|
from datetime import ( |
|
date, |
|
datetime, |
|
) |
|
import itertools |
|
import re |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from pandas._libs.internals import BlockPlacement |
|
from pandas.compat import IS64 |
|
import pandas.util._test_decorators as td |
|
|
|
from pandas.core.dtypes.common import is_scalar |
|
|
|
import pandas as pd |
|
from pandas import ( |
|
Categorical, |
|
DataFrame, |
|
DatetimeIndex, |
|
Index, |
|
IntervalIndex, |
|
Series, |
|
Timedelta, |
|
Timestamp, |
|
period_range, |
|
) |
|
import pandas._testing as tm |
|
import pandas.core.algorithms as algos |
|
from pandas.core.arrays import ( |
|
DatetimeArray, |
|
SparseArray, |
|
TimedeltaArray, |
|
) |
|
from pandas.core.internals import ( |
|
BlockManager, |
|
SingleBlockManager, |
|
make_block, |
|
) |
|
from pandas.core.internals.blocks import ( |
|
ensure_block_shape, |
|
maybe_coerce_values, |
|
new_block, |
|
) |
|
|
|
|
|
|
|
pytestmark = td.skip_array_manager_invalid_test |
|
|
|
|
|
@pytest.fixture(params=[new_block, make_block]) |
|
def block_maker(request): |
|
""" |
|
Fixture to test both the internal new_block and pseudo-public make_block. |
|
""" |
|
return request.param |
|
|
|
|
|
@pytest.fixture |
|
def mgr(): |
|
return create_mgr( |
|
"a: f8; b: object; c: f8; d: object; e: f8;" |
|
"f: bool; g: i8; h: complex; i: datetime-1; j: datetime-2;" |
|
"k: M8[ns, US/Eastern]; l: M8[ns, CET];" |
|
) |
|
|
|
|
|
def assert_block_equal(left, right): |
|
tm.assert_numpy_array_equal(left.values, right.values) |
|
assert left.dtype == right.dtype |
|
assert isinstance(left.mgr_locs, BlockPlacement) |
|
assert isinstance(right.mgr_locs, BlockPlacement) |
|
tm.assert_numpy_array_equal(left.mgr_locs.as_array, right.mgr_locs.as_array) |
|
|
|
|
|
def get_numeric_mat(shape): |
|
arr = np.arange(shape[0]) |
|
return np.lib.stride_tricks.as_strided( |
|
x=arr, shape=shape, strides=(arr.itemsize,) + (0,) * (len(shape) - 1) |
|
).copy() |
|
|
|
|
|
N = 10 |
|
|
|
|
|
def create_block(typestr, placement, item_shape=None, num_offset=0, maker=new_block): |
|
""" |
|
Supported typestr: |
|
|
|
* float, f8, f4, f2 |
|
* int, i8, i4, i2, i1 |
|
* uint, u8, u4, u2, u1 |
|
* complex, c16, c8 |
|
* bool |
|
* object, string, O |
|
* datetime, dt, M8[ns], M8[ns, tz] |
|
* timedelta, td, m8[ns] |
|
* sparse (SparseArray with fill_value=0.0) |
|
* sparse_na (SparseArray with fill_value=np.nan) |
|
* category, category2 |
|
|
|
""" |
|
placement = BlockPlacement(placement) |
|
num_items = len(placement) |
|
|
|
if item_shape is None: |
|
item_shape = (N,) |
|
|
|
shape = (num_items,) + item_shape |
|
|
|
mat = get_numeric_mat(shape) |
|
|
|
if typestr in ( |
|
"float", |
|
"f8", |
|
"f4", |
|
"f2", |
|
"int", |
|
"i8", |
|
"i4", |
|
"i2", |
|
"i1", |
|
"uint", |
|
"u8", |
|
"u4", |
|
"u2", |
|
"u1", |
|
): |
|
values = mat.astype(typestr) + num_offset |
|
elif typestr in ("complex", "c16", "c8"): |
|
values = 1.0j * (mat.astype(typestr) + num_offset) |
|
elif typestr in ("object", "string", "O"): |
|
values = np.reshape([f"A{i:d}" for i in mat.ravel() + num_offset], shape) |
|
elif typestr in ("b", "bool"): |
|
values = np.ones(shape, dtype=np.bool_) |
|
elif typestr in ("datetime", "dt", "M8[ns]"): |
|
values = (mat * 1e9).astype("M8[ns]") |
|
elif typestr.startswith("M8[ns"): |
|
|
|
m = re.search(r"M8\[ns,\s*(\w+\/?\w*)\]", typestr) |
|
assert m is not None, f"incompatible typestr -> {typestr}" |
|
tz = m.groups()[0] |
|
assert num_items == 1, "must have only 1 num items for a tz-aware" |
|
values = DatetimeIndex(np.arange(N) * 10**9, tz=tz)._data |
|
values = ensure_block_shape(values, ndim=len(shape)) |
|
elif typestr in ("timedelta", "td", "m8[ns]"): |
|
values = (mat * 1).astype("m8[ns]") |
|
elif typestr in ("category",): |
|
values = Categorical([1, 1, 2, 2, 3, 3, 3, 3, 4, 4]) |
|
elif typestr in ("category2",): |
|
values = Categorical(["a", "a", "a", "a", "b", "b", "c", "c", "c", "d"]) |
|
elif typestr in ("sparse", "sparse_na"): |
|
if shape[-1] != 10: |
|
|
|
raise NotImplementedError |
|
|
|
assert all(s == 1 for s in shape[:-1]) |
|
if typestr.endswith("_na"): |
|
fill_value = np.nan |
|
else: |
|
fill_value = 0.0 |
|
values = SparseArray( |
|
[fill_value, fill_value, 1, 2, 3, fill_value, 4, 5, fill_value, 6], |
|
fill_value=fill_value, |
|
) |
|
arr = values.sp_values.view() |
|
arr += num_offset - 1 |
|
else: |
|
raise ValueError(f'Unsupported typestr: "{typestr}"') |
|
|
|
values = maybe_coerce_values(values) |
|
return maker(values, placement=placement, ndim=len(shape)) |
|
|
|
|
|
def create_single_mgr(typestr, num_rows=None): |
|
if num_rows is None: |
|
num_rows = N |
|
|
|
return SingleBlockManager( |
|
create_block(typestr, placement=slice(0, num_rows), item_shape=()), |
|
Index(np.arange(num_rows)), |
|
) |
|
|
|
|
|
def create_mgr(descr, item_shape=None): |
|
""" |
|
Construct BlockManager from string description. |
|
|
|
String description syntax looks similar to np.matrix initializer. It looks |
|
like this:: |
|
|
|
a,b,c: f8; d,e,f: i8 |
|
|
|
Rules are rather simple: |
|
|
|
* see list of supported datatypes in `create_block` method |
|
* components are semicolon-separated |
|
* each component is `NAME,NAME,NAME: DTYPE_ID` |
|
