File size: 66,264 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

from numbers import Integral, Real

import numpy as np

from ..base import BaseEstimator, OutlierMixin, RegressorMixin, _fit_context
from ..linear_model._base import LinearClassifierMixin, LinearModel, SparseCoefMixin
from ..utils._param_validation import Interval, StrOptions
from ..utils.multiclass import check_classification_targets
from ..utils.validation import _num_samples, validate_data
from ._base import BaseLibSVM, BaseSVC, _fit_liblinear, _get_liblinear_solver_type


def _validate_dual_parameter(dual, loss, penalty, multi_class, X):
    """Helper function to assign the value of dual parameter."""
    if dual == "auto":
        if X.shape[0] < X.shape[1]:
            try:
                _get_liblinear_solver_type(multi_class, penalty, loss, True)
                return True
            except ValueError:  # dual not supported for the combination
                return False
        else:
            try:
                _get_liblinear_solver_type(multi_class, penalty, loss, False)
                return False
            except ValueError:  # primal not supported by the combination
                return True
    else:
        return dual


class LinearSVC(LinearClassifierMixin, SparseCoefMixin, BaseEstimator):
    """Linear Support Vector Classification.

    Similar to SVC with parameter kernel='linear', but implemented in terms of
    liblinear rather than libsvm, so it has more flexibility in the choice of
    penalties and loss functions and should scale better to large numbers of
    samples.

    The main differences between :class:`~sklearn.svm.LinearSVC` and
    :class:`~sklearn.svm.SVC` lie in the loss function used by default, and in
    the handling of intercept regularization between those two implementations.

    This class supports both dense and sparse input and the multiclass support
    is handled according to a one-vs-the-rest scheme.

    Read more in the :ref:`User Guide <svm_classification>`.

    Parameters
    ----------
    penalty : {'l1', 'l2'}, default='l2'
        Specifies the norm used in the penalization. The 'l2'
        penalty is the standard used in SVC. The 'l1' leads to ``coef_``
        vectors that are sparse.

    loss : {'hinge', 'squared_hinge'}, default='squared_hinge'
        Specifies the loss function. 'hinge' is the standard SVM loss
        (used e.g. by the SVC class) while 'squared_hinge' is the
        square of the hinge loss. The combination of ``penalty='l1'``
        and ``loss='hinge'`` is not supported.

    dual : "auto" or bool, default="auto"
        Select the algorithm to either solve the dual or primal
        optimization problem. Prefer dual=False when n_samples > n_features.
        `dual="auto"` will choose the value of the parameter automatically,
        based on the values of `n_samples`, `n_features`, `loss`, `multi_class`
        and `penalty`. If `n_samples` < `n_features` and optimizer supports
        chosen `loss`, `multi_class` and `penalty`, then dual will be set to True,
        otherwise it will be set to False.

        .. versionchanged:: 1.3
           The `"auto"` option is added in version 1.3 and will be the default
           in version 1.5.

    tol : float, default=1e-4
        Tolerance for stopping criteria.

    C : float, default=1.0
        Regularization parameter. The strength of the regularization is
        inversely proportional to C. Must be strictly positive.
        For an intuitive visualization of the effects of scaling
        the regularization parameter C, see
        :ref:`sphx_glr_auto_examples_svm_plot_svm_scale_c.py`.

    multi_class : {'ovr', 'crammer_singer'}, default='ovr'
        Determines the multi-class strategy if `y` contains more than
        two classes.
        ``"ovr"`` trains n_classes one-vs-rest classifiers, while
        ``"crammer_singer"`` optimizes a joint objective over all classes.
        While `crammer_singer` is interesting from a theoretical perspective
        as it is consistent, it is seldom used in practice as it rarely leads
        to better accuracy and is more expensive to compute.
        If ``"crammer_singer"`` is chosen, the options loss, penalty and dual
        will be ignored.

    fit_intercept : bool, default=True
        Whether or not to fit an intercept. If set to True, the feature vector
        is extended to include an intercept term: `[x_1, ..., x_n, 1]`, where
        1 corresponds to the intercept. If set to False, no intercept will be
        used in calculations (i.e. data is expected to be already centered).

    intercept_scaling : float, default=1.0
        When `fit_intercept` is True, the instance vector x becomes ``[x_1,
        ..., x_n, intercept_scaling]``, i.e. a "synthetic" feature with a
        constant value equal to `intercept_scaling` is appended to the instance
        vector. The intercept becomes intercept_scaling * synthetic feature
        weight. Note that liblinear internally penalizes the intercept,
        treating it like any other term in the feature vector. To reduce the
        impact of the regularization on the intercept, the `intercept_scaling`
        parameter can be set to a value greater than 1; the higher the value of
        `intercept_scaling`, the lower the impact of regularization on it.
        Then, the weights become `[w_x_1, ..., w_x_n,
        w_intercept*intercept_scaling]`, where `w_x_1, ..., w_x_n` represent
        the feature weights and the intercept weight is scaled by
        `intercept_scaling`. This scaling allows the intercept term to have a
        different regularization behavior compared to the other features.

    class_weight : dict or 'balanced', default=None
        Set the parameter C of class i to ``class_weight[i]*C`` for
        SVC. If not given, all classes are supposed to have
        weight one.
        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``.

    verbose : int, default=0
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in liblinear that, if enabled, may not work
        properly in a multithreaded context.

    random_state : int, RandomState instance or None, default=None
        Controls the pseudo random number generation for shuffling the data for
        the dual coordinate descent (if ``dual=True``). When ``dual=False`` the
        underlying implementation of :class:`LinearSVC` is not random and
        ``random_state`` has no effect on the results.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    max_iter : int, default=1000
        The maximum number of iterations to be run.

    Attributes
    ----------
    coef_ : ndarray of shape (1, n_features) if n_classes == 2 \
            else (n_classes, n_features)
        Weights assigned to the features (coefficients in the primal
        problem).

        ``coef_`` is a readonly property derived from ``raw_coef_`` that
        follows the internal memory layout of liblinear.

    intercept_ : ndarray of shape (1,) if n_classes == 2 else (n_classes,)
        Constants in decision function.

    classes_ : ndarray of shape (n_classes,)
        The unique classes labels.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : int
        Maximum number of iterations run across all classes.

    See Also
    --------
    SVC : Implementation of Support Vector Machine classifier using libsvm:
        the kernel can be non-linear but its SMO algorithm does not
        scale to large number of samples as LinearSVC does.

        Furthermore SVC multi-class mode is implemented using one
        vs one scheme while LinearSVC uses one vs the rest. It is
        possible to implement one vs the rest with SVC by using the
        :class:`~sklearn.multiclass.OneVsRestClassifier` wrapper.

        Finally SVC can fit dense data without memory copy if the input
        is C-contiguous. Sparse data will still incur memory copy though.

    sklearn.linear_model.SGDClassifier : SGDClassifier can optimize the same
        cost function as LinearSVC
        by adjusting the penalty and loss parameters. In addition it requires
        less memory, allows incremental (online) learning, and implements
        various loss functions and regularization regimes.

