File size: 20,891 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
from itertools import product

import numpy as np
import pytest
from scipy.sparse import issparse

from sklearn import config_context, datasets
from sklearn.model_selection import ShuffleSplit
from sklearn.svm import SVC
from sklearn.utils._array_api import yield_namespace_device_dtype_combinations
from sklearn.utils._testing import (
    _array_api_for_tests,
    _convert_container,
    assert_allclose,
    assert_array_almost_equal,
    assert_array_equal,
)
from sklearn.utils.estimator_checks import _NotAnArray
from sklearn.utils.fixes import (
    COO_CONTAINERS,
    CSC_CONTAINERS,
    CSR_CONTAINERS,
    DOK_CONTAINERS,
    LIL_CONTAINERS,
)
from sklearn.utils.metaestimators import _safe_split
from sklearn.utils.multiclass import (
    _ovr_decision_function,
    check_classification_targets,
    class_distribution,
    is_multilabel,
    type_of_target,
    unique_labels,
)

multilabel_explicit_zero = np.array([[0, 1], [1, 0]])
multilabel_explicit_zero[:, 0] = 0


def _generate_sparse(
    data,
    sparse_containers=tuple(
        COO_CONTAINERS
        + CSC_CONTAINERS
        + CSR_CONTAINERS
        + DOK_CONTAINERS
        + LIL_CONTAINERS
    ),
    dtypes=(bool, int, np.int8, np.uint8, float, np.float32),
):
    return [
        sparse_container(data, dtype=dtype)
        for sparse_container in sparse_containers
        for dtype in dtypes
    ]


EXAMPLES = {
    "multilabel-indicator": [
        # valid when the data is formatted as sparse or dense, identified
        # by CSR format when the testing takes place
        *_generate_sparse(
            np.random.RandomState(42).randint(2, size=(10, 10)),
            sparse_containers=CSR_CONTAINERS,
            dtypes=(int,),
        ),
        [[0, 1], [1, 0]],
        [[0, 1]],
        *_generate_sparse(
            multilabel_explicit_zero, sparse_containers=CSC_CONTAINERS, dtypes=(int,)
        ),
        *_generate_sparse([[0, 1], [1, 0]]),
        *_generate_sparse([[0, 0], [0, 0]]),
        *_generate_sparse([[0, 1]]),
        # Only valid when data is dense
        [[-1, 1], [1, -1]],
        np.array([[-1, 1], [1, -1]]),
        np.array([[-3, 3], [3, -3]]),
        _NotAnArray(np.array([[-3, 3], [3, -3]])),
    ],
    "multiclass": [
        [1, 0, 2, 2, 1, 4, 2, 4, 4, 4],
        np.array([1, 0, 2]),
        np.array([1, 0, 2], dtype=np.int8),
        np.array([1, 0, 2], dtype=np.uint8),
        np.array([1, 0, 2], dtype=float),
        np.array([1, 0, 2], dtype=np.float32),
        np.array([[1], [0], [2]]),
        _NotAnArray(np.array([1, 0, 2])),
        [0, 1, 2],
        ["a", "b", "c"],
        np.array(["a", "b", "c"]),
        np.array(["a", "b", "c"], dtype=object),
        np.array(["a", "b", "c"], dtype=object),
    ],
    "multiclass-multioutput": [
        [[1, 0, 2, 2], [1, 4, 2, 4]],
        [["a", "b"], ["c", "d"]],
        np.array([[1, 0, 2, 2], [1, 4, 2, 4]]),
        np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8),
        np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8),
        np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=float),
        np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32),
        *_generate_sparse(
            [[1, 0, 2, 2], [1, 4, 2, 4]],
            sparse_containers=CSC_CONTAINERS + CSR_CONTAINERS,
            dtypes=(int, np.int8, np.uint8, float, np.float32),
        ),
        np.array([["a", "b"], ["c", "d"]]),
        np.array([["a", "b"], ["c", "d"]]),
        np.array([["a", "b"], ["c", "d"]], dtype=object),
        np.array([[1, 0, 2]]),
        _NotAnArray(np.array([[1, 0, 2]])),
    ],
    "binary": [
        [0, 1],
        [1, 1],
        [],
        [0],
        np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]),
        np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=bool),
        np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8),
        np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8),
        np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=float),
        np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32),
        np.array([[0], [1]]),
        _NotAnArray(np.array([[0], [1]])),
        [1, -1],
        [3, 5],
        ["a"],
        ["a", "b"],
        ["abc", "def"],
        np.array(["abc", "def"]),
        ["a", "b"],
        np.array(["abc", "def"], dtype=object),
    ],
    "continuous": [
        [1e-5],
        [0, 0.5],
        np.array([[0], [0.5]]),
        np.array([[0], [0.5]], dtype=np.float32),
    ],
    "continuous-multioutput": [
        np.array([[0, 0.5], [0.5, 0]]),
        np.array([[0, 0.5], [0.5, 0]], dtype=np.float32),
        np.array([[0, 0.5]]),
        *_generate_sparse(
            [[0, 0.5], [0.5, 0]],
            sparse_containers=CSC_CONTAINERS + CSR_CONTAINERS,
            dtypes=(float, np.float32),
        ),
        *_generate_sparse(
            [[0, 0.5]],
            sparse_containers=CSC_CONTAINERS + CSR_CONTAINERS,
            dtypes=(float, np.float32),
        ),
    ],
    "unknown": [
        [[]],
        np.array([[]], dtype=object),
        [()],
        # sequence of sequences that weren't supported even before deprecation
        np.array([np.array([]), np.array([1, 2, 3])], dtype=object),
        [np.array([]), np.array([1, 2, 3])],
        [{1, 2, 3}, {1, 2}],
        [frozenset([1, 2, 3]), frozenset([1, 2])],
        # and also confusable as sequences of sequences
        [{0: "a", 1: "b"}, {0: "a"}],
        # ndim 0
        np.array(0),
        # empty second dimension
        np.array([[], []]),
        # 3d
        np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]),
    ],
}