* whitespace around colons & semicolons are removed |
|
* components with same DTYPE_ID are combined into single block |
|
* to force multiple blocks with same dtype, use '-SUFFIX':: |
|
|
|
'a:f8-1; b:f8-2; c:f8-foobar' |
|
|
|
""" |
|
if item_shape is None: |
|
item_shape = (N,) |
|
|
|
offset = 0 |
|
mgr_items = [] |
|
block_placements = {} |
|
for d in descr.split(";"): |
|
d = d.strip() |
|
if not len(d): |
|
continue |
|
names, blockstr = d.partition(":")[::2] |
|
blockstr = blockstr.strip() |
|
names = names.strip().split(",") |
|
|
|
mgr_items.extend(names) |
|
placement = list(np.arange(len(names)) + offset) |
|
try: |
|
block_placements[blockstr].extend(placement) |
|
except KeyError: |
|
block_placements[blockstr] = placement |
|
offset += len(names) |
|
|
|
mgr_items = Index(mgr_items) |
|
|
|
blocks = [] |
|
num_offset = 0 |
|
for blockstr, placement in block_placements.items(): |
|
typestr = blockstr.split("-")[0] |
|
blocks.append( |
|
create_block( |
|
typestr, placement, item_shape=item_shape, num_offset=num_offset |
|
) |
|
) |
|
num_offset += len(placement) |
|
|
|
sblocks = sorted(blocks, key=lambda b: b.mgr_locs[0]) |
|
return BlockManager( |
|
tuple(sblocks), |
|
[mgr_items] + [Index(np.arange(n)) for n in item_shape], |
|
) |
|
|
|
|
|
@pytest.fixture |
|
def fblock(): |
|
return create_block("float", [0, 2, 4]) |
|
|
|
|
|
class TestBlock: |
|
def test_constructor(self): |
|
int32block = create_block("i4", [0]) |
|
assert int32block.dtype == np.int32 |
|
|
|
@pytest.mark.parametrize( |
|
"typ, data", |
|
[ |
|
["float", [0, 2, 4]], |
|
["complex", [7]], |
|
["object", [1, 3]], |
|
["bool", [5]], |
|
], |
|
) |
|
def test_pickle(self, typ, data): |
|
blk = create_block(typ, data) |
|
assert_block_equal(tm.round_trip_pickle(blk), blk) |
|
|
|
def test_mgr_locs(self, fblock): |
|
assert isinstance(fblock.mgr_locs, BlockPlacement) |
|
tm.assert_numpy_array_equal( |
|
fblock.mgr_locs.as_array, np.array([0, 2, 4], dtype=np.intp) |
|
) |
|
|
|
def test_attrs(self, fblock): |
|
assert fblock.shape == fblock.values.shape |
|
assert fblock.dtype == fblock.values.dtype |
|
assert len(fblock) == len(fblock.values) |
|
|
|
def test_copy(self, fblock): |
|
cop = fblock.copy() |
|
assert cop is not fblock |
|
assert_block_equal(fblock, cop) |
|
|
|
def test_delete(self, fblock): |
|
newb = fblock.copy() |
|
locs = newb.mgr_locs |
|
nb = newb.delete(0)[0] |
|
assert newb.mgr_locs is locs |
|
|
|
assert nb is not newb |
|
|
|
tm.assert_numpy_array_equal( |
|
nb.mgr_locs.as_array, np.array([2, 4], dtype=np.intp) |
|
) |
|
assert not (newb.values[0] == 1).all() |
|
assert (nb.values[0] == 1).all() |
|
|
|
newb = fblock.copy() |
|
locs = newb.mgr_locs |
|
nb = newb.delete(1) |
|
assert len(nb) == 2 |
|
assert newb.mgr_locs is locs |
|
|
|
tm.assert_numpy_array_equal( |
|
nb[0].mgr_locs.as_array, np.array([0], dtype=np.intp) |
|
) |
|
tm.assert_numpy_array_equal( |
|
nb[1].mgr_locs.as_array, np.array([4], dtype=np.intp) |
|
) |
|
assert not (newb.values[1] == 2).all() |
|
assert (nb[1].values[0] == 2).all() |
|
|
|
newb = fblock.copy() |
|
nb = newb.delete(2) |
|
assert len(nb) == 1 |
|
tm.assert_numpy_array_equal( |
|
nb[0].mgr_locs.as_array, np.array([0, 2], dtype=np.intp) |
|
) |
|
assert (nb[0].values[1] == 1).all() |
|
|
|
newb = fblock.copy() |
|
|
|
with pytest.raises(IndexError, match=None): |
|
newb.delete(3) |
|
|
|
def test_delete_datetimelike(self): |
|
|
|
arr = np.arange(20, dtype="i8").reshape(5, 4).view("m8[ns]") |
|
df = DataFrame(arr) |
|
blk = df._mgr.blocks[0] |
|
assert isinstance(blk.values, TimedeltaArray) |
|
|
|
nb = blk.delete(1) |
|
assert len(nb) == 2 |
|
assert isinstance(nb[0].values, TimedeltaArray) |
|
assert isinstance(nb[1].values, TimedeltaArray) |
|
|
|
df = DataFrame(arr.view("M8[ns]")) |
|
blk = df._mgr.blocks[0] |
|
assert isinstance(blk.values, DatetimeArray) |
|
|
|
nb = blk.delete([1, 3]) |
|
assert len(nb) == 2 |
|
assert isinstance(nb[0].values, DatetimeArray) |
|
assert isinstance(nb[1].values, DatetimeArray) |
|
|
|
def test_split(self): |
|
|
|
values = np.random.default_rng(2).standard_normal((3, 4)) |
|
blk = new_block(values, placement=BlockPlacement([3, 1, 6]), ndim=2) |
|
result = blk._split() |
|
|
|
|
|
values[:] = -9999 |
|
assert (blk.values == -9999).all() |
|
|
|
assert len(result) == 3 |
|
expected = [ |
|
new_block(values[[0]], placement=BlockPlacement([3]), ndim=2), |
|
new_block(values[[1]], placement=BlockPlacement([1]), ndim=2), |
|
new_block(values[[2]], placement=BlockPlacement([6]), ndim=2), |
|
] |
|
for res, exp in zip(result, expected): |
|
assert_block_equal(res, exp) |
|
|
|
|
|
class TestBlockManager: |
|
def test_attrs(self): |
|
mgr = create_mgr("a,b,c: f8-1; d,e,f: f8-2") |
|
assert mgr.nblocks == 2 |
|
assert len(mgr) == 6 |
|
|
|
def test_duplicate_ref_loc_failure(self): |
|
tmp_mgr = create_mgr("a:bool; a: f8") |
|
|
|
axes, blocks = tmp_mgr.axes, tmp_mgr.blocks |
|
|
|
blocks[0].mgr_locs = BlockPlacement(np.array([0])) |
|
blocks[1].mgr_locs = BlockPlacement(np.array([0])) |
|
|
|
|
|
|
|
msg = "Gaps in blk ref_locs" |
|
|
|
with pytest.raises(AssertionError, match=msg): |
|
mgr = BlockManager(blocks, axes) |
|
mgr._rebuild_blknos_and_blklocs() |
|
|
|
blocks[0].mgr_locs = BlockPlacement(np.array([0])) |