    Notes
    -----
    The underlying C implementation uses a random number generator to
    select features when fitting the model. It is thus not uncommon
    to have slightly different results for the same input data. If
    that happens, try with a smaller ``tol`` parameter.

    The underlying implementation, liblinear, uses a sparse internal
    representation for the data that will incur a memory copy.

    Predict output may not match that of standalone liblinear in certain
    cases. See :ref:`differences from liblinear <liblinear_differences>`
    in the narrative documentation.

    References
    ----------
    `LIBLINEAR: A Library for Large Linear Classification
    <https://www.csie.ntu.edu.tw/~cjlin/liblinear/>`__

    Examples
    --------
    >>> from sklearn.svm import LinearSVC
    >>> from sklearn.pipeline import make_pipeline
    >>> from sklearn.preprocessing import StandardScaler
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_features=4, random_state=0)
    >>> clf = make_pipeline(StandardScaler(),
    ...                     LinearSVC(random_state=0, tol=1e-5))
    >>> clf.fit(X, y)
    Pipeline(steps=[('standardscaler', StandardScaler()),
                    ('linearsvc', LinearSVC(random_state=0, tol=1e-05))])

    >>> print(clf.named_steps['linearsvc'].coef_)
    [[0.141...   0.526... 0.679... 0.493...]]

    >>> print(clf.named_steps['linearsvc'].intercept_)
    [0.1693...]
    >>> print(clf.predict([[0, 0, 0, 0]]))
    [1]
    """

    _parameter_constraints: dict = {
        "penalty": [StrOptions({"l1", "l2"})],
        "loss": [StrOptions({"hinge", "squared_hinge"})],
        "dual": ["boolean", StrOptions({"auto"})],
        "tol": [Interval(Real, 0.0, None, closed="neither")],
        "C": [Interval(Real, 0.0, None, closed="neither")],
        "multi_class": [StrOptions({"ovr", "crammer_singer"})],
        "fit_intercept": ["boolean"],
        "intercept_scaling": [Interval(Real, 0, None, closed="neither")],
        "class_weight": [None, dict, StrOptions({"balanced"})],
        "verbose": ["verbose"],
        "random_state": ["random_state"],
        "max_iter": [Interval(Integral, 0, None, closed="left")],
    }

    def __init__(
        self,
        penalty="l2",
        loss="squared_hinge",
        *,
        dual="auto",
        tol=1e-4,
        C=1.0,
        multi_class="ovr",
        fit_intercept=True,
        intercept_scaling=1,
        class_weight=None,
        verbose=0,
        random_state=None,
        max_iter=1000,
    ):
        self.dual = dual
        self.tol = tol
        self.C = C
        self.multi_class = multi_class
        self.fit_intercept = fit_intercept
        self.intercept_scaling = intercept_scaling
        self.class_weight = class_weight
        self.verbose = verbose
        self.random_state = random_state
        self.max_iter = max_iter
        self.penalty = penalty
        self.loss = loss

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y, sample_weight=None):
        """Fit the model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vector, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        y : array-like of shape (n_samples,)
            Target vector relative to X.

        sample_weight : array-like of shape (n_samples,), default=None
            Array of weights that are assigned to individual
            samples. If not provided,
            then each sample is given unit weight.

            .. versionadded:: 0.18

        Returns
        -------
        self : object
            An instance of the estimator.
        """
        X, y = validate_data(
            self,
            X,
            y,
            accept_sparse="csr",
            dtype=np.float64,
            order="C",
            accept_large_sparse=False,
        )
        check_classification_targets(y)
        self.classes_ = np.unique(y)

        _dual = _validate_dual_parameter(
            self.dual, self.loss, self.penalty, self.multi_class, X
        )

        self.coef_, self.intercept_, n_iter_ = _fit_liblinear(
            X,
            y,
            self.C,
            self.fit_intercept,
            self.intercept_scaling,
            self.class_weight,
            self.penalty,
            _dual,
            self.verbose,
            self.max_iter,
            self.tol,
            self.random_state,
            self.multi_class,
            self.loss,
            sample_weight=sample_weight,
        )
        # Backward compatibility: _fit_liblinear is used both by LinearSVC/R
        # and LogisticRegression but LogisticRegression sets a structured
        # `n_iter_` attribute with information about the underlying OvR fits
        # while LinearSVC/R only reports the maximum value.
        self.n_iter_ = n_iter_.max().item()

        if self.multi_class == "crammer_singer" and len(self.classes_) == 2:
            self.coef_ = (self.coef_[1] - self.coef_[0]).reshape(1, -1)
            if self.fit_intercept:
                intercept = self.intercept_[1] - self.intercept_[0]
                self.intercept_ = np.array([intercept])

        return self

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.sparse = True
        return tags


class LinearSVR(RegressorMixin, LinearModel):
    """Linear Support Vector Regression.

    Similar to SVR with parameter kernel='linear', but implemented in terms of
    liblinear rather than libsvm, so it has more flexibility in the choice of
    penalties and loss functions and should scale better to large numbers of
    samples.

    The main differences between :class:`~sklearn.svm.LinearSVR` and
    :class:`~sklearn.svm.SVR` lie in the loss function used by default, and in
    the handling of intercept regularization between those two implementations.

    This class supports both dense and sparse input.

    Read more in the :ref:`User Guide <svm_regression>`.

    .. versionadded:: 0.16

    Parameters
    ----------
    epsilon : float, default=0.0
        Epsilon parameter in the epsilon-insensitive loss function. Note
        that the value of this parameter depends on the scale of the target
        variable y. If unsure, set ``epsilon=0``.

    tol : float, default=1e-4
        Tolerance for stopping criteria.

    C : float, default=1.0
        Regularization parameter. The strength of the regularization is
        inversely proportional to C. Must be strictly positive.

    loss : {'epsilon_insensitive', 'squared_epsilon_insensitive'}, \
            default='epsilon_insensitive'
        Specifies the loss function. The epsilon-insensitive loss
        (standard SVR) is the L1 loss, while the squared epsilon-insensitive
        loss ('squared_epsilon_insensitive') is the L2 loss.

    fit_intercept : bool, default=True
        Whether or not to fit an intercept. If set to True, the feature vector
        is extended to include an intercept term: `[x_1, ..., x_n, 1]`, where
        1 corresponds to the intercept. If set to False, no intercept will be
        used in calculations (i.e. data is expected to be already centered).

    intercept_scaling : float, default=1.0
        When `fit_intercept` is True, the instance vector x becomes `[x_1, ...,
        x_n, intercept_scaling]`, i.e. a "synthetic" feature with a constant
        value equal to `intercept_scaling` is appended to the instance vector.
        The intercept becomes intercept_scaling * synthetic feature weight.
        Note that liblinear internally penalizes the intercept, treating it
        like any other term in the feature vector. To reduce the impact of the
        regularization on the intercept, the `intercept_scaling` parameter can
        be set to a value greater than 1; the higher the value of
        `intercept_scaling`, the lower the impact of regularization on it.
        Then, the weights become `[w_x_1, ..., w_x_n,
        w_intercept*intercept_scaling]`, where `w_x_1, ..., w_x_n` represent
        the feature weights and the intercept weight is scaled by
        `intercept_scaling`. This scaling allows the intercept term to have a
        different regularization behavior compared to the other features.

    dual : "auto" or bool, default="auto"
        Select the algorithm to either solve the dual or primal
        optimization problem. Prefer dual=False when n_samples > n_features.
        `dual="auto"` will choose the value of the parameter automatically,
        based on the values of `n_samples`, `n_features` and `loss`. If
        `n_samples` < `n_features` and optimizer supports chosen `loss`,
        then dual will be set to True, otherwise it will be set to False.