ARRAY_API_EXAMPLES = {
    "multilabel-indicator": [
        np.random.RandomState(42).randint(2, size=(10, 10)),
        [[0, 1], [1, 0]],
        [[0, 1]],
        multilabel_explicit_zero,
        [[0, 0], [0, 0]],
        [[-1, 1], [1, -1]],
        np.array([[-1, 1], [1, -1]]),
        np.array([[-3, 3], [3, -3]]),
        _NotAnArray(np.array([[-3, 3], [3, -3]])),
    ],
    "multiclass": [
        [1, 0, 2, 2, 1, 4, 2, 4, 4, 4],
        np.array([1, 0, 2]),
        np.array([1, 0, 2], dtype=np.int8),
        np.array([1, 0, 2], dtype=np.uint8),
        np.array([1, 0, 2], dtype=float),
        np.array([1, 0, 2], dtype=np.float32),
        np.array([[1], [0], [2]]),
        _NotAnArray(np.array([1, 0, 2])),
        [0, 1, 2],
    ],
    "multiclass-multioutput": [
        [[1, 0, 2, 2], [1, 4, 2, 4]],
        np.array([[1, 0, 2, 2], [1, 4, 2, 4]]),
        np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8),
        np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8),
        np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=float),
        np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32),
        np.array([[1, 0, 2]]),
        _NotAnArray(np.array([[1, 0, 2]])),
    ],
    "binary": [
        [0, 1],
        [1, 1],
        [],
        [0],
        np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]),
        np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=bool),
        np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8),
        np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8),
        np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=float),
        np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32),
        np.array([[0], [1]]),
        _NotAnArray(np.array([[0], [1]])),
        [1, -1],
        [3, 5],
    ],
    "continuous": [
        [1e-5],
        [0, 0.5],
        np.array([[0], [0.5]]),
        np.array([[0], [0.5]], dtype=np.float32),
    ],
    "continuous-multioutput": [
        np.array([[0, 0.5], [0.5, 0]]),
        np.array([[0, 0.5], [0.5, 0]], dtype=np.float32),
        np.array([[0, 0.5]]),
    ],
    "unknown": [
        [[]],
        [()],
        np.array(0),
        np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]),
    ],
}


NON_ARRAY_LIKE_EXAMPLES = [
    {1, 2, 3},
    {0: "a", 1: "b"},
    {0: [5], 1: [5]},
    "abc",
    frozenset([1, 2, 3]),
    None,
]

