft), |
|
|
|
(fft.fft, fft.ifft), |
|
] |
|
for forw, back in func_pairs: |
|
if forw == fft.fft: |
|
x = xp.asarray(x, dtype=xp.complex128) |
|
x_norm = xp_test.linalg.vector_norm(x) |
|
for n in [xp_size(x), 2*xp_size(x)]: |
|
for norm in ['backward', 'ortho', 'forward']: |
|
tmp = forw(x, n=n, norm=norm) |
|
tmp = back(tmp, n=n, norm=norm) |
|
xp_assert_close(xp_test.linalg.vector_norm(tmp), x_norm) |
|
|
|
@skip_xp_backends(np_only=True) |
|
@pytest.mark.parametrize("dtype", [np.float16, np.longdouble]) |
|
def test_dtypes_nonstandard(self, dtype): |
|
x = random(30).astype(dtype) |
|
out_dtypes = {np.float16: np.complex64, np.longdouble: np.clongdouble} |
|
x_complex = x.astype(out_dtypes[dtype]) |
|
|
|
res_fft = fft.ifft(fft.fft(x)) |
|
res_rfft = fft.irfft(fft.rfft(x)) |
|
res_hfft = fft.hfft(fft.ihfft(x), x.shape[0]) |
|
|
|
assert_array_almost_equal(res_fft, x_complex) |
|
assert_array_almost_equal(res_rfft, x) |
|
assert_array_almost_equal(res_hfft, x) |
|
assert res_fft.dtype == x_complex.dtype |
|
assert res_rfft.dtype == np.result_type(np.float32, x.dtype) |
|
assert res_hfft.dtype == np.result_type(np.float32, x.dtype) |
|
|
|
@pytest.mark.parametrize("dtype", ["float32", "float64"]) |
|
def test_dtypes_real(self, dtype, xp): |
|
x = xp.asarray(random(30), dtype=getattr(xp, dtype)) |
|
|
|
res_rfft = fft.irfft(fft.rfft(x)) |
|
res_hfft = fft.hfft(fft.ihfft(x), x.shape[0]) |
|
|
|
xp_assert_close(res_rfft, x) |
|
xp_assert_close(res_hfft, x) |
|
|
|
@pytest.mark.parametrize("dtype", ["complex64", "complex128"]) |
|
def test_dtypes_complex(self, dtype, xp): |
|
rng = np.random.default_rng(1234) |
|
x = xp.asarray(rng.random(30), dtype=getattr(xp, dtype)) |
|
|
|
res_fft = fft.ifft(fft.fft(x)) |
|
|
|
xp_assert_close(res_fft, x) |
|
|
|
@skip_xp_backends(np_only=True, |
|
reason='array-likes only supported for NumPy backend') |
|
@pytest.mark.parametrize("op", [fft.fft, fft.ifft, |
|
fft.fft2, fft.ifft2, |
|
fft.fftn, fft.ifftn, |
|
fft.rfft, fft.irfft, |
|
fft.rfft2, fft.irfft2, |
|
fft.rfftn, fft.irfftn, |
|
fft.hfft, fft.ihfft, |
|
fft.hfft2, fft.ihfft2, |
|
fft.hfftn, fft.ihfftn,]) |
|
def test_array_like(self, xp, op): |
|
x = [[[1.0, 1.0], [1.0, 1.0]], |
|
[[1.0, 1.0], [1.0, 1.0]], |
|
[[1.0, 1.0], [1.0, 1.0]]] |
|
xp_assert_close(op(x), op(xp.asarray(x))) |
|
|
|
|
|
@skip_xp_backends(np_only=True) |
|
@pytest.mark.parametrize( |
|
"dtype", |
|
[np.float32, np.float64, np.longdouble, |
|
np.complex64, np.complex128, np.clongdouble]) |
|
@pytest.mark.parametrize("order", ["F", 'non-contiguous']) |
|
@pytest.mark.parametrize( |
|
"fft", |
|
[fft.fft, fft.fft2, fft.fftn, |
|
fft.ifft, fft.ifft2, fft.ifftn]) |
|
def test_fft_with_order(dtype, order, fft): |
|
|
|
|
|
rng = np.random.RandomState(42) |
|
X = rng.rand(8, 7, 13).astype(dtype, copy=False) |
|
if order == 'F': |
|
Y = np.asfortranarray(X) |
|
else: |
|
|
|
Y = X[::-1] |
|
X = np.ascontiguousarray(X[::-1]) |
|
|
|
if fft.__name__.endswith('fft'): |
|
for axis in range(3): |
|
X_res = fft(X, axis=axis) |
|