        .. versionchanged:: 1.3
           The `"auto"` option is added in version 1.3 and will be the default
           in version 1.5.

    verbose : int, default=0
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in liblinear that, if enabled, may not work
        properly in a multithreaded context.

    random_state : int, RandomState instance or None, default=None
        Controls the pseudo random number generation for shuffling the data.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    max_iter : int, default=1000
        The maximum number of iterations to be run.

    Attributes
    ----------
    coef_ : ndarray of shape (n_features) if n_classes == 2 \
            else (n_classes, n_features)
        Weights assigned to the features (coefficients in the primal
        problem).

        `coef_` is a readonly property derived from `raw_coef_` that
        follows the internal memory layout of liblinear.

    intercept_ : ndarray of shape (1) if n_classes == 2 else (n_classes)
        Constants in decision function.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : int
        Maximum number of iterations run across all classes.

    See Also
    --------
    LinearSVC : Implementation of Support Vector Machine classifier using the
        same library as this class (liblinear).

    SVR : Implementation of Support Vector Machine regression using libsvm:
        the kernel can be non-linear but its SMO algorithm does not scale to
        large number of samples as :class:`~sklearn.svm.LinearSVR` does.

    sklearn.linear_model.SGDRegressor : SGDRegressor can optimize the same cost
        function as LinearSVR
        by adjusting the penalty and loss parameters. In addition it requires
        less memory, allows incremental (online) learning, and implements
        various loss functions and regularization regimes.

    Examples
    --------
    >>> from sklearn.svm import LinearSVR
    >>> from sklearn.pipeline import make_pipeline
    >>> from sklearn.preprocessing import StandardScaler
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(n_features=4, random_state=0)
    >>> regr = make_pipeline(StandardScaler(),
    ...                      LinearSVR(random_state=0, tol=1e-5))
    >>> regr.fit(X, y)
    Pipeline(steps=[('standardscaler', StandardScaler()),
                    ('linearsvr', LinearSVR(random_state=0, tol=1e-05))])

    >>> print(regr.named_steps['linearsvr'].coef_)
    [18.582... 27.023... 44.357... 64.522...]
    >>> print(regr.named_steps['linearsvr'].intercept_)
    [-4...]
    >>> print(regr.predict([[0, 0, 0, 0]]))
    [-2.384...]
    """

    _parameter_constraints: dict = {
        "epsilon": [Real],
        "tol": [Interval(Real, 0.0, None, closed="neither")],
        "C": [Interval(Real, 0.0, None, closed="neither")],
        "loss": [StrOptions({"epsilon_insensitive", "squared_epsilon_insensitive"})],
        "fit_intercept": ["boolean"],
        "intercept_scaling": [Interval(Real, 0, None, closed="neither")],
        "dual": ["boolean", StrOptions({"auto"})],
        "verbose": ["verbose"],
        "random_state": ["random_state"],
        "max_iter": [Interval(Integral, 0, None, closed="left")],
    }

    def __init__(
        self,
        *,
        epsilon=0.0,
        tol=1e-4,
        C=1.0,
        loss="epsilon_insensitive",
        fit_intercept=True,
        intercept_scaling=1.0,
        dual="auto",
        verbose=0,
        random_state=None,
        max_iter=1000,
    ):
        self.tol = tol
        self.C = C
        self.epsilon = epsilon
        self.fit_intercept = fit_intercept
        self.intercept_scaling = intercept_scaling
        self.verbose = verbose
        self.random_state = random_state
        self.max_iter = max_iter
        self.dual = dual
        self.loss = loss

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y, sample_weight=None):
        """Fit the model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vector, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        y : array-like of shape (n_samples,)
            Target vector relative to X.

        sample_weight : array-like of shape (n_samples,), default=None
            Array of weights that are assigned to individual
            samples. If not provided,
            then each sample is given unit weight.

            .. versionadded:: 0.18

        Returns
        -------
        self : object
            An instance of the estimator.
        """
        X, y = validate_data(
            self,
            X,
            y,
            accept_sparse="csr",
            dtype=np.float64,
            order="C",
            accept_large_sparse=False,
        )
        penalty = "l2"  # SVR only accepts l2 penalty

        _dual = _validate_dual_parameter(self.dual, self.loss, penalty, "ovr", X)

        self.coef_, self.intercept_, n_iter_ = _fit_liblinear(
            X,
            y,
            self.C,
            self.fit_intercept,
            self.intercept_scaling,
            None,
            penalty,
            _dual,
            self.verbose,
            self.max_iter,
            self.tol,
            self.random_state,
            loss=self.loss,
            epsilon=self.epsilon,
            sample_weight=sample_weight,
        )
        self.coef_ = self.coef_.ravel()
        # Backward compatibility: _fit_liblinear is used both by LinearSVC/R
        # and LogisticRegression but LogisticRegression sets a structured
        # `n_iter_` attribute with information about the underlying OvR fits
        # while LinearSVC/R only reports the maximum value.
        self.n_iter_ = n_iter_.max().item()

        return self

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.sparse = True
        return tags


class SVC(BaseSVC):
    """C-Support Vector Classification.

    The implementation is based on libsvm. The fit time scales at least
    quadratically with the number of samples and may be impractical
    beyond tens of thousands of samples. For large datasets
    consider using :class:`~sklearn.svm.LinearSVC` or
    :class:`~sklearn.linear_model.SGDClassifier` instead, possibly after a
    :class:`~sklearn.kernel_approximation.Nystroem` transformer or
    other :ref:`kernel_approximation`.

    The multiclass support is handled according to a one-vs-one scheme.

    For details on the precise mathematical formulation of the provided
    kernel functions and how `gamma`, `coef0` and `degree` affect each
    other, see the corresponding section in the narrative documentation:
    :ref:`svm_kernels`.

    To learn how to tune SVC's hyperparameters, see the following example:
    :ref:`sphx_glr_auto_examples_model_selection_plot_nested_cross_validation_iris.py`

    Read more in the :ref:`User Guide <svm_classification>`.