|
blocks[1].mgr_locs = BlockPlacement(np.array([1])) |
|
mgr = BlockManager(blocks, axes) |
|
mgr.iget(1) |
|
|
|
def test_pickle(self, mgr): |
|
mgr2 = tm.round_trip_pickle(mgr) |
|
tm.assert_frame_equal( |
|
DataFrame._from_mgr(mgr, axes=mgr.axes), |
|
DataFrame._from_mgr(mgr2, axes=mgr2.axes), |
|
) |
|
|
|
|
|
assert hasattr(mgr2, "_is_consolidated") |
|
assert hasattr(mgr2, "_known_consolidated") |
|
|
|
|
|
assert not mgr2._is_consolidated |
|
assert not mgr2._known_consolidated |
|
|
|
@pytest.mark.parametrize("mgr_string", ["a,a,a:f8", "a: f8; a: i8"]) |
|
def test_non_unique_pickle(self, mgr_string): |
|
mgr = create_mgr(mgr_string) |
|
mgr2 = tm.round_trip_pickle(mgr) |
|
tm.assert_frame_equal( |
|
DataFrame._from_mgr(mgr, axes=mgr.axes), |
|
DataFrame._from_mgr(mgr2, axes=mgr2.axes), |
|
) |
|
|
|
def test_categorical_block_pickle(self): |
|
mgr = create_mgr("a: category") |
|
mgr2 = tm.round_trip_pickle(mgr) |
|
tm.assert_frame_equal( |
|
DataFrame._from_mgr(mgr, axes=mgr.axes), |
|
DataFrame._from_mgr(mgr2, axes=mgr2.axes), |
|
) |
|
|
|
smgr = create_single_mgr("category") |
|
smgr2 = tm.round_trip_pickle(smgr) |
|
tm.assert_series_equal( |
|
Series()._constructor_from_mgr(smgr, axes=smgr.axes), |
|
Series()._constructor_from_mgr(smgr2, axes=smgr2.axes), |
|
) |
|
|
|
def test_iget(self): |
|
cols = Index(list("abc")) |
|
values = np.random.default_rng(2).random((3, 3)) |
|
block = new_block( |
|
values=values.copy(), |
|
placement=BlockPlacement(np.arange(3, dtype=np.intp)), |
|
ndim=values.ndim, |
|
) |
|
mgr = BlockManager(blocks=(block,), axes=[cols, Index(np.arange(3))]) |
|
|
|
tm.assert_almost_equal(mgr.iget(0).internal_values(), values[0]) |
|
tm.assert_almost_equal(mgr.iget(1).internal_values(), values[1]) |
|
tm.assert_almost_equal(mgr.iget(2).internal_values(), values[2]) |
|
|
|
def test_set(self): |
|
mgr = create_mgr("a,b,c: int", item_shape=(3,)) |
|
|
|
mgr.insert(len(mgr.items), "d", np.array(["foo"] * 3)) |
|
mgr.iset(1, np.array(["bar"] * 3)) |
|
tm.assert_numpy_array_equal(mgr.iget(0).internal_values(), np.array([0] * 3)) |
|
tm.assert_numpy_array_equal( |
|
mgr.iget(1).internal_values(), np.array(["bar"] * 3, dtype=np.object_) |
|
) |
|
tm.assert_numpy_array_equal(mgr.iget(2).internal_values(), np.array([2] * 3)) |
|
tm.assert_numpy_array_equal( |
|
mgr.iget(3).internal_values(), np.array(["foo"] * 3, dtype=np.object_) |
|
) |
|
|
|
def test_set_change_dtype(self, mgr): |
|
mgr.insert(len(mgr.items), "baz", np.zeros(N, dtype=bool)) |
|
|
|
mgr.iset(mgr.items.get_loc("baz"), np.repeat("foo", N)) |
|
idx = mgr.items.get_loc("baz") |
|
assert mgr.iget(idx).dtype == np.object_ |
|
|
|
mgr2 = mgr.consolidate() |
|
mgr2.iset(mgr2.items.get_loc("baz"), np.repeat("foo", N)) |
|
idx = mgr2.items.get_loc("baz") |
|
assert mgr2.iget(idx).dtype == np.object_ |
|
|
|
mgr2.insert( |
|
len(mgr2.items), |
|
"quux", |
|
np.random.default_rng(2).standard_normal(N).astype(int), |
|
) |
|
idx = mgr2.items.get_loc("quux") |
|
assert mgr2.iget(idx).dtype == np.dtype(int) |
|
|
|
mgr2.iset( |
|
mgr2.items.get_loc("quux"), np.random.default_rng(2).standard_normal(N) |
|
) |
|
assert mgr2.iget(idx).dtype == np.float64 |
|
|
|
def test_copy(self, mgr): |
|
cp = mgr.copy(deep=False) |
|
for blk, cp_blk in zip(mgr.blocks, cp.blocks): |
|
|
|
tm.assert_equal(cp_blk.values, blk.values) |
|
if isinstance(blk.values, np.ndarray): |
|
assert cp_blk.values.base is blk.values.base |
|
else: |
|
|
|
assert cp_blk.values._ndarray.base is blk.values._ndarray.base |
|
|
|
|
|
|
|
mgr._consolidate_inplace() |
|
cp = mgr.copy(deep=True) |
|
for blk, cp_blk in zip(mgr.blocks, cp.blocks): |
|
bvals = blk.values |
|
cpvals = cp_blk.values |
|
|
|
tm.assert_equal(cpvals, bvals) |
|
|
|
if isinstance(cpvals, np.ndarray): |
|
lbase = cpvals.base |
|
rbase = bvals.base |
|
else: |
|
lbase = cpvals._ndarray.base |
|
rbase = bvals._ndarray.base |
|
|
|
|
|
|
|
if isinstance(cpvals, DatetimeArray): |
|
assert (lbase is None and rbase is None) or (lbase is not rbase) |
|
elif not isinstance(cpvals, np.ndarray): |
|
assert lbase is not rbase |
|
else: |
|
assert lbase is None and rbase is None |
|
|
|
def test_sparse(self): |
|
mgr = create_mgr("a: sparse-1; b: sparse-2") |
|
assert mgr.as_array().dtype == np.float64 |
|
|
|
def test_sparse_mixed(self): |
|
mgr = create_mgr("a: sparse-1; b: sparse-2; c: f8") |
|
assert len(mgr.blocks) == 3 |
|
assert isinstance(mgr, BlockManager) |
|
|
|
@pytest.mark.parametrize( |
|
"mgr_string, dtype", |
|
[("c: f4; d: f2", np.float32), ("c: f4; d: f2; e: f8", np.float64)], |
|
) |
|
def test_as_array_float(self, mgr_string, dtype): |
|
mgr = create_mgr(mgr_string) |
|
assert mgr.as_array().dtype == dtype |
|
|
|
@pytest.mark.parametrize( |
|
"mgr_string, dtype", |
|
[ |
|
("a: bool-1; b: bool-2", np.bool_), |
|
("a: i8-1; b: i8-2; c: i4; d: i2; e: u1", np.int64), |
|
("c: i4; d: i2; e: u1", np.int32), |
|
], |
|
) |
|
def test_as_array_int_bool(self, mgr_string, dtype): |
|
mgr = create_mgr(mgr_string) |
|
assert mgr.as_array().dtype == dtype |
|
|
|
def test_as_array_datetime(self): |
|
mgr = create_mgr("h: datetime-1; g: datetime-2") |
|
assert mgr.as_array().dtype == "M8[ns]" |
|
|
|
def test_as_array_datetime_tz(self): |
