File size: 17,342 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import warnings

import numpy as np
import pytest
import scipy.sparse as sp

from sklearn import clone
from sklearn.preprocessing import KBinsDiscretizer, OneHotEncoder
from sklearn.utils._testing import (
    assert_allclose,
    assert_allclose_dense_sparse,
    assert_array_almost_equal,
    assert_array_equal,
)

X = [[-2, 1.5, -4, -1], [-1, 2.5, -3, -0.5], [0, 3.5, -2, 0.5], [1, 4.5, -1, 2]]


@pytest.mark.parametrize(
    "strategy, expected, sample_weight",
    [
        ("uniform", [[0, 0, 0, 0], [1, 1, 1, 0], [2, 2, 2, 1], [2, 2, 2, 2]], None),
        ("kmeans", [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2]], None),
        ("quantile", [[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [2, 2, 2, 2]], None),
        (
            "quantile",
            [[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [2, 2, 2, 2]],
            [1, 1, 2, 1],
        ),
        (
            "quantile",
            [[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [2, 2, 2, 2]],
            [1, 1, 1, 1],
        ),
        (
            "quantile",
            [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1]],
            [0, 1, 1, 1],
        ),
        (
            "kmeans",
            [[0, 0, 0, 0], [1, 1, 1, 0], [1, 1, 1, 1], [2, 2, 2, 2]],
            [1, 0, 3, 1],
        ),
        (
            "kmeans",
            [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2]],
            [1, 1, 1, 1],
        ),
    ],
)
def test_fit_transform(strategy, expected, sample_weight):
    est = KBinsDiscretizer(n_bins=3, encode="ordinal", strategy=strategy)
    est.fit(X, sample_weight=sample_weight)
    assert_array_equal(expected, est.transform(X))


def test_valid_n_bins():
    KBinsDiscretizer(n_bins=2).fit_transform(X)
    KBinsDiscretizer(n_bins=np.array([2])[0]).fit_transform(X)
    assert KBinsDiscretizer(n_bins=2).fit(X).n_bins_.dtype == np.dtype(int)


@pytest.mark.parametrize("strategy", ["uniform"])
def test_kbinsdiscretizer_wrong_strategy_with_weights(strategy):
    """Check that we raise an error when the wrong strategy is used."""
    sample_weight = np.ones(shape=(len(X)))
    est = KBinsDiscretizer(n_bins=3, strategy=strategy)
    err_msg = (
        "`sample_weight` was provided but it cannot be used with strategy='uniform'."
    )
    with pytest.raises(ValueError, match=err_msg):
        est.fit(X, sample_weight=sample_weight)


def test_invalid_n_bins_array():
    # Bad shape
    n_bins = np.full((2, 4), 2.0)
    est = KBinsDiscretizer(n_bins=n_bins)
    err_msg = r"n_bins must be a scalar or array of shape \(n_features,\)."
    with pytest.raises(ValueError, match=err_msg):
        est.fit_transform(X)

    # Incorrect number of features
    n_bins = [1, 2, 2]
    est = KBinsDiscretizer(n_bins=n_bins)
    err_msg = r"n_bins must be a scalar or array of shape \(n_features,\)."
    with pytest.raises(ValueError, match=err_msg):
        est.fit_transform(X)

    # Bad bin values
    n_bins = [1, 2, 2, 1]
    est = KBinsDiscretizer(n_bins=n_bins)
    err_msg = (
        "KBinsDiscretizer received an invalid number of bins "
        "at indices 0, 3. Number of bins must be at least 2, "
        "and must be an int."
    )
    with pytest.raises(ValueError, match=err_msg):
        est.fit_transform(X)

    # Float bin values
    n_bins = [2.1, 2, 2.1, 2]
    est = KBinsDiscretizer(n_bins=n_bins)
    err_msg = (
        "KBinsDiscretizer received an invalid number of bins "
        "at indices 0, 2. Number of bins must be at least 2, "
        "and must be an int."
    )
    with pytest.raises(ValueError, match=err_msg):
        est.fit_transform(X)