    Parameters
    ----------
    C : float, default=1.0
        Regularization parameter. The strength of the regularization is
        inversely proportional to C. Must be strictly positive. The penalty
        is a squared l2 penalty. For an intuitive visualization of the effects
        of scaling the regularization parameter C, see
        :ref:`sphx_glr_auto_examples_svm_plot_svm_scale_c.py`.

    kernel : {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable,  \
        default='rbf'
        Specifies the kernel type to be used in the algorithm. If
        none is given, 'rbf' will be used. If a callable is given it is used to
        pre-compute the kernel matrix from data matrices; that matrix should be
        an array of shape ``(n_samples, n_samples)``. For an intuitive
        visualization of different kernel types see
        :ref:`sphx_glr_auto_examples_svm_plot_svm_kernels.py`.

    degree : int, default=3
        Degree of the polynomial kernel function ('poly').
        Must be non-negative. Ignored by all other kernels.

    gamma : {'scale', 'auto'} or float, default='scale'
        Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

        - if ``gamma='scale'`` (default) is passed then it uses
          1 / (n_features * X.var()) as value of gamma,
        - if 'auto', uses 1 / n_features
        - if float, must be non-negative.

        .. versionchanged:: 0.22
           The default value of ``gamma`` changed from 'auto' to 'scale'.

    coef0 : float, default=0.0
        Independent term in kernel function.
        It is only significant in 'poly' and 'sigmoid'.

    shrinking : bool, default=True
        Whether to use the shrinking heuristic.
        See the :ref:`User Guide <shrinking_svm>`.

    probability : bool, default=False
        Whether to enable probability estimates. This must be enabled prior
        to calling `fit`, will slow down that method as it internally uses
        5-fold cross-validation, and `predict_proba` may be inconsistent with
        `predict`. Read more in the :ref:`User Guide <scores_probabilities>`.

    tol : float, default=1e-3
        Tolerance for stopping criterion.

    cache_size : float, default=200
        Specify the size of the kernel cache (in MB).

    class_weight : dict or 'balanced', default=None
        Set the parameter C of class i to class_weight[i]*C for
        SVC. If not given, all classes are supposed to have
        weight one.
        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``.

    verbose : bool, default=False
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in libsvm that, if enabled, may not work
        properly in a multithreaded context.

    max_iter : int, default=-1
        Hard limit on iterations within solver, or -1 for no limit.

    decision_function_shape : {'ovo', 'ovr'}, default='ovr'
        Whether to return a one-vs-rest ('ovr') decision function of shape
        (n_samples, n_classes) as all other classifiers, or the original
        one-vs-one ('ovo') decision function of libsvm which has shape
        (n_samples, n_classes * (n_classes - 1) / 2). However, note that
        internally, one-vs-one ('ovo') is always used as a multi-class strategy
        to train models; an ovr matrix is only constructed from the ovo matrix.
        The parameter is ignored for binary classification.

        .. versionchanged:: 0.19
            decision_function_shape is 'ovr' by default.

        .. versionadded:: 0.17
           *decision_function_shape='ovr'* is recommended.

        .. versionchanged:: 0.17
           Deprecated *decision_function_shape='ovo' and None*.

    break_ties : bool, default=False
        If true, ``decision_function_shape='ovr'``, and number of classes > 2,
        :term:`predict` will break ties according to the confidence values of
        :term:`decision_function`; otherwise the first class among the tied
        classes is returned. Please note that breaking ties comes at a
        relatively high computational cost compared to a simple predict. See
        :ref:`sphx_glr_auto_examples_svm_plot_svm_tie_breaking.py` for an
        example of its usage with ``decision_function_shape='ovr'``.

        .. versionadded:: 0.22

    random_state : int, RandomState instance or None, default=None
        Controls the pseudo random number generation for shuffling the data for
        probability estimates. Ignored when `probability` is False.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    class_weight_ : ndarray of shape (n_classes,)
        Multipliers of parameter C for each class.
        Computed based on the ``class_weight`` parameter.

    classes_ : ndarray of shape (n_classes,)
        The classes labels.

    coef_ : ndarray of shape (n_classes * (n_classes - 1) / 2, n_features)
        Weights assigned to the features (coefficients in the primal
        problem). This is only available in the case of a linear kernel.

        `coef_` is a readonly property derived from `dual_coef_` and
        `support_vectors_`.

    dual_coef_ : ndarray of shape (n_classes -1, n_SV)
        Dual coefficients of the support vector in the decision
        function (see :ref:`sgd_mathematical_formulation`), multiplied by
        their targets.
        For multiclass, coefficient for all 1-vs-1 classifiers.
        The layout of the coefficients in the multiclass case is somewhat
        non-trivial. See the :ref:`multi-class section of the User Guide
        <svm_multi_class>` for details.

    fit_status_ : int
        0 if correctly fitted, 1 otherwise (will raise warning)

    intercept_ : ndarray of shape (n_classes * (n_classes - 1) / 2,)
        Constants in decision function.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : ndarray of shape (n_classes * (n_classes - 1) // 2,)
        Number of iterations run by the optimization routine to fit the model.
        The shape of this attribute depends on the number of models optimized
        which in turn depends on the number of classes.

        .. versionadded:: 1.1

    support_ : ndarray of shape (n_SV)
        Indices of support vectors.

    support_vectors_ : ndarray of shape (n_SV, n_features)
        Support vectors. An empty array if kernel is precomputed.

    n_support_ : ndarray of shape (n_classes,), dtype=int32
        Number of support vectors for each class.

    probA_ : ndarray of shape (n_classes * (n_classes - 1) / 2)
    probB_ : ndarray of shape (n_classes * (n_classes - 1) / 2)
        If `probability=True`, it corresponds to the parameters learned in
        Platt scaling to produce probability estimates from decision values.
        If `probability=False`, it's an empty array. Platt scaling uses the
        logistic function
        ``1 / (1 + exp(decision_value * probA_ + probB_))``
        where ``probA_`` and ``probB_`` are learned from the dataset [2]_. For
        more information on the multiclass case and training procedure see
        section 8 of [1]_.

    shape_fit_ : tuple of int of shape (n_dimensions_of_X,)
        Array dimensions of training vector ``X``.

    See Also
    --------
    SVR : Support Vector Machine for Regression implemented using libsvm.

    LinearSVC : Scalable Linear Support Vector Machine for classification
        implemented using liblinear. Check the See Also section of
        LinearSVC for more comparison element.