|
mgr = create_mgr("h: M8[ns, US/Eastern]; g: M8[ns, CET]") |
|
assert mgr.iget(0).dtype == "datetime64[ns, US/Eastern]" |
|
assert mgr.iget(1).dtype == "datetime64[ns, CET]" |
|
assert mgr.as_array().dtype == "object" |
|
|
|
@pytest.mark.parametrize("t", ["float16", "float32", "float64", "int32", "int64"]) |
|
def test_astype(self, t): |
|
|
|
mgr = create_mgr("c: f4; d: f2; e: f8") |
|
|
|
t = np.dtype(t) |
|
tmgr = mgr.astype(t) |
|
assert tmgr.iget(0).dtype.type == t |
|
assert tmgr.iget(1).dtype.type == t |
|
assert tmgr.iget(2).dtype.type == t |
|
|
|
|
|
mgr = create_mgr("a,b: object; c: bool; d: datetime; e: f4; f: f2; g: f8") |
|
|
|
t = np.dtype(t) |
|
tmgr = mgr.astype(t, errors="ignore") |
|
assert tmgr.iget(2).dtype.type == t |
|
assert tmgr.iget(4).dtype.type == t |
|
assert tmgr.iget(5).dtype.type == t |
|
assert tmgr.iget(6).dtype.type == t |
|
|
|
assert tmgr.iget(0).dtype.type == np.object_ |
|
assert tmgr.iget(1).dtype.type == np.object_ |
|
if t != np.int64: |
|
assert tmgr.iget(3).dtype.type == np.datetime64 |
|
else: |
|
assert tmgr.iget(3).dtype.type == t |
|
|
|
def test_convert(self, using_infer_string): |
|
def _compare(old_mgr, new_mgr): |
|
"""compare the blocks, numeric compare ==, object don't""" |
|
old_blocks = set(old_mgr.blocks) |
|
new_blocks = set(new_mgr.blocks) |
|
assert len(old_blocks) == len(new_blocks) |
|
|
|
|
|
for b in old_blocks: |
|
found = False |
|
for nb in new_blocks: |
|
if (b.values == nb.values).all(): |
|
found = True |
|
break |
|
assert found |
|
|
|
for b in new_blocks: |
|
found = False |
|
for ob in old_blocks: |
|
if (b.values == ob.values).all(): |
|
found = True |
|
break |
|
assert found |
|
|
|
|
|
mgr = create_mgr("f: i8; g: f8") |
|
new_mgr = mgr.convert(copy=True) |
|
_compare(mgr, new_mgr) |
|
|
|
|
|
mgr = create_mgr("a,b,foo: object; f: i8; g: f8") |
|
mgr.iset(0, np.array(["1"] * N, dtype=np.object_)) |
|
mgr.iset(1, np.array(["2."] * N, dtype=np.object_)) |
|
mgr.iset(2, np.array(["foo."] * N, dtype=np.object_)) |
|
new_mgr = mgr.convert(copy=True) |
|
dtype = "string[pyarrow_numpy]" if using_infer_string else np.object_ |
|
assert new_mgr.iget(0).dtype == dtype |
|
assert new_mgr.iget(1).dtype == dtype |
|
assert new_mgr.iget(2).dtype == dtype |
|
assert new_mgr.iget(3).dtype == np.int64 |
|
assert new_mgr.iget(4).dtype == np.float64 |
|
|
|
mgr = create_mgr( |
|
"a,b,foo: object; f: i4; bool: bool; dt: datetime; i: i8; g: f8; h: f2" |
|
) |
|
mgr.iset(0, np.array(["1"] * N, dtype=np.object_)) |
|
mgr.iset(1, np.array(["2."] * N, dtype=np.object_)) |
|
mgr.iset(2, np.array(["foo."] * N, dtype=np.object_)) |
|
new_mgr = mgr.convert(copy=True) |
|
assert new_mgr.iget(0).dtype == dtype |
|
assert new_mgr.iget(1).dtype == dtype |
|
assert new_mgr.iget(2).dtype == dtype |
|
assert new_mgr.iget(3).dtype == np.int32 |
|
assert new_mgr.iget(4).dtype == np.bool_ |
|
assert new_mgr.iget(5).dtype.type, np.datetime64 |
|
assert new_mgr.iget(6).dtype == np.int64 |
|
assert new_mgr.iget(7).dtype == np.float64 |
|
assert new_mgr.iget(8).dtype == np.float16 |
|
|
|
def test_interleave(self): |
|
|
|
for dtype in ["f8", "i8", "object", "bool", "complex", "M8[ns]", "m8[ns]"]: |
|
mgr = create_mgr(f"a: {dtype}") |
|
assert mgr.as_array().dtype == dtype |
|
mgr = create_mgr(f"a: {dtype}; b: {dtype}") |
|
assert mgr.as_array().dtype == dtype |
|
|
|
@pytest.mark.parametrize( |
|
"mgr_string, dtype", |
|
[ |
|
("a: category", "i8"), |
|
("a: category; b: category", "i8"), |
|
("a: category; b: category2", "object"), |
|
("a: category2", "object"), |
|
("a: category2; b: category2", "object"), |
|
("a: f8", "f8"), |
|
("a: f8; b: i8", "f8"), |
|
("a: f4; b: i8", "f8"), |
|
("a: f4; b: i8; d: object", "object"), |
|
("a: bool; b: i8", "object"), |
|
("a: complex", "complex"), |
|
("a: f8; b: category", "object"), |
|
("a: M8[ns]; b: category", "object"), |
|
("a: M8[ns]; b: bool", "object"), |
|
("a: M8[ns]; b: i8", "object"), |
|
("a: m8[ns]; b: bool", "object"), |
|
("a: m8[ns]; b: i8", "object"), |
|
("a: M8[ns]; b: m8[ns]", "object"), |
|
], |
|
) |
|
def test_interleave_dtype(self, mgr_string, dtype): |
|
|
|
mgr = create_mgr("a: category") |
|
assert mgr.as_array().dtype == "i8" |
|
mgr = create_mgr("a: category; b: category2") |
|
assert mgr.as_array().dtype == "object" |
|
mgr = create_mgr("a: category2") |
|
assert mgr.as_array().dtype == "object" |
|
|
|
|
|
mgr = create_mgr("a: f8") |
|
assert mgr.as_array().dtype == "f8" |
|
mgr = create_mgr("a: f8; b: i8") |
|
assert mgr.as_array().dtype == "f8" |
|
mgr = create_mgr("a: f4; b: i8") |
|
assert mgr.as_array().dtype == "f8" |
|
mgr = create_mgr("a: f4; b: i8; d: object") |
|
assert mgr.as_array().dtype == "object" |
|
mgr = create_mgr("a: bool; b: i8") |
|
assert mgr.as_array().dtype == "object" |
|
mgr = create_mgr("a: complex") |
|
assert mgr.as_array().dtype == "complex" |
|
mgr = create_mgr("a: f8; b: category") |
|
assert mgr.as_array().dtype == "f8" |
|
mgr = create_mgr("a: M8[ns]; b: category") |
|
assert mgr.as_array().dtype == "object" |
|
mgr = create_mgr("a: M8[ns]; b: bool") |
|
assert mgr.as_array().dtype == "object" |
|
mgr = create_mgr("a: M8[ns]; b: i8") |
|
assert mgr.as_array().dtype == "object" |
|