MULTILABEL_SEQUENCES = [
    [[1], [2], [0, 1]],
    [(), (2), (0, 1)],
    np.array([[], [1, 2]], dtype="object"),
    _NotAnArray(np.array([[], [1, 2]], dtype="object")),
]


def test_unique_labels():
    # Empty iterable
    with pytest.raises(ValueError):
        unique_labels()

    # Multiclass problem
    assert_array_equal(unique_labels(range(10)), np.arange(10))
    assert_array_equal(unique_labels(np.arange(10)), np.arange(10))
    assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4]))

    # Multilabel indicator
    assert_array_equal(
        unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3)
    )

    assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3))

    # Several arrays passed
    assert_array_equal(unique_labels([4, 0, 2], range(5)), np.arange(5))
    assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3))

    # Border line case with binary indicator matrix
    with pytest.raises(ValueError):
        unique_labels([4, 0, 2], np.ones((5, 5)))
    with pytest.raises(ValueError):
        unique_labels(np.ones((5, 4)), np.ones((5, 5)))

    assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5))


def test_unique_labels_non_specific():
    # Test unique_labels with a variety of collected examples

    # Smoke test for all supported format
    for format in ["binary", "multiclass", "multilabel-indicator"]:
        for y in EXAMPLES[format]:
            unique_labels(y)

    # We don't support those format at the moment
    for example in NON_ARRAY_LIKE_EXAMPLES:
        with pytest.raises(ValueError):
            unique_labels(example)

    for y_type in [
        "unknown",
        "continuous",
        "continuous-multioutput",
        "multiclass-multioutput",
    ]:
        for example in EXAMPLES[y_type]:
            with pytest.raises(ValueError):
                unique_labels(example)


def test_unique_labels_mixed_types():
    # Mix with binary or multiclass and multilabel
    mix_clf_format = product(
        EXAMPLES["multilabel-indicator"], EXAMPLES["multiclass"] + EXAMPLES["binary"]
    )

    for y_multilabel, y_multiclass in mix_clf_format:
        with pytest.raises(ValueError):
            unique_labels(y_multiclass, y_multilabel)
        with pytest.raises(ValueError):
            unique_labels(y_multilabel, y_multiclass)

    with pytest.raises(ValueError):
        unique_labels([[1, 2]], [["a", "d"]])

    with pytest.raises(ValueError):
        unique_labels(["1", 2])

    with pytest.raises(ValueError):
        unique_labels([["1", 2], [1, 3]])

    with pytest.raises(ValueError):
        unique_labels([["1", "2"], [2, 3]])


def test_is_multilabel():
    for group, group_examples in EXAMPLES.items():
        dense_exp = group == "multilabel-indicator"

        for example in group_examples:
            # Only mark explicitly defined sparse examples as valid sparse
            # multilabel-indicators
            sparse_exp = dense_exp and issparse(example)

            if issparse(example) or (
                hasattr(example, "__array__")
                and np.asarray(example).ndim == 2
                and np.asarray(example).dtype.kind in "biuf"
                and np.asarray(example).shape[1] > 0
            ):
                examples_sparse = [
                    sparse_container(example)
                    for sparse_container in (
                        COO_CONTAINERS
                        + CSC_CONTAINERS
                        + CSR_CONTAINERS
                        + DOK_CONTAINERS
                        + LIL_CONTAINERS
                    )
                ]
                for exmpl_sparse in examples_sparse:
                    assert sparse_exp == is_multilabel(
                        exmpl_sparse
                    ), f"is_multilabel({exmpl_sparse!r}) should be {sparse_exp}"

            # Densify sparse examples before testing
            if issparse(example):
                example = example.toarray()

            assert dense_exp == is_multilabel(
                example
            ), f"is_multilabel({example!r}) should be {dense_exp}"