    References
    ----------
    .. [1] `LIBSVM: A Library for Support Vector Machines
        <http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf>`_

    .. [2] `Platt, John (1999). "Probabilistic Outputs for Support Vector
        Machines and Comparisons to Regularized Likelihood Methods"
        <https://citeseerx.ist.psu.edu/doc_view/pid/42e5ed832d4310ce4378c44d05570439df28a393>`_

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.pipeline import make_pipeline
    >>> from sklearn.preprocessing import StandardScaler
    >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
    >>> y = np.array([1, 1, 2, 2])
    >>> from sklearn.svm import SVC
    >>> clf = make_pipeline(StandardScaler(), SVC(gamma='auto'))
    >>> clf.fit(X, y)
    Pipeline(steps=[('standardscaler', StandardScaler()),
                    ('svc', SVC(gamma='auto'))])

    >>> print(clf.predict([[-0.8, -1]]))
    [1]

    For a comaprison of the SVC with other classifiers see:
    :ref:`sphx_glr_auto_examples_classification_plot_classification_probability.py`.
    """

    _impl = "c_svc"

    def __init__(
        self,
        *,
        C=1.0,
        kernel="rbf",
        degree=3,
        gamma="scale",
        coef0=0.0,
        shrinking=True,
        probability=False,
        tol=1e-3,
        cache_size=200,
        class_weight=None,
        verbose=False,
        max_iter=-1,
        decision_function_shape="ovr",
        break_ties=False,
        random_state=None,
    ):
        super().__init__(
            kernel=kernel,
            degree=degree,
            gamma=gamma,
            coef0=coef0,
            tol=tol,
            C=C,
            nu=0.0,
            shrinking=shrinking,
            probability=probability,
            cache_size=cache_size,
            class_weight=class_weight,
            verbose=verbose,
            max_iter=max_iter,
            decision_function_shape=decision_function_shape,
            break_ties=break_ties,
            random_state=random_state,
        )


class NuSVC(BaseSVC):
    """Nu-Support Vector Classification.

    Similar to SVC but uses a parameter to control the number of support
    vectors.

    The implementation is based on libsvm.

    Read more in the :ref:`User Guide <svm_classification>`.

    Parameters
    ----------
    nu : float, default=0.5
        An upper bound on the fraction of margin errors (see :ref:`User Guide
        <nu_svc>`) and a lower bound of the fraction of support vectors.
        Should be in the interval (0, 1].

    kernel : {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable,  \
        default='rbf'
        Specifies the kernel type to be used in the algorithm.
        If none is given, 'rbf' will be used. If a callable is given it is
        used to precompute the kernel matrix. For an intuitive
        visualization of different kernel types see
        :ref:`sphx_glr_auto_examples_svm_plot_svm_kernels.py`.

    degree : int, default=3
        Degree of the polynomial kernel function ('poly').
        Must be non-negative. Ignored by all other kernels.

    gamma : {'scale', 'auto'} or float, default='scale'
        Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

        - if ``gamma='scale'`` (default) is passed then it uses
          1 / (n_features * X.var()) as value of gamma,
        - if 'auto', uses 1 / n_features
        - if float, must be non-negative.

        .. versionchanged:: 0.22
           The default value of ``gamma`` changed from 'auto' to 'scale'.

    coef0 : float, default=0.0
        Independent term in kernel function.
        It is only significant in 'poly' and 'sigmoid'.

    shrinking : bool, default=True
        Whether to use the shrinking heuristic.
        See the :ref:`User Guide <shrinking_svm>`.

    probability : bool, default=False
        Whether to enable probability estimates. This must be enabled prior
        to calling `fit`, will slow down that method as it internally uses
        5-fold cross-validation, and `predict_proba` may be inconsistent with
        `predict`. Read more in the :ref:`User Guide <scores_probabilities>`.

    tol : float, default=1e-3
        Tolerance for stopping criterion.

    cache_size : float, default=200
        Specify the size of the kernel cache (in MB).

    class_weight : {dict, 'balanced'}, default=None
        Set the parameter C of class i to class_weight[i]*C for
        SVC. If not given, all classes are supposed to have
        weight one. The "balanced" mode uses the values of y to automatically
        adjust weights inversely proportional to class frequencies as
        ``n_samples / (n_classes * np.bincount(y))``.

    verbose : bool, default=False
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in libsvm that, if enabled, may not work
        properly in a multithreaded context.

    max_iter : int, default=-1
        Hard limit on iterations within solver, or -1 for no limit.

    decision_function_shape : {'ovo', 'ovr'}, default='ovr'
        Whether to return a one-vs-rest ('ovr') decision function of shape
        (n_samples, n_classes) as all other classifiers, or the original
        one-vs-one ('ovo') decision function of libsvm which has shape
        (n_samples, n_classes * (n_classes - 1) / 2). However, one-vs-one
        ('ovo') is always used as multi-class strategy. The parameter is
        ignored for binary classification.

        .. versionchanged:: 0.19
            decision_function_shape is 'ovr' by default.

        .. versionadded:: 0.17
           *decision_function_shape='ovr'* is recommended.

        .. versionchanged:: 0.17
           Deprecated *decision_function_shape='ovo' and None*.

    break_ties : bool, default=False
        If true, ``decision_function_shape='ovr'``, and number of classes > 2,
        :term:`predict` will break ties according to the confidence values of
        :term:`decision_function`; otherwise the first class among the tied
        classes is returned. Please note that breaking ties comes at a
        relatively high computational cost compared to a simple predict.
        See :ref:`sphx_glr_auto_examples_svm_plot_svm_tie_breaking.py` for an
        example of its usage with ``decision_function_shape='ovr'``.

        .. versionadded:: 0.22

    random_state : int, RandomState instance or None, default=None
        Controls the pseudo random number generation for shuffling the data for
        probability estimates. Ignored when `probability` is False.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    class_weight_ : ndarray of shape (n_classes,)
        Multipliers of parameter C of each class.
        Computed based on the ``class_weight`` parameter.

    classes_ : ndarray of shape (n_classes,)
        The unique classes labels.

    coef_ : ndarray of shape (n_classes * (n_classes -1) / 2, n_features)
        Weights assigned to the features (coefficients in the primal
        problem). This is only available in the case of a linear kernel.

        `coef_` is readonly property derived from `dual_coef_` and
        `support_vectors_`.

    dual_coef_ : ndarray of shape (n_classes - 1, n_SV)
        Dual coefficients of the support vector in the decision
        function (see :ref:`sgd_mathematical_formulation`), multiplied by
        their targets.
        For multiclass, coefficient for all 1-vs-1 classifiers.
        The layout of the coefficients in the multiclass case is somewhat
        non-trivial. See the :ref:`multi-class section of the User Guide
        <svm_multi_class>` for details.

    fit_status_ : int
        0 if correctly fitted, 1 if the algorithm did not converge.

    intercept_ : ndarray of shape (n_classes * (n_classes - 1) / 2,)
        Constants in decision function.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : ndarray of shape (n_classes * (n_classes - 1) // 2,)
        Number of iterations run by the optimization routine to fit the model.
        The shape of this attribute depends on the number of models optimized
        which in turn depends on the number of classes.