mgr = create_mgr("a: m8[ns]; b: bool") |
|
assert mgr.as_array().dtype == "object" |
|
mgr = create_mgr("a: m8[ns]; b: i8") |
|
assert mgr.as_array().dtype == "object" |
|
mgr = create_mgr("a: M8[ns]; b: m8[ns]") |
|
assert mgr.as_array().dtype == "object" |
|
|
|
def test_consolidate_ordering_issues(self, mgr): |
|
mgr.iset(mgr.items.get_loc("f"), np.random.default_rng(2).standard_normal(N)) |
|
mgr.iset(mgr.items.get_loc("d"), np.random.default_rng(2).standard_normal(N)) |
|
mgr.iset(mgr.items.get_loc("b"), np.random.default_rng(2).standard_normal(N)) |
|
mgr.iset(mgr.items.get_loc("g"), np.random.default_rng(2).standard_normal(N)) |
|
mgr.iset(mgr.items.get_loc("h"), np.random.default_rng(2).standard_normal(N)) |
|
|
|
|
|
cons = mgr.consolidate() |
|
assert cons.nblocks == 4 |
|
cons = mgr.consolidate().get_numeric_data() |
|
assert cons.nblocks == 1 |
|
assert isinstance(cons.blocks[0].mgr_locs, BlockPlacement) |
|
tm.assert_numpy_array_equal( |
|
cons.blocks[0].mgr_locs.as_array, np.arange(len(cons.items), dtype=np.intp) |
|
) |
|
|
|
def test_reindex_items(self): |
|
|
|
mgr = create_mgr("a: f8; b: i8; c: f8; d: i8; e: f8; f: bool; g: f8-2") |
|
|
|
reindexed = mgr.reindex_axis(["g", "c", "a", "d"], axis=0) |
|
|
|
|
|
assert not reindexed.is_consolidated() |
|
|
|
tm.assert_index_equal(reindexed.items, Index(["g", "c", "a", "d"])) |
|
tm.assert_almost_equal( |
|
mgr.iget(6).internal_values(), reindexed.iget(0).internal_values() |
|
) |
|
tm.assert_almost_equal( |
|
mgr.iget(2).internal_values(), reindexed.iget(1).internal_values() |
|
) |
|
tm.assert_almost_equal( |
|
mgr.iget(0).internal_values(), reindexed.iget(2).internal_values() |
|
) |
|
tm.assert_almost_equal( |
|
mgr.iget(3).internal_values(), reindexed.iget(3).internal_values() |
|
) |
|
|
|
def test_get_numeric_data(self, using_copy_on_write): |
|
mgr = create_mgr( |
|
"int: int; float: float; complex: complex;" |
|
"str: object; bool: bool; obj: object; dt: datetime", |
|
item_shape=(3,), |
|
) |
|
mgr.iset(5, np.array([1, 2, 3], dtype=np.object_)) |
|
|
|
numeric = mgr.get_numeric_data() |
|
tm.assert_index_equal(numeric.items, Index(["int", "float", "complex", "bool"])) |
|
tm.assert_almost_equal( |
|
mgr.iget(mgr.items.get_loc("float")).internal_values(), |
|
numeric.iget(numeric.items.get_loc("float")).internal_values(), |
|
) |
|
|
|
|
|
numeric.iset( |
|
numeric.items.get_loc("float"), |
|
np.array([100.0, 200.0, 300.0]), |
|
inplace=True, |
|
) |
|
if using_copy_on_write: |
|
tm.assert_almost_equal( |
|
mgr.iget(mgr.items.get_loc("float")).internal_values(), |
|
np.array([1.0, 1.0, 1.0]), |
|
) |
|
else: |
|
tm.assert_almost_equal( |
|
mgr.iget(mgr.items.get_loc("float")).internal_values(), |
|
np.array([100.0, 200.0, 300.0]), |
|
) |
|
|
|
def test_get_bool_data(self, using_copy_on_write): |
|
mgr = create_mgr( |
|
"int: int; float: float; complex: complex;" |
|
"str: object; bool: bool; obj: object; dt: datetime", |
|
item_shape=(3,), |
|
) |
|
mgr.iset(6, np.array([True, False, True], dtype=np.object_)) |
|
|
|
bools = mgr.get_bool_data() |
|
tm.assert_index_equal(bools.items, Index(["bool"])) |
|
tm.assert_almost_equal( |
|
mgr.iget(mgr.items.get_loc("bool")).internal_values(), |
|
bools.iget(bools.items.get_loc("bool")).internal_values(), |
|
) |
|
|
|
bools.iset(0, np.array([True, False, True]), inplace=True) |
|
if using_copy_on_write: |
|
tm.assert_numpy_array_equal( |
|
mgr.iget(mgr.items.get_loc("bool")).internal_values(), |
|
np.array([True, True, True]), |
|
) |
|
else: |
|
tm.assert_numpy_array_equal( |
|
mgr.iget(mgr.items.get_loc("bool")).internal_values(), |
|
np.array([True, False, True]), |
|
) |
|
|
|
def test_unicode_repr_doesnt_raise(self): |
|
repr(create_mgr("b,\u05d0: object")) |
|
|
|
@pytest.mark.parametrize( |
|
"mgr_string", ["a,b,c: i8-1; d,e,f: i8-2", "a,a,a: i8-1; b,b,b: i8-2"] |
|
) |
|
def test_equals(self, mgr_string): |
|
|
|
bm1 = create_mgr(mgr_string) |
|
bm2 = BlockManager(bm1.blocks[::-1], bm1.axes) |
|
assert bm1.equals(bm2) |
|
|
|
@pytest.mark.parametrize( |
|
"mgr_string", |
|
[ |
|
"a:i8;b:f8", |
|
"a:i8;b:f8;c:c8;d:b", |
|
"a:i8;e:dt;f:td;g:string", |
|
"a:i8;b:category;c:category2", |
|
"c:sparse;d:sparse_na;b:f8", |
|
], |
|
) |
|
def test_equals_block_order_different_dtypes(self, mgr_string): |
|
|
|
bm = create_mgr(mgr_string) |
|
block_perms = itertools.permutations(bm.blocks) |
|
for bm_perm in block_perms: |
|
bm_this = BlockManager(tuple(bm_perm), bm.axes) |
|
assert bm.equals(bm_this) |
|
assert bm_this.equals(bm) |
|
|
|
def test_single_mgr_ctor(self): |
|
mgr = create_single_mgr("f8", num_rows=5) |
|
assert mgr.external_values().tolist() == [0.0, 1.0, 2.0, 3.0, 4.0] |
|
|
|
@pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0]) |
|
def test_validate_bool_args(self, value): |
|
bm1 = create_mgr("a,b,c: i8-1; d,e,f: i8-2") |
|
|
|
msg = ( |
|
'For argument "inplace" expected type bool, ' |
|
f"received type {type(value).__name__}." |
|
) |
|
with pytest.raises(ValueError, match=msg): |
|
bm1.replace_list([1], [2], inplace=value) |
|
|
|
def test_iset_split_block(self): |
|
bm = create_mgr("a,b,c: i8; d: f8") |
|
bm._iset_split_block(0, np.array([0])) |
|
tm.assert_numpy_array_equal( |
|
bm.blklocs, np.array([0, 0, 1, 0], dtype="int64" if IS64 else "int32") |
