File size: 5,898 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import numpy as np
import pytest
from numpy.testing import assert_array_equal
from scipy import sparse
from sklearn.datasets import load_iris
from sklearn.utils import _safe_indexing, check_array
from sklearn.utils._mocking import (
CheckingClassifier,
_MockEstimatorOnOffPrediction,
)
from sklearn.utils._testing import _convert_container
from sklearn.utils.fixes import CSR_CONTAINERS
@pytest.fixture
def iris():
return load_iris(return_X_y=True)
def _success(x):
return True
def _fail(x):
return False
@pytest.mark.parametrize(
"kwargs",
[
{},
{"check_X": _success},
{"check_y": _success},
{"check_X": _success, "check_y": _success},
],
)
def test_check_on_fit_success(iris, kwargs):
X, y = iris
CheckingClassifier(**kwargs).fit(X, y)
@pytest.mark.parametrize(
"kwargs",
[
{"check_X": _fail},
{"check_y": _fail},
{"check_X": _success, "check_y": _fail},
{"check_X": _fail, "check_y": _success},
{"check_X": _fail, "check_y": _fail},
],
)
def test_check_on_fit_fail(iris, kwargs):
X, y = iris
clf = CheckingClassifier(**kwargs)
with pytest.raises(AssertionError):
clf.fit(X, y)
@pytest.mark.parametrize(
"pred_func", ["predict", "predict_proba", "decision_function", "score"]
)
def test_check_X_on_predict_success(iris, pred_func):
X, y = iris
clf = CheckingClassifier(check_X=_success).fit(X, y)
getattr(clf, pred_func)(X)
@pytest.mark.parametrize(
"pred_func", ["predict", "predict_proba", "decision_function", "score"]
)
def test_check_X_on_predict_fail(iris, pred_func):
X, y = iris
clf = CheckingClassifier(check_X=_success).fit(X, y)
clf.set_params(check_X=_fail)
with pytest.raises(AssertionError):
getattr(clf, pred_func)(X)
@pytest.mark.parametrize("input_type", ["list", "array", "sparse", "dataframe"])
def test_checking_classifier(iris, input_type):
# Check that the CheckingClassifier outputs what we expect
X, y = iris
X = _convert_container(X, input_type)
clf = CheckingClassifier()
clf.fit(X, y)
assert_array_equal(clf.classes_, np.unique(y))
assert len(clf.classes_) == 3
assert clf.n_features_in_ == 4
y_pred = clf.predict(X)
assert all(pred in clf.classes_ for pred in y_pred)
assert clf.score(X) == pytest.approx(0)
clf.set_params(foo_param=10)
assert clf.fit(X, y).score(X) == pytest.approx(1)
y_proba = clf.predict_proba(X)
assert y_proba.shape == (150, 3)
assert np.logical_and(y_proba >= 0, y_proba <= 1).all()
y_decision = clf.decision_function(X)
assert y_decision.shape == (150, 3)
# check the shape in case of binary classification
first_2_classes = np.logical_or(y == 0, y == 1)
X = _safe_indexing(X, first_2_classes)
y = _safe_indexing(y, first_2_classes)
clf.fit(X, y)
y_proba = clf.predict_proba(X)
assert y_proba.shape == (100, 2)
assert np.logical_and(y_proba >= 0, y_proba <= 1).all()
y_decision = clf.decision_function(X)
assert y_decision.shape == (100,)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_checking_classifier_with_params(iris, csr_container):
X, y = iris
X_sparse = csr_container(X)
clf = CheckingClassifier(check_X=sparse.issparse)
with pytest.raises(AssertionError):
clf.fit(X, y)
clf.fit(X_sparse, y)
clf = CheckingClassifier(
check_X=check_array, check_X_params={"accept_sparse": False}
)
clf.fit(X, y)
with pytest.raises(TypeError, match="Sparse data was passed"):
clf.fit(X_sparse, y)
def test_checking_classifier_fit_params(iris):
# check the error raised when the number of samples is not the one expected
X, y = iris
clf = CheckingClassifier(expected_sample_weight=True)
sample_weight = np.ones(len(X) // 2)
msg = f"sample_weight.shape == ({len(X) // 2},), expected ({len(X)},)!"
with pytest.raises(ValueError) as exc:
clf.fit(X, y, sample_weight=sample_weight)
assert exc.value.args[0] == msg
def test_checking_classifier_missing_fit_params(iris):
X, y = iris
clf = CheckingClassifier(expected_sample_weight=True)
err_msg = "Expected sample_weight to be passed"
with pytest.raises(AssertionError, match=err_msg):
clf.fit(X, y)
@pytest.mark.parametrize(
"methods_to_check",
[["predict"], ["predict", "predict_proba"]],
)
@pytest.mark.parametrize(
"predict_method", ["predict", "predict_proba", "decision_function", "score"]
)
def test_checking_classifier_methods_to_check(iris, methods_to_check, predict_method):
# check that methods_to_check allows to bypass checks
X, y = iris
clf = CheckingClassifier(
check_X=sparse.issparse,
methods_to_check=methods_to_check,
)
clf.fit(X, y)
if predict_method in methods_to_check:
with pytest.raises(AssertionError):
getattr(clf, predict_method)(X)
else:
getattr(clf, predict_method)(X)
@pytest.mark.parametrize(
"response_methods",
[
["predict"],
["predict", "predict_proba"],
["predict", "decision_function"],
["predict", "predict_proba", "decision_function"],
],
)
def test_mock_estimator_on_off_prediction(iris, response_methods):
X, y = iris
estimator = _MockEstimatorOnOffPrediction(response_methods=response_methods)
estimator.fit(X, y)
assert hasattr(estimator, "classes_")
assert_array_equal(estimator.classes_, np.unique(y))
possible_responses = ["predict", "predict_proba", "decision_function"]
for response in possible_responses:
if response in response_methods:
assert hasattr(estimator, response)
assert getattr(estimator, response)(X) == response
else:
assert not hasattr(estimator, response)
|