        .. versionadded:: 1.1

    support_ : ndarray of shape (n_SV,)
        Indices of support vectors.

    support_vectors_ : ndarray of shape (n_SV, n_features)
        Support vectors.

    n_support_ : ndarray of shape (n_classes,), dtype=int32
        Number of support vectors for each class.

    fit_status_ : int
        0 if correctly fitted, 1 if the algorithm did not converge.

    probA_ : ndarray of shape (n_classes * (n_classes - 1) / 2,)

    probB_ : ndarray of shape (n_classes * (n_classes - 1) / 2,)
        If `probability=True`, it corresponds to the parameters learned in
        Platt scaling to produce probability estimates from decision values.
        If `probability=False`, it's an empty array. Platt scaling uses the
        logistic function
        ``1 / (1 + exp(decision_value * probA_ + probB_))``
        where ``probA_`` and ``probB_`` are learned from the dataset [2]_. For
        more information on the multiclass case and training procedure see
        section 8 of [1]_.

    shape_fit_ : tuple of int of shape (n_dimensions_of_X,)
        Array dimensions of training vector ``X``.

    See Also
    --------
    SVC : Support Vector Machine for classification using libsvm.

    LinearSVC : Scalable linear Support Vector Machine for classification using
        liblinear.

    References
    ----------
    .. [1] `LIBSVM: A Library for Support Vector Machines
        <http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf>`_

    .. [2] `Platt, John (1999). "Probabilistic Outputs for Support Vector
        Machines and Comparisons to Regularized Likelihood Methods"
        <https://citeseerx.ist.psu.edu/doc_view/pid/42e5ed832d4310ce4378c44d05570439df28a393>`_

    Examples
    --------
    >>> import numpy as np
    >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
    >>> y = np.array([1, 1, 2, 2])
    >>> from sklearn.pipeline import make_pipeline
    >>> from sklearn.preprocessing import StandardScaler
    >>> from sklearn.svm import NuSVC
    >>> clf = make_pipeline(StandardScaler(), NuSVC())
    >>> clf.fit(X, y)
    Pipeline(steps=[('standardscaler', StandardScaler()), ('nusvc', NuSVC())])
    >>> print(clf.predict([[-0.8, -1]]))
    [1]
    """

    _impl = "nu_svc"

    _parameter_constraints: dict = {
        **BaseSVC._parameter_constraints,
        "nu": [Interval(Real, 0.0, 1.0, closed="right")],
    }
    _parameter_constraints.pop("C")

    def __init__(
        self,
        *,
        nu=0.5,
        kernel="rbf",
        degree=3,
        gamma="scale",
        coef0=0.0,
        shrinking=True,
        probability=False,
        tol=1e-3,
        cache_size=200,
        class_weight=None,
        verbose=False,
        max_iter=-1,
        decision_function_shape="ovr",
        break_ties=False,
        random_state=None,
    ):
        super().__init__(
            kernel=kernel,
            degree=degree,
            gamma=gamma,
            coef0=coef0,
            tol=tol,
            C=0.0,
            nu=nu,
            shrinking=shrinking,
            probability=probability,
            cache_size=cache_size,
            class_weight=class_weight,
            verbose=verbose,
            max_iter=max_iter,
            decision_function_shape=decision_function_shape,
            break_ties=break_ties,
            random_state=random_state,
        )


class SVR(RegressorMixin, BaseLibSVM):
    """Epsilon-Support Vector Regression.

    The free parameters in the model are C and epsilon.

    The implementation is based on libsvm. The fit time complexity
    is more than quadratic with the number of samples which makes it hard
    to scale to datasets with more than a couple of 10000 samples. For large
    datasets consider using :class:`~sklearn.svm.LinearSVR` or
    :class:`~sklearn.linear_model.SGDRegressor` instead, possibly after a
    :class:`~sklearn.kernel_approximation.Nystroem` transformer or
    other :ref:`kernel_approximation`.

    Read more in the :ref:`User Guide <svm_regression>`.

    Parameters
    ----------
    kernel : {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable,  \
        default='rbf'
         Specifies the kernel type to be used in the algorithm.
         If none is given, 'rbf' will be used. If a callable is given it is
         used to precompute the kernel matrix.
         For an intuitive visualization of different kernel types
         see :ref:`sphx_glr_auto_examples_svm_plot_svm_regression.py`

    degree : int, default=3
        Degree of the polynomial kernel function ('poly').
        Must be non-negative. Ignored by all other kernels.

    gamma : {'scale', 'auto'} or float, default='scale'
        Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

        - if ``gamma='scale'`` (default) is passed then it uses
          1 / (n_features * X.var()) as value of gamma,
        - if 'auto', uses 1 / n_features
        - if float, must be non-negative.

        .. versionchanged:: 0.22
           The default value of ``gamma`` changed from 'auto' to 'scale'.

    coef0 : float, default=0.0
        Independent term in kernel function.
        It is only significant in 'poly' and 'sigmoid'.

    tol : float, default=1e-3
        Tolerance for stopping criterion.

    C : float, default=1.0
        Regularization parameter. The strength of the regularization is
        inversely proportional to C. Must be strictly positive.
        The penalty is a squared l2. For an intuitive visualization of the
        effects of scaling the regularization parameter C, see
        :ref:`sphx_glr_auto_examples_svm_plot_svm_scale_c.py`.

    epsilon : float, default=0.1
         Epsilon in the epsilon-SVR model. It specifies the epsilon-tube
         within which no penalty is associated in the training loss function
         with points predicted within a distance epsilon from the actual
         value. Must be non-negative.

    shrinking : bool, default=True
        Whether to use the shrinking heuristic.
        See the :ref:`User Guide <shrinking_svm>`.

    cache_size : float, default=200
        Specify the size of the kernel cache (in MB).

    verbose : bool, default=False
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in libsvm that, if enabled, may not work
        properly in a multithreaded context.

    max_iter : int, default=-1
        Hard limit on iterations within solver, or -1 for no limit.

    Attributes
    ----------
    coef_ : ndarray of shape (1, n_features)
        Weights assigned to the features (coefficients in the primal
        problem). This is only available in the case of a linear kernel.

        `coef_` is readonly property derived from `dual_coef_` and
        `support_vectors_`.

    dual_coef_ : ndarray of shape (1, n_SV)
        Coefficients of the support vector in the decision function.

    fit_status_ : int
        0 if correctly fitted, 1 otherwise (will raise warning)

    intercept_ : ndarray of shape (1,)
        Constants in decision function.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : int
        Number of iterations run by the optimization routine to fit the model.

        .. versionadded:: 1.1

    n_support_ : ndarray of shape (1,), dtype=int32
        Number of support vectors.

    shape_fit_ : tuple of int of shape (n_dimensions_of_X,)
        Array dimensions of training vector ``X``.

    support_ : ndarray of shape (n_SV,)
        Indices of support vectors.

    support_vectors_ : ndarray of shape (n_SV, n_features)
        Support vectors.

    See Also
    --------
    NuSVR : Support Vector Machine for regression implemented using libsvm
        using a parameter to control the number of support vectors.

    LinearSVR : Scalable Linear Support Vector Machine for regression
        implemented using liblinear.