|
) |
|
|
|
tm.assert_numpy_array_equal( |
|
bm.blknos, np.array([0, 0, 0, 1], dtype="int64" if IS64 else "int32") |
|
) |
|
assert len(bm.blocks) == 2 |
|
|
|
def test_iset_split_block_values(self): |
|
bm = create_mgr("a,b,c: i8; d: f8") |
|
bm._iset_split_block(0, np.array([0]), np.array([list(range(10))])) |
|
tm.assert_numpy_array_equal( |
|
bm.blklocs, np.array([0, 0, 1, 0], dtype="int64" if IS64 else "int32") |
|
) |
|
|
|
tm.assert_numpy_array_equal( |
|
bm.blknos, np.array([0, 2, 2, 1], dtype="int64" if IS64 else "int32") |
|
) |
|
assert len(bm.blocks) == 3 |
|
|
|
|
|
def _as_array(mgr): |
|
if mgr.ndim == 1: |
|
return mgr.external_values() |
|
return mgr.as_array().T |
|
|
|
|
|
class TestIndexing: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MANAGERS = [ |
|
create_single_mgr("f8", N), |
|
create_single_mgr("i8", N), |
|
|
|
create_mgr("a,b,c,d,e,f: f8", item_shape=(N,)), |
|
create_mgr("a,b,c,d,e,f: i8", item_shape=(N,)), |
|
create_mgr("a,b: f8; c,d: i8; e,f: string", item_shape=(N,)), |
|
create_mgr("a,b: f8; c,d: i8; e,f: f8", item_shape=(N,)), |
|
] |
|
|
|
@pytest.mark.parametrize("mgr", MANAGERS) |
|
def test_get_slice(self, mgr): |
|
def assert_slice_ok(mgr, axis, slobj): |
|
mat = _as_array(mgr) |
|
|
|
|
|
|
|
if isinstance(slobj, np.ndarray): |
|
ax = mgr.axes[axis] |
|
if len(ax) and len(slobj) and len(slobj) != len(ax): |
|
slobj = np.concatenate( |
|
[slobj, np.zeros(len(ax) - len(slobj), dtype=bool)] |
|
) |
|
|
|
if isinstance(slobj, slice): |
|
sliced = mgr.get_slice(slobj, axis=axis) |
|
elif ( |
|
mgr.ndim == 1 |
|
and axis == 0 |
|
and isinstance(slobj, np.ndarray) |
|
and slobj.dtype == bool |
|
): |
|
sliced = mgr.get_rows_with_mask(slobj) |
|
else: |
|
|
|
|
|
raise TypeError(slobj) |
|
|
|
mat_slobj = (slice(None),) * axis + (slobj,) |
|
tm.assert_numpy_array_equal( |
|
mat[mat_slobj], _as_array(sliced), check_dtype=False |
|
) |
|
tm.assert_index_equal(mgr.axes[axis][slobj], sliced.axes[axis]) |
|
|
|
assert mgr.ndim <= 2, mgr.ndim |
|
for ax in range(mgr.ndim): |
|
|
|
assert_slice_ok(mgr, ax, slice(None)) |
|
assert_slice_ok(mgr, ax, slice(3)) |
|
assert_slice_ok(mgr, ax, slice(100)) |
|
assert_slice_ok(mgr, ax, slice(1, 4)) |
|
assert_slice_ok(mgr, ax, slice(3, 0, -2)) |
|
|
|
if mgr.ndim < 2: |
|
|
|
|
|
|
|
assert_slice_ok(mgr, ax, np.ones(mgr.shape[ax], dtype=np.bool_)) |
|
assert_slice_ok(mgr, ax, np.zeros(mgr.shape[ax], dtype=np.bool_)) |
|
|
|
if mgr.shape[ax] >= 3: |
|
assert_slice_ok(mgr, ax, np.arange(mgr.shape[ax]) % 3 == 0) |
|
assert_slice_ok( |
|
mgr, ax, np.array([True, True, False], dtype=np.bool_) |
|
) |
|
|
|
@pytest.mark.parametrize("mgr", MANAGERS) |
|
def test_take(self, mgr): |
|
def assert_take_ok(mgr, axis, indexer): |
|
mat = _as_array(mgr) |
|
taken = mgr.take(indexer, axis) |
|
tm.assert_numpy_array_equal( |
|
np.take(mat, indexer, axis), _as_array(taken), check_dtype=False |
|
) |
|
tm.assert_index_equal(mgr.axes[axis].take(indexer), taken.axes[axis]) |
|
|
|
for ax in range(mgr.ndim): |
|
|
|
assert_take_ok(mgr, ax, indexer=np.array([], dtype=np.intp)) |
|
assert_take_ok(mgr, ax, indexer=np.array([0, 0, 0], dtype=np.intp)) |
|
assert_take_ok( |
|
mgr, ax, indexer=np.array(list(range(mgr.shape[ax])), dtype=np.intp) |
|
) |
|
|
|
if mgr.shape[ax] >= 3: |
|
assert_take_ok(mgr, ax, indexer=np.array([0, 1, 2], dtype=np.intp)) |
|
assert_take_ok(mgr, ax, indexer=np.array([-1, -2, -3], dtype=np.intp)) |
|
|
|
@pytest.mark.parametrize("mgr", MANAGERS) |
|
@pytest.mark.parametrize("fill_value", [None, np.nan, 100.0]) |
|
def test_reindex_axis(self, fill_value, mgr): |
|
def assert_reindex_axis_is_ok(mgr, axis, new_labels, fill_value): |
|
mat = _as_array(mgr) |
|
indexer = mgr.axes[axis].get_indexer_for(new_labels) |
|
|
|
reindexed = mgr.reindex_axis(new_labels, axis, fill_value=fill_value) |
|
tm.assert_numpy_array_equal( |
|
algos.take_nd(mat, indexer, axis, fill_value=fill_value), |
|
_as_array(reindexed), |
|
check_dtype=False, |
|
) |
|
tm.assert_index_equal(reindexed.axes[axis], new_labels) |
|
|
|
for ax in range(mgr.ndim): |
|
assert_reindex_axis_is_ok(mgr, ax, Index([]), fill_value) |
|
assert_reindex_axis_is_ok(mgr, ax, mgr.axes[ax], fill_value) |
|
assert_reindex_axis_is_ok(mgr, ax, mgr.axes[ax][[0, 0, 0]], fill_value) |
|
assert_reindex_axis_is_ok(mgr, ax, Index(["foo", "bar", "baz"]), fill_value) |
|
assert_reindex_axis_is_ok( |
|
mgr, ax, Index(["foo", mgr.axes[ax][0], "baz"]), fill_value |
|
) |
|
|
|
if mgr.shape[ax] >= 3: |
|
assert_reindex_axis_is_ok(mgr, ax, mgr.axes[ax][:-3], fill_value) |
|
assert_reindex_axis_is_ok(mgr, ax, mgr.axes[ax][-3::-1], fill_value) |
|
assert_reindex_axis_is_ok( |
|
mgr, ax, mgr.axes[ax][[0, 1, 2, 0, 1, 2]], fill_value |
|
) |
|
|
|
@pytest.mark.parametrize("mgr", MANAGERS) |
|
@pytest.mark.parametrize("fill_value", [None, np.nan, 100.0]) |
|
def test_reindex_indexer(self, fill_value, mgr): |
|
def assert_reindex_indexer_is_ok(mgr, axis, new_labels, indexer, fill_value): |
|
mat = _as_array(mgr) |
|
reindexed_mat = algos.take_nd(mat, indexer, axis, fill_value=fill_value) |
|
reindexed = mgr.reindex_indexer( |
|
new_labels, indexer, axis, fill_value=fill_value |
|
) |
|
tm.assert_numpy_array_equal( |
|
