File size: 12,344 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
{{py:

"""
Dataset abstractions for sequential data access.
Template file for easily generate fused types consistent code using Tempita
(https://github.com/cython/cython/blob/master/Cython/Tempita/_tempita.py).

Generated file: _seq_dataset.pyx

Each class is duplicated for all dtypes (float and double). The keywords
between double braces are substituted during the build.

Author: Peter Prettenhofer <[email protected]>
        Arthur Imbert <[email protected]>
        Joan Massich <[email protected]>

License: BSD 3 clause
"""

# name_suffix, c_type, np_type
dtypes = [('64', 'float64_t', 'np.float64'),
          ('32', 'float32_t', 'np.float32')]

}}
"""Dataset abstractions for sequential data access."""

import numpy as np

cimport cython
from libc.limits cimport INT_MAX

from ._random cimport our_rand_r
from ._typedefs cimport float32_t, float64_t, uint32_t

{{for name_suffix, c_type, np_type in dtypes}}

#------------------------------------------------------------------------------

cdef class SequentialDataset{{name_suffix}}:
    """Base class for datasets with sequential data access.

    SequentialDataset is used to iterate over the rows of a matrix X and
    corresponding target values y, i.e. to iterate over samples.
    There are two methods to get the next sample:
        - next : Iterate sequentially (optionally randomized)
        - random : Iterate randomly (with replacement)

    Attributes
    ----------
    index : np.ndarray
        Index array for fast shuffling.

    index_data_ptr : int
        Pointer to the index array.

    current_index : int
        Index of current sample in ``index``.
        The index of current sample in the data is given by
        index_data_ptr[current_index].

    n_samples : Py_ssize_t
        Number of samples in the dataset.

    seed : uint32_t
        Seed used for random sampling. This attribute is modified at each call to the
        `random` method.
    """

    cdef void next(self, {{c_type}} **x_data_ptr, int **x_ind_ptr,
                   int *nnz, {{c_type}} *y, {{c_type}} *sample_weight) noexcept nogil:
        """Get the next example ``x`` from the dataset.

        This method gets the next sample looping sequentially over all samples.
        The order can be shuffled with the method ``shuffle``.
        Shuffling once before iterating over all samples corresponds to a
        random draw without replacement. It is used for instance in SGD solver.

        Parameters
        ----------
        x_data_ptr : {{c_type}}**
            A pointer to the {{c_type}} array which holds the feature
            values of the next example.

        x_ind_ptr : np.intc**
            A pointer to the int array which holds the feature
            indices of the next example.

        nnz : int*
            A pointer to an int holding the number of non-zero
            values of the next example.

        y : {{c_type}}*
            The target value of the next example.

        sample_weight : {{c_type}}*
            The weight of the next example.
        """
        cdef int current_index = self._get_next_index()
        self._sample(x_data_ptr, x_ind_ptr, nnz, y, sample_weight,
                     current_index)

    cdef int random(self, {{c_type}} **x_data_ptr, int **x_ind_ptr,
                    int *nnz, {{c_type}} *y, {{c_type}} *sample_weight) noexcept nogil:
        """Get a random example ``x`` from the dataset.

        This method gets next sample chosen randomly over a uniform
        distribution. It corresponds to a random draw with replacement.
        It is used for instance in SAG solver.

        Parameters
        ----------
        x_data_ptr : {{c_type}}**
            A pointer to the {{c_type}} array which holds the feature
            values of the next example.

        x_ind_ptr : np.intc**
            A pointer to the int array which holds the feature
            indices of the next example.

        nnz : int*
            A pointer to an int holding the number of non-zero
            values of the next example.

        y : {{c_type}}*
            The target value of the next example.

        sample_weight : {{c_type}}*
            The weight of the next example.