    References
    ----------
    .. [1] `LIBSVM: A Library for Support Vector Machines
        <http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf>`_

    .. [2] `Platt, John (1999). "Probabilistic Outputs for Support Vector
        Machines and Comparisons to Regularized Likelihood Methods"
        <https://citeseerx.ist.psu.edu/doc_view/pid/42e5ed832d4310ce4378c44d05570439df28a393>`_

    Examples
    --------
    >>> from sklearn.svm import SVR
    >>> from sklearn.pipeline import make_pipeline
    >>> from sklearn.preprocessing import StandardScaler
    >>> import numpy as np
    >>> n_samples, n_features = 10, 5
    >>> rng = np.random.RandomState(0)
    >>> y = rng.randn(n_samples)
    >>> X = rng.randn(n_samples, n_features)
    >>> regr = make_pipeline(StandardScaler(), SVR(C=1.0, epsilon=0.2))
    >>> regr.fit(X, y)
    Pipeline(steps=[('standardscaler', StandardScaler()),
                    ('svr', SVR(epsilon=0.2))])
    """

    _impl = "epsilon_svr"

    _parameter_constraints: dict = {**BaseLibSVM._parameter_constraints}
    for unused_param in ["class_weight", "nu", "probability", "random_state"]:
        _parameter_constraints.pop(unused_param)

    def __init__(
        self,
        *,
        kernel="rbf",
        degree=3,
        gamma="scale",
        coef0=0.0,
        tol=1e-3,
        C=1.0,
        epsilon=0.1,
        shrinking=True,
        cache_size=200,
        verbose=False,
        max_iter=-1,
    ):
        super().__init__(
            kernel=kernel,
            degree=degree,
            gamma=gamma,
            coef0=coef0,
            tol=tol,
            C=C,
            nu=0.0,
            epsilon=epsilon,
            verbose=verbose,
            shrinking=shrinking,
            probability=False,
            cache_size=cache_size,
            class_weight=None,
            max_iter=max_iter,
            random_state=None,
        )


class NuSVR(RegressorMixin, BaseLibSVM):
    """Nu Support Vector Regression.

    Similar to NuSVC, for regression, uses a parameter nu to control
    the number of support vectors. However, unlike NuSVC, where nu
    replaces C, here nu replaces the parameter epsilon of epsilon-SVR.

    The implementation is based on libsvm.

    Read more in the :ref:`User Guide <svm_regression>`.

    Parameters
    ----------
    nu : float, default=0.5
        An upper bound on the fraction of training errors and a lower bound of
        the fraction of support vectors. Should be in the interval (0, 1].  By
        default 0.5 will be taken.

    C : float, default=1.0
        Penalty parameter C of the error term. For an intuitive visualization
        of the effects of scaling the regularization parameter C, see
        :ref:`sphx_glr_auto_examples_svm_plot_svm_scale_c.py`.

    kernel : {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable,  \
        default='rbf'
         Specifies the kernel type to be used in the algorithm.
         If none is given, 'rbf' will be used. If a callable is given it is
         used to precompute the kernel matrix.
         For an intuitive visualization of different kernel types see
         See :ref:`sphx_glr_auto_examples_svm_plot_svm_regression.py`

    degree : int, default=3
        Degree of the polynomial kernel function ('poly').
        Must be non-negative. Ignored by all other kernels.

    gamma : {'scale', 'auto'} or float, default='scale'
        Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

        - if ``gamma='scale'`` (default) is passed then it uses
          1 / (n_features * X.var()) as value of gamma,
        - if 'auto', uses 1 / n_features
        - if float, must be non-negative.

        .. versionchanged:: 0.22
           The default value of ``gamma`` changed from 'auto' to 'scale'.

    coef0 : float, default=0.0
        Independent term in kernel function.
        It is only significant in 'poly' and 'sigmoid'.

    shrinking : bool, default=True
        Whether to use the shrinking heuristic.
        See the :ref:`User Guide <shrinking_svm>`.

    tol : float, default=1e-3
        Tolerance for stopping criterion.

    cache_size : float, default=200
        Specify the size of the kernel cache (in MB).

    verbose : bool, default=False
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in libsvm that, if enabled, may not work
        properly in a multithreaded context.

    max_iter : int, default=-1
        Hard limit on iterations within solver, or -1 for no limit.

    Attributes
    ----------
    coef_ : ndarray of shape (1, n_features)
        Weights assigned to the features (coefficients in the primal
        problem). This is only available in the case of a linear kernel.

        `coef_` is readonly property derived from `dual_coef_` and
        `support_vectors_`.

    dual_coef_ : ndarray of shape (1, n_SV)
        Coefficients of the support vector in the decision function.

    fit_status_ : int
        0 if correctly fitted, 1 otherwise (will raise warning)

    intercept_ : ndarray of shape (1,)
        Constants in decision function.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : int
        Number of iterations run by the optimization routine to fit the model.

        .. versionadded:: 1.1

    n_support_ : ndarray of shape (1,), dtype=int32
        Number of support vectors.

    shape_fit_ : tuple of int of shape (n_dimensions_of_X,)
        Array dimensions of training vector ``X``.

    support_ : ndarray of shape (n_SV,)
        Indices of support vectors.

    support_vectors_ : ndarray of shape (n_SV, n_features)
        Support vectors.

    See Also
    --------
    NuSVC : Support Vector Machine for classification implemented with libsvm
        with a parameter to control the number of support vectors.

    SVR : Epsilon Support Vector Machine for regression implemented with
        libsvm.

    References
    ----------
    .. [1] `LIBSVM: A Library for Support Vector Machines
        <http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf>`_

    .. [2] `Platt, John (1999). "Probabilistic Outputs for Support Vector
        Machines and Comparisons to Regularized Likelihood Methods"
        <https://citeseerx.ist.psu.edu/doc_view/pid/42e5ed832d4310ce4378c44d05570439df28a393>`_

    Examples
    --------
    >>> from sklearn.svm import NuSVR
    >>> from sklearn.pipeline import make_pipeline
    >>> from sklearn.preprocessing import StandardScaler
    >>> import numpy as np
    >>> n_samples, n_features = 10, 5
    >>> np.random.seed(0)
    >>> y = np.random.randn(n_samples)
    >>> X = np.random.randn(n_samples, n_features)
    >>> regr = make_pipeline(StandardScaler(), NuSVR(C=1.0, nu=0.1))
    >>> regr.fit(X, y)
    Pipeline(steps=[('standardscaler', StandardScaler()),
                    ('nusvr', NuSVR(nu=0.1))])
    """

    _impl = "nu_svr"

    _parameter_constraints: dict = {**BaseLibSVM._parameter_constraints}
    for unused_param in ["class_weight", "epsilon", "probability", "random_state"]:
        _parameter_constraints.pop(unused_param)

    def __init__(
        self,
        *,
        nu=0.5,
        C=1.0,
        kernel="rbf",
        degree=3,
        gamma="scale",
        coef0=0.0,
        shrinking=True,
        tol=1e-3,
        cache_size=200,
        verbose=False,
        max_iter=-1,
    ):
        super().__init__(
            kernel=kernel,
            degree=degree,
            gamma=gamma,
            coef0=coef0,
            tol=tol,
            C=C,
            nu=nu,
            epsilon=0.0,
            shrinking=shrinking,
            probability=False,
            cache_size=cache_size,
            class_weight=None,
            verbose=verbose,
            max_iter=max_iter,
            random_state=None,
        )


class OneClassSVM(OutlierMixin, BaseLibSVM):
    """Unsupervised Outlier Detection.

