File size: 9,603 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import pickle

import numpy as np
import pytest
from numpy.testing import assert_array_equal

from sklearn.utils._encode import _check_unknown, _encode, _get_counts, _unique


@pytest.mark.parametrize(
    "values, expected",
    [
        (np.array([2, 1, 3, 1, 3], dtype="int64"), np.array([1, 2, 3], dtype="int64")),
        (
            np.array([2, 1, np.nan, 1, np.nan], dtype="float32"),
            np.array([1, 2, np.nan], dtype="float32"),
        ),
        (
            np.array(["b", "a", "c", "a", "c"], dtype=object),
            np.array(["a", "b", "c"], dtype=object),
        ),
        (
            np.array(["b", "a", None, "a", None], dtype=object),
            np.array(["a", "b", None], dtype=object),
        ),
        (np.array(["b", "a", "c", "a", "c"]), np.array(["a", "b", "c"])),
    ],
    ids=["int64", "float32-nan", "object", "object-None", "str"],
)
def test_encode_util(values, expected):
    uniques = _unique(values)
    assert_array_equal(uniques, expected)

    result, encoded = _unique(values, return_inverse=True)
    assert_array_equal(result, expected)
    assert_array_equal(encoded, np.array([1, 0, 2, 0, 2]))

    encoded = _encode(values, uniques=uniques)
    assert_array_equal(encoded, np.array([1, 0, 2, 0, 2]))

    result, counts = _unique(values, return_counts=True)
    assert_array_equal(result, expected)
    assert_array_equal(counts, np.array([2, 1, 2]))

    result, encoded, counts = _unique(values, return_inverse=True, return_counts=True)
    assert_array_equal(result, expected)
    assert_array_equal(encoded, np.array([1, 0, 2, 0, 2]))
    assert_array_equal(counts, np.array([2, 1, 2]))


def test_encode_with_check_unknown():
    # test for the check_unknown parameter of _encode()
    uniques = np.array([1, 2, 3])
    values = np.array([1, 2, 3, 4])

    # Default is True, raise error
    with pytest.raises(ValueError, match="y contains previously unseen labels"):
        _encode(values, uniques=uniques, check_unknown=True)

    # dont raise error if False
    _encode(values, uniques=uniques, check_unknown=False)

    # parameter is ignored for object dtype
    uniques = np.array(["a", "b", "c"], dtype=object)
    values = np.array(["a", "b", "c", "d"], dtype=object)
    with pytest.raises(ValueError, match="y contains previously unseen labels"):
        _encode(values, uniques=uniques, check_unknown=False)


def _assert_check_unknown(values, uniques, expected_diff, expected_mask):
    diff = _check_unknown(values, uniques)
    assert_array_equal(diff, expected_diff)

    diff, valid_mask = _check_unknown(values, uniques, return_mask=True)
    assert_array_equal(diff, expected_diff)
    assert_array_equal(valid_mask, expected_mask)


@pytest.mark.parametrize(
    "values, uniques, expected_diff, expected_mask",
    [
        (np.array([1, 2, 3, 4]), np.array([1, 2, 3]), [4], [True, True, True, False]),
        (np.array([2, 1, 4, 5]), np.array([2, 5, 1]), [4], [True, True, False, True]),
        (np.array([2, 1, np.nan]), np.array([2, 5, 1]), [np.nan], [True, True, False]),
        (
            np.array([2, 1, 4, np.nan]),
            np.array([2, 5, 1, np.nan]),
            [4],
            [True, True, False, True],
        ),
        (
            np.array([2, 1, 4, np.nan]),
            np.array([2, 5, 1]),
            [4, np.nan],
            [True, True, False, False],
        ),
        (
            np.array([2, 1, 4, 5]),
            np.array([2, 5, 1, np.nan]),
            [4],
            [True, True, False, True],
        ),
        (
            np.array(["a", "b", "c", "d"], dtype=object),
            np.array(["a", "b", "c"], dtype=object),
            np.array(["d"], dtype=object),
            [True, True, True, False],
        ),
        (
            np.array(["d", "c", "a", "b"], dtype=object),
            np.array(["a", "c", "b"], dtype=object),
            np.array(["d"], dtype=object),
            [False, True, True, True],
        ),
        (
            np.array(["a", "b", "c", "d"]),
            np.array(["a", "b", "c"]),
            np.array(["d"]),
            [True, True, True, False],
        ),
        (
            np.array(["d", "c", "a", "b"]),
            np.array(["a", "c", "b"]),
            np.array(["d"]),
            [False, True, True, True],
        ),
    ],
)
def test_check_unknown(values, uniques, expected_diff, expected_mask):
    _assert_check_unknown(values, uniques, expected_diff, expected_mask)