@pytest.mark.parametrize(
    "strategy, expected, sample_weight",
    [
        ("uniform", [[0, 0, 0, 0], [0, 1, 1, 0], [1, 2, 2, 1], [1, 2, 2, 2]], None),
        ("kmeans", [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [1, 2, 2, 2]], None),
        ("quantile", [[0, 0, 0, 0], [0, 1, 1, 1], [1, 2, 2, 2], [1, 2, 2, 2]], None),
        (
            "quantile",
            [[0, 0, 0, 0], [0, 1, 1, 1], [1, 2, 2, 2], [1, 2, 2, 2]],
            [1, 1, 3, 1],
        ),
        (
            "quantile",
            [[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1]],
            [0, 1, 3, 1],
        ),
        # (
        #     "quantile",
        #     [[0, 0, 0, 0], [0, 1, 1, 1], [1, 2, 2, 2], [1, 2, 2, 2]],
        #     [1, 1, 1, 1],
        # ),
        #
        # TODO: This test case above aims to test if the case where an array of
        #       ones passed in sample_weight parameter is equal to the case when
        #       sample_weight is None.
        #       Unfortunately, the behavior of `_weighted_percentile` when
        #       `sample_weight = [1, 1, 1, 1]` are currently not equivalent.
        #       This problem has been addressed in issue :
        #       https://github.com/scikit-learn/scikit-learn/issues/17370
        (
            "kmeans",
            [[0, 0, 0, 0], [0, 1, 1, 0], [1, 1, 1, 1], [1, 2, 2, 2]],
            [1, 0, 3, 1],
        ),
    ],
)
def test_fit_transform_n_bins_array(strategy, expected, sample_weight):
    est = KBinsDiscretizer(
        n_bins=[2, 3, 3, 3], encode="ordinal", strategy=strategy
    ).fit(X, sample_weight=sample_weight)
    assert_array_equal(expected, est.transform(X))

    # test the shape of bin_edges_
    n_features = np.array(X).shape[1]
    assert est.bin_edges_.shape == (n_features,)
    for bin_edges, n_bins in zip(est.bin_edges_, est.n_bins_):
        assert bin_edges.shape == (n_bins + 1,)


@pytest.mark.filterwarnings("ignore: Bins whose width are too small")
def test_kbinsdiscretizer_effect_sample_weight():
    """Check the impact of `sample_weight` one computed quantiles."""
    X = np.array([[-2], [-1], [1], [3], [500], [1000]])
    # add a large number of bins such that each sample with a non-null weight
    # will be used as bin edge
    est = KBinsDiscretizer(n_bins=10, encode="ordinal", strategy="quantile")
    est.fit(X, sample_weight=[1, 1, 1, 1, 0, 0])
    assert_allclose(est.bin_edges_[0], [-2, -1, 1, 3])
    assert_allclose(est.transform(X), [[0.0], [1.0], [2.0], [2.0], [2.0], [2.0]])


@pytest.mark.parametrize("strategy", ["kmeans", "quantile"])
def test_kbinsdiscretizer_no_mutating_sample_weight(strategy):
    """Make sure that `sample_weight` is not changed in place."""
    est = KBinsDiscretizer(n_bins=3, encode="ordinal", strategy=strategy)
    sample_weight = np.array([1, 3, 1, 2], dtype=np.float64)
    sample_weight_copy = np.copy(sample_weight)
    est.fit(X, sample_weight=sample_weight)
    assert_allclose(sample_weight, sample_weight_copy)


@pytest.mark.parametrize("strategy", ["uniform", "kmeans", "quantile"])
def test_same_min_max(strategy):
    warnings.simplefilter("always")
    X = np.array([[1, -2], [1, -1], [1, 0], [1, 1]])
    est = KBinsDiscretizer(strategy=strategy, n_bins=3, encode="ordinal")
    warning_message = "Feature 0 is constant and will be replaced with 0."
    with pytest.warns(UserWarning, match=warning_message):
        est.fit(X)
    assert est.n_bins_[0] == 1
    # replace the feature with zeros
    Xt = est.transform(X)
    assert_array_equal(Xt[:, 0], np.zeros(X.shape[0]))


def test_transform_1d_behavior():
    X = np.arange(4)
    est = KBinsDiscretizer(n_bins=2)
    with pytest.raises(ValueError):
        est.fit(X)

    est = KBinsDiscretizer(n_bins=2)
    est.fit(X.reshape(-1, 1))
    with pytest.raises(ValueError):
        est.transform(X)


@pytest.mark.parametrize("i", range(1, 9))
def test_numeric_stability(i):
    X_init = np.array([2.0, 4.0, 6.0, 8.0, 10.0]).reshape(-1, 1)
    Xt_expected = np.array([0, 0, 1, 1, 1]).reshape(-1, 1)