reindexed_mat, _as_array(reindexed), check_dtype=False |
|
) |
|
tm.assert_index_equal(reindexed.axes[axis], new_labels) |
|
|
|
for ax in range(mgr.ndim): |
|
assert_reindex_indexer_is_ok( |
|
mgr, ax, Index([]), np.array([], dtype=np.intp), fill_value |
|
) |
|
assert_reindex_indexer_is_ok( |
|
mgr, ax, mgr.axes[ax], np.arange(mgr.shape[ax]), fill_value |
|
) |
|
assert_reindex_indexer_is_ok( |
|
mgr, |
|
ax, |
|
Index(["foo"] * mgr.shape[ax]), |
|
np.arange(mgr.shape[ax]), |
|
fill_value, |
|
) |
|
assert_reindex_indexer_is_ok( |
|
mgr, ax, mgr.axes[ax][::-1], np.arange(mgr.shape[ax]), fill_value |
|
) |
|
assert_reindex_indexer_is_ok( |
|
mgr, ax, mgr.axes[ax], np.arange(mgr.shape[ax])[::-1], fill_value |
|
) |
|
assert_reindex_indexer_is_ok( |
|
mgr, ax, Index(["foo", "bar", "baz"]), np.array([0, 0, 0]), fill_value |
|
) |
|
assert_reindex_indexer_is_ok( |
|
mgr, ax, Index(["foo", "bar", "baz"]), np.array([-1, 0, -1]), fill_value |
|
) |
|
assert_reindex_indexer_is_ok( |
|
mgr, |
|
ax, |
|
Index(["foo", mgr.axes[ax][0], "baz"]), |
|
np.array([-1, -1, -1]), |
|
fill_value, |
|
) |
|
|
|
if mgr.shape[ax] >= 3: |
|
assert_reindex_indexer_is_ok( |
|
mgr, |
|
ax, |
|
Index(["foo", "bar", "baz"]), |
|
np.array([0, 1, 2]), |
|
fill_value, |
|
) |
|
|
|
|
|
class TestBlockPlacement: |
|
@pytest.mark.parametrize( |
|
"slc, expected", |
|
[ |
|
(slice(0, 4), 4), |
|
(slice(0, 4, 2), 2), |
|
(slice(0, 3, 2), 2), |
|
(slice(0, 1, 2), 1), |
|
(slice(1, 0, -1), 1), |
|
], |
|
) |
|
def test_slice_len(self, slc, expected): |
|
assert len(BlockPlacement(slc)) == expected |
|
|
|
@pytest.mark.parametrize("slc", [slice(1, 1, 0), slice(1, 2, 0)]) |
|
def test_zero_step_raises(self, slc): |
|
msg = "slice step cannot be zero" |
|
with pytest.raises(ValueError, match=msg): |
|
BlockPlacement(slc) |
|
|
|
def test_slice_canonize_negative_stop(self): |
|
|
|
slc = slice(3, -1, -2) |
|
|
|
bp = BlockPlacement(slc) |
|
assert bp.indexer == slice(3, None, -2) |
|
|
|
@pytest.mark.parametrize( |
|
"slc", |
|
[ |
|
slice(None, None), |
|
slice(10, None), |
|
slice(None, None, -1), |
|
slice(None, 10, -1), |
|
|
|
|
|
slice(-1, None), |
|
slice(None, -1), |
|
slice(-1, -1), |
|
slice(-1, None, -1), |
|
slice(None, -1, -1), |
|
slice(-1, -1, -1), |
|
], |
|
) |
|
def test_unbounded_slice_raises(self, slc): |
|
msg = "unbounded slice" |
|
with pytest.raises(ValueError, match=msg): |
|
BlockPlacement(slc) |
|
|
|
@pytest.mark.parametrize( |
|
"slc", |
|
[ |
|
slice(0, 0), |
|
slice(100, 0), |
|
slice(100, 100), |
|
slice(100, 100, -1), |
|
slice(0, 100, -1), |
|
], |
|
) |
|
def test_not_slice_like_slices(self, slc): |
|
assert not BlockPlacement(slc).is_slice_like |
|
|
|
@pytest.mark.parametrize( |
|
"arr, slc", |
|
[ |
|
([0], slice(0, 1, 1)), |
|
([100], slice(100, 101, 1)), |
|
([0, 1, 2], slice(0, 3, 1)), |
|
([0, 5, 10], slice(0, 15, 5)), |
|
([0, 100], slice(0, 200, 100)), |
|
([2, 1], slice(2, 0, -1)), |
|
], |
|
) |
|
def test_array_to_slice_conversion(self, arr, slc): |
|
assert BlockPlacement(arr).as_slice == slc |
|
|
|
@pytest.mark.parametrize( |
|
"arr", |
|
[ |
|
[], |
|
[-1], |
|
[-1, -2, -3], |
|
[-10], |
|
[-1], |
|
[-1, 0, 1, 2], |
|
[-2, 0, 2, 4], |
|
[1, 0, -1], |
|
[1, 1, 1], |
|
], |
|
) |
|
def test_not_slice_like_arrays(self, arr): |
|
assert not BlockPlacement(arr).is_slice_like |
|
|
|
@pytest.mark.parametrize( |
|
"slc, expected", |
|
[(slice(0, 3), [0, 1, 2]), (slice(0, 0), []), (slice(3, 0), [])], |
|
) |
|
def test_slice_iter(self, slc, expected): |
|
assert list(BlockPlacement(slc)) == expected |
|
|
|
@pytest.mark.parametrize( |
|
"slc, arr", |
|
[ |
|
(slice(0, 3), [0, 1, 2]), |
|
(slice(0, 0), []), |
|
(slice(3, 0), []), |
|
(slice(3, 0, -1), [3, 2, 1]), |
|
], |
|
) |
|
def test_slice_to_array_conversion(self, slc, arr): |
|
tm.assert_numpy_array_equal( |
|
BlockPlacement(slc).as_array, np.asarray(arr, dtype=np.intp) |
|
) |
|
|
|
def test_blockplacement_add(self): |
|
bpl = BlockPlacement(slice(0, 5)) |
|
assert bpl.add(1).as_slice == slice(1, 6, 1) |
|
assert bpl.add(np.arange(5)).as_slice == slice(0, 10, 2) |
|
assert list(bpl.add(np.arange(5, 0, -1))) == [5, 5, 5, 5, 5] |
|
|
|
@pytest.mark.parametrize( |
|
"val, inc, expected", |
|
[ |
|
(slice(0, 0), 0, []), |
|
(slice(1, 4), 0, [1, 2, 3]), |
|
(slice(3, 0, -1), 0, [3, 2, 1]), |
|
([1, 2, 4], 0, [1, 2, 4]), |
|
(slice(0, 0), 10, []), |
|
(slice(1, 4), 10, [11, 12, 13]), |
|
(slice(3, 0, -1), 10, [13, 12, 11]), |
|
([1, 2, 4], 10, [11, 12, 14]), |
|
(slice(0, 0), -1, []), |
|
(slice(1, 4), -1, [0, 1, 2]), |
|
([1, 2, 4], -1, [0, 1, 3]), |
|
], |
|
) |
|
def test_blockplacement_add_int(self, val, inc, expected): |
|
assert list(BlockPlacement(val).add(inc)) == expected |
|
|
|
@pytest.mark.parametrize("val", [slice(1, 4), [1, 2, 4]]) |
|
def test_blockplacement_add_int_raises(self, val): |
|
msg = "iadd causes length change" |
|
with pytest.raises(ValueError, match=msg): |
|
BlockPlacement(val).add(-10) |
|
|
|
|
|
class TestCanHoldElement: |
|
@pytest.fixture( |
|
params=[ |
|
lambda x: x, |
|
lambda x: x.to_series(), |
|
lambda x: x._data, |
|
lambda x: list(x), |
|
lambda x: x.astype(object), |
|
lambda x: np.asarray(x), |
|
lambda x: x[0], |
|
lambda x: x[:0], |
|
] |
|
) |
|
def element(self, request): |