@pytest.mark.parametrize(
    "array_namespace, device, dtype_name",
    yield_namespace_device_dtype_combinations(),
)
def test_is_multilabel_array_api_compliance(array_namespace, device, dtype_name):
    xp = _array_api_for_tests(array_namespace, device)

    for group, group_examples in ARRAY_API_EXAMPLES.items():
        dense_exp = group == "multilabel-indicator"
        for example in group_examples:
            if np.asarray(example).dtype.kind == "f":
                example = np.asarray(example, dtype=dtype_name)
            else:
                example = np.asarray(example)
            example = xp.asarray(example, device=device)

            with config_context(array_api_dispatch=True):
                assert dense_exp == is_multilabel(
                    example
                ), f"is_multilabel({example!r}) should be {dense_exp}"


def test_check_classification_targets():
    for y_type in EXAMPLES.keys():
        if y_type in ["unknown", "continuous", "continuous-multioutput"]:
            for example in EXAMPLES[y_type]:
                msg = "Unknown label type: "
                with pytest.raises(ValueError, match=msg):
                    check_classification_targets(example)
        else:
            for example in EXAMPLES[y_type]:
                check_classification_targets(example)


def test_type_of_target():
    for group, group_examples in EXAMPLES.items():
        for example in group_examples:
            assert (
                type_of_target(example) == group
            ), "type_of_target(%r) should be %r, got %r" % (
                example,
                group,
                type_of_target(example),
            )

    for example in NON_ARRAY_LIKE_EXAMPLES:
        msg_regex = r"Expected array-like \(array or non-string sequence\).*"
        with pytest.raises(ValueError, match=msg_regex):
            type_of_target(example)

    for example in MULTILABEL_SEQUENCES:
        msg = (
            "You appear to be using a legacy multi-label data "
            "representation. Sequence of sequences are no longer supported;"
            " use a binary array or sparse matrix instead."
        )
        with pytest.raises(ValueError, match=msg):
            type_of_target(example)


def test_type_of_target_pandas_sparse():
    pd = pytest.importorskip("pandas")

    y = pd.arrays.SparseArray([1, np.nan, np.nan, 1, np.nan])
    msg = "y cannot be class 'SparseSeries' or 'SparseArray'"
    with pytest.raises(ValueError, match=msg):
        type_of_target(y)


def test_type_of_target_pandas_nullable():
    """Check that type_of_target works with pandas nullable dtypes."""
    pd = pytest.importorskip("pandas")

    for dtype in ["Int32", "Float32"]:
        y_true = pd.Series([1, 0, 2, 3, 4], dtype=dtype)
        assert type_of_target(y_true) == "multiclass"

        y_true = pd.Series([1, 0, 1, 0], dtype=dtype)
        assert type_of_target(y_true) == "binary"

    y_true = pd.DataFrame([[1.4, 3.1], [3.1, 1.4]], dtype="Float32")
    assert type_of_target(y_true) == "continuous-multioutput"

    y_true = pd.DataFrame([[0, 1], [1, 1]], dtype="Int32")
    assert type_of_target(y_true) == "multilabel-indicator"

    y_true = pd.DataFrame([[1, 2], [3, 1]], dtype="Int32")
    assert type_of_target(y_true) == "multiclass-multioutput"


@pytest.mark.parametrize("dtype", ["Int64", "Float64", "boolean"])
def test_unique_labels_pandas_nullable(dtype):
    """Checks that unique_labels work with pandas nullable dtypes.

    Non-regression test for gh-25634.
    """
    pd = pytest.importorskip("pandas")

    y_true = pd.Series([1, 0, 0, 1, 0, 1, 1, 0, 1], dtype=dtype)
    y_predicted = pd.Series([0, 0, 1, 1, 0, 1, 1, 1, 1], dtype="int64")

    labels = unique_labels(y_true, y_predicted)
    assert_array_equal(labels, [0, 1])


@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
def test_class_distribution(csc_container):
    y = np.array(
        [
            [1, 0, 0, 1],
            [2, 2, 0, 1],
            [1, 3, 0, 1],
            [4, 2, 0, 1],
            [2, 0, 0, 1],
            [1, 3, 0, 1],
        ]
    )
    # Define the sparse matrix with a mix of implicit and explicit zeros
    data = np.array([1, 2, 1, 4, 2, 1, 0, 2, 3, 2, 3, 1, 1, 1, 1, 1, 1])
    indices = np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5])
    indptr = np.array([0, 6, 11, 11, 17])
    y_sp = csc_container((data, indices, indptr), shape=(6, 4))

    classes, n_classes, class_prior = class_distribution(y)
    classes_sp, n_classes_sp, class_prior_sp = class_distribution(y_sp)
    classes_expected = [[1, 2, 4], [0, 2, 3], [0], [1]]
    n_classes_expected = [3, 3, 1, 1]
    class_prior_expected = [[3 / 6, 2 / 6, 1 / 6], [1 / 3, 1 / 3, 1 / 3], [1.0], [1.0]]

    for k in range(y.shape[1]):
        assert_array_almost_equal(classes[k], classes_expected[k])
        assert_array_almost_equal(n_classes[k], n_classes_expected[k])
        assert_array_almost_equal(class_prior[k], class_prior_expected[k])

        assert_array_almost_equal(classes_sp[k], classes_expected[k])
        assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k])
        assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k])