@pytest.mark.parametrize("missing_value", [None, np.nan, float("nan")])
@pytest.mark.parametrize("pickle_uniques", [True, False])
def test_check_unknown_missing_values(missing_value, pickle_uniques):
    # check for check_unknown with missing values with object dtypes
    values = np.array(["d", "c", "a", "b", missing_value], dtype=object)
    uniques = np.array(["c", "a", "b", missing_value], dtype=object)
    if pickle_uniques:
        uniques = pickle.loads(pickle.dumps(uniques))

    expected_diff = ["d"]
    expected_mask = [False, True, True, True, True]
    _assert_check_unknown(values, uniques, expected_diff, expected_mask)

    values = np.array(["d", "c", "a", "b", missing_value], dtype=object)
    uniques = np.array(["c", "a", "b"], dtype=object)
    if pickle_uniques:
        uniques = pickle.loads(pickle.dumps(uniques))

    expected_diff = ["d", missing_value]

    expected_mask = [False, True, True, True, False]
    _assert_check_unknown(values, uniques, expected_diff, expected_mask)

    values = np.array(["a", missing_value], dtype=object)
    uniques = np.array(["a", "b", "z"], dtype=object)
    if pickle_uniques:
        uniques = pickle.loads(pickle.dumps(uniques))

    expected_diff = [missing_value]
    expected_mask = [True, False]
    _assert_check_unknown(values, uniques, expected_diff, expected_mask)


@pytest.mark.parametrize("missing_value", [np.nan, None, float("nan")])
@pytest.mark.parametrize("pickle_uniques", [True, False])
def test_unique_util_missing_values_objects(missing_value, pickle_uniques):
    # check for _unique and _encode with missing values with object dtypes
    values = np.array(["a", "c", "c", missing_value, "b"], dtype=object)
    expected_uniques = np.array(["a", "b", "c", missing_value], dtype=object)

    uniques = _unique(values)

    if missing_value is None:
        assert_array_equal(uniques, expected_uniques)
    else:  # missing_value == np.nan
        assert_array_equal(uniques[:-1], expected_uniques[:-1])
        assert np.isnan(uniques[-1])

    if pickle_uniques:
        uniques = pickle.loads(pickle.dumps(uniques))

    encoded = _encode(values, uniques=uniques)
    assert_array_equal(encoded, np.array([0, 2, 2, 3, 1]))


def test_unique_util_missing_values_numeric():
    # Check missing values in numerical values
    values = np.array([3, 1, np.nan, 5, 3, np.nan], dtype=float)
    expected_uniques = np.array([1, 3, 5, np.nan], dtype=float)
    expected_inverse = np.array([1, 0, 3, 2, 1, 3])

    uniques = _unique(values)
    assert_array_equal(uniques, expected_uniques)

    uniques, inverse = _unique(values, return_inverse=True)
    assert_array_equal(uniques, expected_uniques)
    assert_array_equal(inverse, expected_inverse)

    encoded = _encode(values, uniques=uniques)
    assert_array_equal(encoded, expected_inverse)


def test_unique_util_with_all_missing_values():
    # test for all types of missing values for object dtype
    values = np.array([np.nan, "a", "c", "c", None, float("nan"), None], dtype=object)

    uniques = _unique(values)
    assert_array_equal(uniques[:-1], ["a", "c", None])
    # last value is nan
    assert np.isnan(uniques[-1])

    expected_inverse = [3, 0, 1, 1, 2, 3, 2]
    _, inverse = _unique(values, return_inverse=True)
    assert_array_equal(inverse, expected_inverse)


def test_check_unknown_with_both_missing_values():
    # test for both types of missing values for object dtype
    values = np.array([np.nan, "a", "c", "c", None, np.nan, None], dtype=object)

    diff = _check_unknown(values, known_values=np.array(["a", "c"], dtype=object))
    assert diff[0] is None
    assert np.isnan(diff[1])

    diff, valid_mask = _check_unknown(
        values, known_values=np.array(["a", "c"], dtype=object), return_mask=True
    )

    assert diff[0] is None
    assert np.isnan(diff[1])
    assert_array_equal(valid_mask, [False, True, True, True, False, False, False])


@pytest.mark.parametrize(
    "values, uniques, expected_counts",
    [
        (np.array([1] * 10 + [2] * 4 + [3] * 15), np.array([1, 2, 3]), [10, 4, 15]),
        (
            np.array([1] * 10 + [2] * 4 + [3] * 15),
            np.array([1, 2, 3, 5]),
            [10, 4, 15, 0],
        ),
        (
            np.array([np.nan] * 10 + [2] * 4 + [3] * 15),
            np.array([2, 3, np.nan]),
            [4, 15, 10],
        ),
        (
            np.array(["b"] * 4 + ["a"] * 16 + ["c"] * 20, dtype=object),
            ["a", "b", "c"],
            [16, 4, 20],
        ),
        (
            np.array(["b"] * 4 + ["a"] * 16 + ["c"] * 20, dtype=object),
            ["c", "b", "a"],
            [20, 4, 16],
        ),
        (
            np.array([np.nan] * 4 + ["a"] * 16 + ["c"] * 20, dtype=object),
            ["c", np.nan, "a"],
            [20, 4, 16],
        ),
        (
            np.array(["b"] * 4 + ["a"] * 16 + ["c"] * 20, dtype=object),
            ["a", "b", "c", "e"],
            [16, 4, 20, 0],
        ),
    ],
)
def test_get_counts(values, uniques, expected_counts):
    counts = _get_counts(values, uniques)
    assert_array_equal(counts, expected_counts)