|
""" |
|
Functions that take an Index and return an element that should have |
|
blk._can_hold_element(element) for a Block with this index's dtype. |
|
""" |
|
return request.param |
|
|
|
def test_datetime_block_can_hold_element(self): |
|
block = create_block("datetime", [0]) |
|
|
|
assert block._can_hold_element([]) |
|
|
|
|
|
arr = pd.array(block.values.ravel()) |
|
|
|
|
|
assert block._can_hold_element(None) |
|
arr[0] = None |
|
assert arr[0] is pd.NaT |
|
|
|
|
|
vals = [np.datetime64("2010-10-10"), datetime(2010, 10, 10)] |
|
for val in vals: |
|
assert block._can_hold_element(val) |
|
arr[0] = val |
|
|
|
val = date(2010, 10, 10) |
|
assert not block._can_hold_element(val) |
|
|
|
msg = ( |
|
"value should be a 'Timestamp', 'NaT', " |
|
"or array of those. Got 'date' instead." |
|
) |
|
with pytest.raises(TypeError, match=msg): |
|
arr[0] = val |
|
|
|
@pytest.mark.parametrize("dtype", [np.int64, np.uint64, np.float64]) |
|
def test_interval_can_hold_element_emptylist(self, dtype, element): |
|
arr = np.array([1, 3, 4], dtype=dtype) |
|
ii = IntervalIndex.from_breaks(arr) |
|
blk = new_block(ii._data, BlockPlacement([1]), ndim=2) |
|
|
|
assert blk._can_hold_element([]) |
|
|
|
|
|
@pytest.mark.parametrize("dtype", [np.int64, np.uint64, np.float64]) |
|
def test_interval_can_hold_element(self, dtype, element): |
|
arr = np.array([1, 3, 4, 9], dtype=dtype) |
|
ii = IntervalIndex.from_breaks(arr) |
|
blk = new_block(ii._data, BlockPlacement([1]), ndim=2) |
|
|
|
elem = element(ii) |
|
self.check_series_setitem(elem, ii, True) |
|
assert blk._can_hold_element(elem) |
|
|
|
|
|
|
|
ii2 = IntervalIndex.from_breaks(arr[:-1], closed="neither") |
|
elem = element(ii2) |
|
with tm.assert_produces_warning(FutureWarning): |
|
self.check_series_setitem(elem, ii, False) |
|
assert not blk._can_hold_element(elem) |
|
|
|
ii3 = IntervalIndex.from_breaks([Timestamp(1), Timestamp(3), Timestamp(4)]) |
|
elem = element(ii3) |
|
with tm.assert_produces_warning(FutureWarning): |
|
self.check_series_setitem(elem, ii, False) |
|
assert not blk._can_hold_element(elem) |
|
|
|
ii4 = IntervalIndex.from_breaks([Timedelta(1), Timedelta(3), Timedelta(4)]) |
|
elem = element(ii4) |
|
with tm.assert_produces_warning(FutureWarning): |
|
self.check_series_setitem(elem, ii, False) |
|
assert not blk._can_hold_element(elem) |
|
|
|
def test_period_can_hold_element_emptylist(self): |
|
pi = period_range("2016", periods=3, freq="Y") |
|
blk = new_block(pi._data.reshape(1, 3), BlockPlacement([1]), ndim=2) |
|
|
|
assert blk._can_hold_element([]) |
|
|
|
def test_period_can_hold_element(self, element): |
|
pi = period_range("2016", periods=3, freq="Y") |
|
|
|
elem = element(pi) |
|
self.check_series_setitem(elem, pi, True) |
|
|
|
|
|
|
|
pi2 = pi.asfreq("D")[:-1] |
|
elem = element(pi2) |
|
with tm.assert_produces_warning(FutureWarning): |
|
self.check_series_setitem(elem, pi, False) |
|
|
|
dti = pi.to_timestamp("s")[:-1] |
|
elem = element(dti) |
|
with tm.assert_produces_warning(FutureWarning): |
|
self.check_series_setitem(elem, pi, False) |
|
|
|
def check_can_hold_element(self, obj, elem, inplace: bool): |
|
blk = obj._mgr.blocks[0] |
|
if inplace: |
|
assert blk._can_hold_element(elem) |
|
else: |
|
assert not blk._can_hold_element(elem) |
|
|
|
def check_series_setitem(self, elem, index: Index, inplace: bool): |
|
arr = index._data.copy() |
|
ser = Series(arr, copy=False) |
|
|
|
self.check_can_hold_element(ser, elem, inplace) |
|
|
|
if is_scalar(elem): |
|
ser[0] = elem |
|
else: |
|
ser[: len(elem)] = elem |
|
|
|
if inplace: |
|
assert ser.array is arr |
|
else: |
|
assert ser.dtype == object |
|
|
|
|
|
class TestShouldStore: |
|
def test_should_store_categorical(self): |
|
cat = Categorical(["A", "B", "C"]) |
|
df = DataFrame(cat) |
|
blk = df._mgr.blocks[0] |
|
|
|
|
|
assert blk.should_store(cat) |
|
assert blk.should_store(cat[:-1]) |
|
|
|
|
|
assert not blk.should_store(cat.as_ordered()) |
|
|
|
|
|
assert not blk.should_store(np.asarray(cat)) |
|
|
|
|
|
def test_validate_ndim(): |
|
values = np.array([1.0, 2.0]) |
|
placement = BlockPlacement(slice(2)) |
|
msg = r"Wrong number of dimensions. values.ndim != ndim \[1 != 2\]" |
|
|
|
with pytest.raises(ValueError, match=msg): |
|
make_block(values, placement, ndim=2) |
|
|
|
|
|
def test_block_shape(): |
|
idx = Index([0, 1, 2, 3, 4]) |
|
a = Series([1, 2, 3]).reindex(idx) |
|
b = Series(Categorical([1, 2, 3])).reindex(idx) |
|
|
|
assert a._mgr.blocks[0].mgr_locs.indexer == b._mgr.blocks[0].mgr_locs.indexer |
|
|
|
|
|
def test_make_block_no_pandas_array(block_maker): |
|
|
|
arr = pd.arrays.NumpyExtensionArray(np.array([1, 2])) |
|
|
|
|
|
result = block_maker(arr, BlockPlacement(slice(len(arr))), ndim=arr.ndim) |
|
assert result.dtype.kind in ["i", "u"] |
|
|
|
if block_maker is make_block: |
|
|
|
assert result.is_extension is False |
|
|
|
|
|
result = block_maker(arr, slice(len(arr)), dtype=arr.dtype, ndim=arr.ndim) |
|
assert result.dtype.kind in ["i", "u"] |
|
assert result.is_extension is False |
|
|
|
|
|
|
|
result = block_maker( |
|
arr.to_numpy(), slice(len(arr)), dtype=arr.dtype, ndim=arr.ndim |
|
) |
|
assert result.dtype.kind in ["i", "u"] |
|
assert result.is_extension is False |
|
|