    Estimate the support of a high-dimensional distribution.

    The implementation is based on libsvm.

    Read more in the :ref:`User Guide <outlier_detection>`.

    Parameters
    ----------
    kernel : {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable,  \
        default='rbf'
         Specifies the kernel type to be used in the algorithm.
         If none is given, 'rbf' will be used. If a callable is given it is
         used to precompute the kernel matrix.

    degree : int, default=3
        Degree of the polynomial kernel function ('poly').
        Must be non-negative. Ignored by all other kernels.

    gamma : {'scale', 'auto'} or float, default='scale'
        Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

        - if ``gamma='scale'`` (default) is passed then it uses
          1 / (n_features * X.var()) as value of gamma,
        - if 'auto', uses 1 / n_features
        - if float, must be non-negative.

        .. versionchanged:: 0.22
           The default value of ``gamma`` changed from 'auto' to 'scale'.

    coef0 : float, default=0.0
        Independent term in kernel function.
        It is only significant in 'poly' and 'sigmoid'.

    tol : float, default=1e-3
        Tolerance for stopping criterion.

    nu : float, default=0.5
        An upper bound on the fraction of training
        errors and a lower bound of the fraction of support
        vectors. Should be in the interval (0, 1]. By default 0.5
        will be taken.

    shrinking : bool, default=True
        Whether to use the shrinking heuristic.
        See the :ref:`User Guide <shrinking_svm>`.

    cache_size : float, default=200
        Specify the size of the kernel cache (in MB).

    verbose : bool, default=False
        Enable verbose output. Note that this setting takes advantage of a
        per-process runtime setting in libsvm that, if enabled, may not work
        properly in a multithreaded context.

    max_iter : int, default=-1
        Hard limit on iterations within solver, or -1 for no limit.

    Attributes
    ----------
    coef_ : ndarray of shape (1, n_features)
        Weights assigned to the features (coefficients in the primal
        problem). This is only available in the case of a linear kernel.

        `coef_` is readonly property derived from `dual_coef_` and
        `support_vectors_`.

    dual_coef_ : ndarray of shape (1, n_SV)
        Coefficients of the support vectors in the decision function.

    fit_status_ : int
        0 if correctly fitted, 1 otherwise (will raise warning)

    intercept_ : ndarray of shape (1,)
        Constant in the decision function.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : int
        Number of iterations run by the optimization routine to fit the model.

        .. versionadded:: 1.1

    n_support_ : ndarray of shape (n_classes,), dtype=int32
        Number of support vectors for each class.

    offset_ : float
        Offset used to define the decision function from the raw scores.
        We have the relation: decision_function = score_samples - `offset_`.
        The offset is the opposite of `intercept_` and is provided for
        consistency with other outlier detection algorithms.

        .. versionadded:: 0.20

    shape_fit_ : tuple of int of shape (n_dimensions_of_X,)
        Array dimensions of training vector ``X``.

    support_ : ndarray of shape (n_SV,)
        Indices of support vectors.

    support_vectors_ : ndarray of shape (n_SV, n_features)
        Support vectors.

    See Also
    --------
    sklearn.linear_model.SGDOneClassSVM : Solves linear One-Class SVM using
        Stochastic Gradient Descent.
    sklearn.neighbors.LocalOutlierFactor : Unsupervised Outlier Detection using
        Local Outlier Factor (LOF).
    sklearn.ensemble.IsolationForest : Isolation Forest Algorithm.

    Examples
    --------
    >>> from sklearn.svm import OneClassSVM
    >>> X = [[0], [0.44], [0.45], [0.46], [1]]
    >>> clf = OneClassSVM(gamma='auto').fit(X)
    >>> clf.predict(X)
    array([-1,  1,  1,  1, -1])
    >>> clf.score_samples(X)
    array([1.7798..., 2.0547..., 2.0556..., 2.0561..., 1.7332...])

    For a more extended example,
    see :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py`
    """

    _impl = "one_class"

    _parameter_constraints: dict = {**BaseLibSVM._parameter_constraints}
    for unused_param in ["C", "class_weight", "epsilon", "probability", "random_state"]:
        _parameter_constraints.pop(unused_param)

    def __init__(
        self,
        *,
        kernel="rbf",
        degree=3,
        gamma="scale",
        coef0=0.0,
        tol=1e-3,
        nu=0.5,
        shrinking=True,
        cache_size=200,
        verbose=False,
        max_iter=-1,
    ):
        super().__init__(
            kernel,
            degree,
            gamma,
            coef0,
            tol,
            0.0,
            nu,
            0.0,
            shrinking,
            False,
            cache_size,
            None,
            verbose,
            max_iter,
            random_state=None,
        )

    def fit(self, X, y=None, sample_weight=None):
        """Detect the soft boundary of the set of samples X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Set of samples, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        y : Ignored
            Not used, present for API consistency by convention.

        sample_weight : array-like of shape (n_samples,), default=None
            Per-sample weights. Rescale C per sample. Higher weights
            force the classifier to put more emphasis on these points.

        Returns
        -------
        self : object
            Fitted estimator.

        Notes
        -----
        If X is not a C-ordered contiguous array it is copied.
        """
        super().fit(X, np.ones(_num_samples(X)), sample_weight=sample_weight)
        self.offset_ = -self._intercept_
        return self

    def decision_function(self, X):
        """Signed distance to the separating hyperplane.

        Signed distance is positive for an inlier and negative for an outlier.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The data matrix.

        Returns
        -------
        dec : ndarray of shape (n_samples,)
            Returns the decision function of the samples.
        """
        dec = self._decision_function(X).ravel()
        return dec

    def score_samples(self, X):
        """Raw scoring function of the samples.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The data matrix.

        Returns
        -------
        score_samples : ndarray of shape (n_samples,)
            Returns the (unshifted) scoring function of the samples.
        """
        return self.decision_function(X) + self.offset_

    def predict(self, X):
        """Perform classification on samples in X.

        For a one-class model, +1 or -1 is returned.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
                (n_samples_test, n_samples_train)
            For kernel="precomputed", the expected shape of X is
            (n_samples_test, n_samples_train).

        Returns
        -------
        y_pred : ndarray of shape (n_samples,)
            Class labels for samples in X.
        """
        y = super().predict(X)
        return np.asarray(y, dtype=np.intp)