    # Test up to discretizing nano units
    X = X_init / 10**i
    Xt = KBinsDiscretizer(n_bins=2, encode="ordinal").fit_transform(X)
    assert_array_equal(Xt_expected, Xt)


def test_encode_options():
    est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode="ordinal").fit(X)
    Xt_1 = est.transform(X)
    est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode="onehot-dense").fit(X)
    Xt_2 = est.transform(X)
    assert not sp.issparse(Xt_2)
    assert_array_equal(
        OneHotEncoder(
            categories=[np.arange(i) for i in [2, 3, 3, 3]], sparse_output=False
        ).fit_transform(Xt_1),
        Xt_2,
    )
    est = KBinsDiscretizer(n_bins=[2, 3, 3, 3], encode="onehot").fit(X)
    Xt_3 = est.transform(X)
    assert sp.issparse(Xt_3)
    assert_array_equal(
        OneHotEncoder(
            categories=[np.arange(i) for i in [2, 3, 3, 3]], sparse_output=True
        )
        .fit_transform(Xt_1)
        .toarray(),
        Xt_3.toarray(),
    )


@pytest.mark.parametrize(
    "strategy, expected_2bins, expected_3bins, expected_5bins",
    [
        ("uniform", [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 2, 2], [0, 0, 1, 1, 4, 4]),
        ("kmeans", [0, 0, 0, 0, 1, 1], [0, 0, 1, 1, 2, 2], [0, 0, 1, 2, 3, 4]),
        ("quantile", [0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 2, 2], [0, 1, 2, 3, 4, 4]),
    ],
)
def test_nonuniform_strategies(
    strategy, expected_2bins, expected_3bins, expected_5bins
):
    X = np.array([0, 0.5, 2, 3, 9, 10]).reshape(-1, 1)

    # with 2 bins
    est = KBinsDiscretizer(n_bins=2, strategy=strategy, encode="ordinal")
    Xt = est.fit_transform(X)
    assert_array_equal(expected_2bins, Xt.ravel())

    # with 3 bins
    est = KBinsDiscretizer(n_bins=3, strategy=strategy, encode="ordinal")
    Xt = est.fit_transform(X)
    assert_array_equal(expected_3bins, Xt.ravel())

    # with 5 bins
    est = KBinsDiscretizer(n_bins=5, strategy=strategy, encode="ordinal")
    Xt = est.fit_transform(X)
    assert_array_equal(expected_5bins, Xt.ravel())


@pytest.mark.parametrize(
    "strategy, expected_inv",
    [
        (
            "uniform",
            [
                [-1.5, 2.0, -3.5, -0.5],
                [-0.5, 3.0, -2.5, -0.5],
                [0.5, 4.0, -1.5, 0.5],
                [0.5, 4.0, -1.5, 1.5],
            ],
        ),
        (
            "kmeans",
            [
                [-1.375, 2.125, -3.375, -0.5625],
                [-1.375, 2.125, -3.375, -0.5625],
                [-0.125, 3.375, -2.125, 0.5625],
                [0.75, 4.25, -1.25, 1.625],
            ],
        ),
        (
            "quantile",
            [
                [-1.5, 2.0, -3.5, -0.75],
                [-0.5, 3.0, -2.5, 0.0],
                [0.5, 4.0, -1.5, 1.25],
                [0.5, 4.0, -1.5, 1.25],
            ],
        ),
    ],
)
@pytest.mark.parametrize("encode", ["ordinal", "onehot", "onehot-dense"])
def test_inverse_transform(strategy, encode, expected_inv):
    kbd = KBinsDiscretizer(n_bins=3, strategy=strategy, encode=encode)
    Xt = kbd.fit_transform(X)
    Xinv = kbd.inverse_transform(Xt)
    assert_array_almost_equal(expected_inv, Xinv)


@pytest.mark.parametrize("strategy", ["uniform", "kmeans", "quantile"])
def test_transform_outside_fit_range(strategy):
    X = np.array([0, 1, 2, 3])[:, None]
    kbd = KBinsDiscretizer(n_bins=4, strategy=strategy, encode="ordinal")
    kbd.fit(X)

    X2 = np.array([-2, 5])[:, None]
    X2t = kbd.transform(X2)
    assert_array_equal(X2t.max(axis=0) + 1, kbd.n_bins_)
    assert_array_equal(X2t.min(axis=0), [0])


def test_overwrite():
    X = np.array([0, 1, 2, 3])[:, None]
    X_before = X.copy()

    est = KBinsDiscretizer(n_bins=3, encode="ordinal")
    Xt = est.fit_transform(X)
    assert_array_equal(X, X_before)

    Xt_before = Xt.copy()
    Xinv = est.inverse_transform(Xt)
    assert_array_equal(Xt, Xt_before)
    assert_array_equal(Xinv, np.array([[0.5], [1.5], [2.5], [2.5]]))