        Returns
        -------
        current_index : int
            Index of current sample.
        """
        cdef int current_index = self._get_random_index()
        self._sample(x_data_ptr, x_ind_ptr, nnz, y, sample_weight,
                     current_index)
        return current_index

    cdef void shuffle(self, uint32_t seed) noexcept nogil:
        """Permutes the ordering of examples."""
        # Fisher-Yates shuffle
        cdef int *ind = self.index_data_ptr
        cdef int n = self.n_samples
        cdef unsigned i, j
        for i in range(n - 1):
            j = i + our_rand_r(&seed) % (n - i)
            ind[i], ind[j] = ind[j], ind[i]

    cdef int _get_next_index(self) noexcept nogil:
        cdef int current_index = self.current_index
        if current_index >= (self.n_samples - 1):
            current_index = -1

        current_index += 1
        self.current_index = current_index
        return self.current_index

    cdef int _get_random_index(self) noexcept nogil:
        cdef int n = self.n_samples
        cdef int current_index = our_rand_r(&self.seed) % n
        self.current_index = current_index
        return current_index

    cdef void _sample(self, {{c_type}} **x_data_ptr, int **x_ind_ptr,
                      int *nnz, {{c_type}} *y, {{c_type}} *sample_weight,
                      int current_index) noexcept nogil:
        pass

    def _shuffle_py(self, uint32_t seed):
        """python function used for easy testing"""
        self.shuffle(seed)

    def _next_py(self):
        """python function used for easy testing"""
        cdef int current_index = self._get_next_index()
        return self._sample_py(current_index)

    def _random_py(self):
        """python function used for easy testing"""
        cdef int current_index = self._get_random_index()
        return self._sample_py(current_index)

    def _sample_py(self, int current_index):
        """python function used for easy testing"""
        cdef {{c_type}}* x_data_ptr
        cdef int* x_indices_ptr
        cdef int nnz, j
        cdef {{c_type}} y, sample_weight

        # call _sample in cython
        self._sample(&x_data_ptr, &x_indices_ptr, &nnz, &y, &sample_weight,
                     current_index)

        # transform the pointed data in numpy CSR array
        cdef {{c_type}}[:] x_data = np.empty(nnz, dtype={{np_type}})
        cdef int[:] x_indices = np.empty(nnz, dtype=np.int32)
        cdef int[:] x_indptr = np.asarray([0, nnz], dtype=np.int32)

        for j in range(nnz):
            x_data[j] = x_data_ptr[j]
            x_indices[j] = x_indices_ptr[j]

        cdef int sample_idx = self.index_data_ptr[current_index]

        return (
            (np.asarray(x_data), np.asarray(x_indices), np.asarray(x_indptr)),
            y,
            sample_weight,
            sample_idx,
        )


cdef class ArrayDataset{{name_suffix}}(SequentialDataset{{name_suffix}}):
    """Dataset backed by a two-dimensional numpy array.

    The dtype of the numpy array is expected to be ``{{np_type}}`` ({{c_type}})
    and C-style memory layout.
    """

    def __cinit__(
        self,
        const {{c_type}}[:, ::1] X,
        const {{c_type}}[::1] Y,
        const {{c_type}}[::1] sample_weights,
        uint32_t seed=1,
    ):
        """A ``SequentialDataset`` backed by a two-dimensional numpy array.

        Parameters
        ----------
        X : ndarray, dtype={{c_type}}, ndim=2, mode='c'
            The sample array, of shape(n_samples, n_features)

        Y : ndarray, dtype={{c_type}}, ndim=1, mode='c'
            The target array, of shape(n_samples, )

        sample_weights : ndarray, dtype={{c_type}}, ndim=1, mode='c'
            The weight of each sample, of shape(n_samples,)
        """
        if X.shape[0] > INT_MAX or X.shape[1] > INT_MAX:
            raise ValueError("More than %d samples or features not supported;"
                             " got (%d, %d)."
                             % (INT_MAX, X.shape[0], X.shape[1]))

        # keep a reference to the data to prevent garbage collection
        self.X = X
        self.Y = Y
        self.sample_weights = sample_weights

        self.n_samples = X.shape[0]
        self.n_features = X.shape[1]

        self.feature_indices = np.arange(0, self.n_features, dtype=np.intc)
        self.feature_indices_ptr = <int *> &self.feature_indices[0]

        self.current_index = -1
        self.X_stride = X.strides[0] // X.itemsize
        self.X_data_ptr = <{{c_type}} *> &X[0, 0]
        self.Y_data_ptr = <{{c_type}} *> &Y[0]
        self.sample_weight_data = <{{c_type}} *> &sample_weights[0]