    # Test again with explicit sample weights
    (classes, n_classes, class_prior) = class_distribution(
        y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]
    )
    (classes_sp, n_classes_sp, class_prior_sp) = class_distribution(
        y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]
    )
    class_prior_expected = [[4 / 9, 3 / 9, 2 / 9], [2 / 9, 4 / 9, 3 / 9], [1.0], [1.0]]

    for k in range(y.shape[1]):
        assert_array_almost_equal(classes[k], classes_expected[k])
        assert_array_almost_equal(n_classes[k], n_classes_expected[k])
        assert_array_almost_equal(class_prior[k], class_prior_expected[k])

        assert_array_almost_equal(classes_sp[k], classes_expected[k])
        assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k])
        assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k])


def test_safe_split_with_precomputed_kernel():
    clf = SVC()
    clfp = SVC(kernel="precomputed")

    iris = datasets.load_iris()
    X, y = iris.data, iris.target
    K = np.dot(X, X.T)

    cv = ShuffleSplit(test_size=0.25, random_state=0)
    train, test = list(cv.split(X))[0]

    X_train, y_train = _safe_split(clf, X, y, train)
    K_train, y_train2 = _safe_split(clfp, K, y, train)
    assert_array_almost_equal(K_train, np.dot(X_train, X_train.T))
    assert_array_almost_equal(y_train, y_train2)

    X_test, y_test = _safe_split(clf, X, y, test, train)
    K_test, y_test2 = _safe_split(clfp, K, y, test, train)
    assert_array_almost_equal(K_test, np.dot(X_test, X_train.T))
    assert_array_almost_equal(y_test, y_test2)


def test_ovr_decision_function():
    # test properties for ovr decision function

    predictions = np.array([[0, 1, 1], [0, 1, 0], [0, 1, 1], [0, 1, 1]])

    confidences = np.array(
        [[-1e16, 0, -1e16], [1.0, 2.0, -3.0], [-5.0, 2.0, 5.0], [-0.5, 0.2, 0.5]]
    )

    n_classes = 3

    dec_values = _ovr_decision_function(predictions, confidences, n_classes)

    # check that the decision values are within 0.5 range of the votes
    votes = np.array([[1, 0, 2], [1, 1, 1], [1, 0, 2], [1, 0, 2]])

    assert_allclose(votes, dec_values, atol=0.5)

    # check that the prediction are what we expect
    # highest vote or highest confidence if there is a tie.
    # for the second sample we have a tie (should be won by 1)
    expected_prediction = np.array([2, 1, 2, 2])
    assert_array_equal(np.argmax(dec_values, axis=1), expected_prediction)

    # third and fourth sample have the same vote but third sample
    # has higher confidence, this should reflect on the decision values
    assert dec_values[2, 2] > dec_values[3, 2]

    # assert subset invariance.
    dec_values_one = [
        _ovr_decision_function(
            np.array([predictions[i]]), np.array([confidences[i]]), n_classes
        )[0]
        for i in range(4)
    ]

    assert_allclose(dec_values, dec_values_one, atol=1e-6)


# TODO(1.7): Change to ValueError when byte labels is deprecated.
@pytest.mark.parametrize("input_type", ["list", "array"])
def test_labels_in_bytes_format(input_type):
    # check that we raise an error with bytes encoded labels
    # non-regression test for:
    # https://github.com/scikit-learn/scikit-learn/issues/16980
    target = _convert_container([b"a", b"b"], input_type)
    err_msg = (
        "Support for labels represented as bytes is deprecated in v1.5 and will"
        " error in v1.7. Convert the labels to a string or integer format."
    )
    with pytest.warns(FutureWarning, match=err_msg):
        type_of_target(target)