Y_res = fft(Y, axis=axis) |
|
assert_array_almost_equal(X_res, Y_res) |
|
elif fft.__name__.endswith(('fft2', 'fftn')): |
|
axes = [(0, 1), (1, 2), (0, 2)] |
|
if fft.__name__.endswith('fftn'): |
|
axes.extend([(0,), (1,), (2,), None]) |
|
for ax in axes: |
|
X_res = fft(X, axes=ax) |
|
Y_res = fft(Y, axes=ax) |
|
assert_array_almost_equal(X_res, Y_res) |
|
else: |
|
raise ValueError |
|
|
|
|
|
@skip_xp_backends(cpu_only=True) |
|
class TestFFTThreadSafe: |
|
threads = 16 |
|
input_shape = (800, 200) |
|
|
|
def _test_mtsame(self, func, *args, xp=None): |
|
def worker(args, q): |
|
q.put(func(*args)) |
|
|
|
q = queue.Queue() |
|
expected = func(*args) |
|
|
|
|
|
t = [threading.Thread(target=worker, args=(args, q)) |
|
for i in range(self.threads)] |
|
[x.start() for x in t] |
|
|
|
[x.join() for x in t] |
|
|
|
|
|
for i in range(self.threads): |
|
xp_assert_equal( |
|
q.get(timeout=5), expected, |
|
err_msg='Function returned wrong value in multithreaded context' |
|
) |
|
|
|
def test_fft(self, xp): |
|
a = xp.ones(self.input_shape, dtype=xp.complex128) |
|
self._test_mtsame(fft.fft, a, xp=xp) |
|
|
|
def test_ifft(self, xp): |
|
a = xp.full(self.input_shape, 1+0j) |
|
self._test_mtsame(fft.ifft, a, xp=xp) |
|
|
|
def test_rfft(self, xp): |
|
a = xp.ones(self.input_shape) |
|
self._test_mtsame(fft.rfft, a, xp=xp) |
|
|
|
def test_irfft(self, xp): |
|
a = xp.full(self.input_shape, 1+0j) |
|
self._test_mtsame(fft.irfft, a, xp=xp) |
|
|
|
def test_hfft(self, xp): |
|
a = xp.ones(self.input_shape, dtype=xp.complex64) |
|
self._test_mtsame(fft.hfft, a, xp=xp) |
|
|
|
def test_ihfft(self, xp): |
|
a = xp.ones(self.input_shape) |
|
self._test_mtsame(fft.ihfft, a, xp=xp) |
|
|
|
|
|
@skip_xp_backends(np_only=True) |
|
@pytest.mark.parametrize("func", [fft.fft, fft.ifft, fft.rfft, fft.irfft]) |
|
def test_multiprocess(func): |
|
|
|
|
|
with multiprocessing.Pool(2) as p: |
|
res = p.map(func, [np.ones(100) for _ in range(4)]) |
|
|
|
expect = func(np.ones(100)) |
|
for x in res: |
|
assert_allclose(x, expect) |
|
|
|
|
|
class TestIRFFTN: |
|
|
|
def test_not_last_axis_success(self, xp): |
|
ar, ai = np.random.random((2, 16, 8, 32)) |
|
a = ar + 1j*ai |
|
a = xp.asarray(a) |
|
|
|
axes = (-2,) |
|
|
|
|
|
fft.irfftn(a, axes=axes) |
|
|
|
|
|
@pytest.mark.parametrize("func", [fft.fft, fft.ifft, fft.rfft, fft.irfft, |
|
fft.fftn, fft.ifftn, |
|
fft.rfftn, fft.irfftn, fft.hfft, fft.ihfft]) |
|
def test_non_standard_params(func, xp): |
|
if func in [fft.rfft, fft.rfftn, fft.ihfft]: |
|
dtype = xp.float64 |
|
else: |
|
dtype = xp.complex128 |
|
|
|
if xp.__name__ != 'numpy': |
|
x = xp.asarray([1, 2, 3], dtype=dtype) |
|
|
|
func(x) |
|
assert_raises(ValueError, func, x, workers=2) |
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", ['float32', 'float64']) |
|
@pytest.mark.parametrize("func", [fft.fft, fft.ifft, fft.irfft, |
|
fft.fftn, fft.ifftn, |
|
fft.irfftn, fft.hfft,]) |
|
def test_real_input(func, dtype, xp): |
|
x = xp.asarray([1, 2, 3], dtype=getattr(xp, dtype)) |
|
|
|
func(x) |
|
|