        # Use index array for fast shuffling
        self.index = np.arange(0, self.n_samples, dtype=np.intc)
        self.index_data_ptr = <int *> &self.index[0]
        # seed should not be 0 for our_rand_r
        self.seed = max(seed, 1)

    cdef void _sample(self, {{c_type}} **x_data_ptr, int **x_ind_ptr,
                      int *nnz, {{c_type}} *y, {{c_type}} *sample_weight,
                      int current_index) noexcept nogil:
        cdef long long sample_idx = self.index_data_ptr[current_index]
        cdef long long offset = sample_idx * self.X_stride

        y[0] = self.Y_data_ptr[sample_idx]
        x_data_ptr[0] = self.X_data_ptr + offset
        x_ind_ptr[0] = self.feature_indices_ptr
        nnz[0] = self.n_features
        sample_weight[0] = self.sample_weight_data[sample_idx]


cdef class CSRDataset{{name_suffix}}(SequentialDataset{{name_suffix}}):
    """A ``SequentialDataset`` backed by a scipy sparse CSR matrix. """

    def __cinit__(
        self,
        const {{c_type}}[::1] X_data,
        const int[::1] X_indptr,
        const int[::1] X_indices,
        const {{c_type}}[::1] Y,
        const {{c_type}}[::1] sample_weights,
        uint32_t seed=1,
    ):
        """Dataset backed by a scipy sparse CSR matrix.

        The feature indices of ``x`` are given by x_ind_ptr[0:nnz].
        The corresponding feature values are given by
        x_data_ptr[0:nnz].

        Parameters
        ----------
        X_data : ndarray, dtype={{c_type}}, ndim=1, mode='c'
            The data array of the CSR features matrix.

        X_indptr : ndarray, dtype=np.intc, ndim=1, mode='c'
            The index pointer array of the CSR features matrix.

        X_indices : ndarray, dtype=np.intc, ndim=1, mode='c'
            The column indices array of the CSR features matrix.

        Y : ndarray, dtype={{c_type}}, ndim=1, mode='c'
            The target values.

        sample_weights : ndarray, dtype={{c_type}}, ndim=1, mode='c'
            The weight of each sample.
        """
        # keep a reference to the data to prevent garbage collection
        self.X_data = X_data
        self.X_indptr = X_indptr
        self.X_indices = X_indices
        self.Y = Y
        self.sample_weights = sample_weights

        self.n_samples = Y.shape[0]
        self.current_index = -1
        self.X_data_ptr = <{{c_type}} *> &X_data[0]
        self.X_indptr_ptr = <int *> &X_indptr[0]
        self.X_indices_ptr = <int *> &X_indices[0]

        self.Y_data_ptr = <{{c_type}} *> &Y[0]
        self.sample_weight_data = <{{c_type}} *> &sample_weights[0]

        # Use index array for fast shuffling
        self.index = np.arange(self.n_samples, dtype=np.intc)
        self.index_data_ptr = <int *> &self.index[0]
        # seed should not be 0 for our_rand_r
        self.seed = max(seed, 1)

    cdef void _sample(self, {{c_type}} **x_data_ptr, int **x_ind_ptr,
                      int *nnz, {{c_type}} *y, {{c_type}} *sample_weight,
                      int current_index) noexcept nogil:
        cdef long long sample_idx = self.index_data_ptr[current_index]
        cdef long long offset = self.X_indptr_ptr[sample_idx]
        y[0] = self.Y_data_ptr[sample_idx]
        x_data_ptr[0] = self.X_data_ptr + offset
        x_ind_ptr[0] = self.X_indices_ptr + offset
        nnz[0] = self.X_indptr_ptr[sample_idx + 1] - offset
        sample_weight[0] = self.sample_weight_data[sample_idx]


{{endfor}}