@pytest.mark.parametrize(
    "strategy, expected_bin_edges", [("quantile", [0, 1, 3]), ("kmeans", [0, 1.5, 3])]
)
def test_redundant_bins(strategy, expected_bin_edges):
    X = [[0], [0], [0], [0], [3], [3]]
    kbd = KBinsDiscretizer(n_bins=3, strategy=strategy, subsample=None)
    warning_message = "Consider decreasing the number of bins."
    with pytest.warns(UserWarning, match=warning_message):
        kbd.fit(X)
    assert_array_almost_equal(kbd.bin_edges_[0], expected_bin_edges)


def test_percentile_numeric_stability():
    X = np.array([0.05, 0.05, 0.95]).reshape(-1, 1)
    bin_edges = np.array([0.05, 0.23, 0.41, 0.59, 0.77, 0.95])
    Xt = np.array([0, 0, 4]).reshape(-1, 1)
    kbd = KBinsDiscretizer(n_bins=10, encode="ordinal", strategy="quantile")
    warning_message = "Consider decreasing the number of bins."
    with pytest.warns(UserWarning, match=warning_message):
        kbd.fit(X)

    assert_array_almost_equal(kbd.bin_edges_[0], bin_edges)
    assert_array_almost_equal(kbd.transform(X), Xt)


@pytest.mark.parametrize("in_dtype", [np.float16, np.float32, np.float64])
@pytest.mark.parametrize("out_dtype", [None, np.float32, np.float64])
@pytest.mark.parametrize("encode", ["ordinal", "onehot", "onehot-dense"])
def test_consistent_dtype(in_dtype, out_dtype, encode):
    X_input = np.array(X, dtype=in_dtype)
    kbd = KBinsDiscretizer(n_bins=3, encode=encode, dtype=out_dtype)
    kbd.fit(X_input)

    # test output dtype
    if out_dtype is not None:
        expected_dtype = out_dtype
    elif out_dtype is None and X_input.dtype == np.float16:
        # wrong numeric input dtype are cast in np.float64
        expected_dtype = np.float64
    else:
        expected_dtype = X_input.dtype
    Xt = kbd.transform(X_input)
    assert Xt.dtype == expected_dtype


@pytest.mark.parametrize("input_dtype", [np.float16, np.float32, np.float64])
@pytest.mark.parametrize("encode", ["ordinal", "onehot", "onehot-dense"])
def test_32_equal_64(input_dtype, encode):
    # TODO this check is redundant with common checks and can be removed
    #  once #16290 is merged
    X_input = np.array(X, dtype=input_dtype)

    # 32 bit output
    kbd_32 = KBinsDiscretizer(n_bins=3, encode=encode, dtype=np.float32)
    kbd_32.fit(X_input)
    Xt_32 = kbd_32.transform(X_input)

    # 64 bit output
    kbd_64 = KBinsDiscretizer(n_bins=3, encode=encode, dtype=np.float64)
    kbd_64.fit(X_input)
    Xt_64 = kbd_64.transform(X_input)

    assert_allclose_dense_sparse(Xt_32, Xt_64)


def test_kbinsdiscretizer_subsample_default():
    # Since the size of X is small (< 2e5), subsampling will not take place.
    X = np.array([-2, 1.5, -4, -1]).reshape(-1, 1)
    kbd_default = KBinsDiscretizer(n_bins=10, encode="ordinal", strategy="quantile")
    kbd_default.fit(X)

    kbd_without_subsampling = clone(kbd_default)
    kbd_without_subsampling.set_params(subsample=None)
    kbd_without_subsampling.fit(X)

    for bin_kbd_default, bin_kbd_with_subsampling in zip(
        kbd_default.bin_edges_[0], kbd_without_subsampling.bin_edges_[0]
    ):
        np.testing.assert_allclose(bin_kbd_default, bin_kbd_with_subsampling)
    assert kbd_default.bin_edges_.shape == kbd_without_subsampling.bin_edges_.shape


@pytest.mark.parametrize(
    "encode, expected_names",
    [
        (
            "onehot",
            [
                f"feat{col_id}_{float(bin_id)}"
                for col_id in range(3)
                for bin_id in range(4)
            ],
        ),
        (
            "onehot-dense",
            [
                f"feat{col_id}_{float(bin_id)}"
                for col_id in range(3)
                for bin_id in range(4)
            ],
        ),
        ("ordinal", [f"feat{col_id}" for col_id in range(3)]),
    ],
)
def test_kbinsdiscrtizer_get_feature_names_out(encode, expected_names):
    """Check get_feature_names_out for different settings.
    Non-regression test for #22731
    """
    X = [[-2, 1, -4], [-1, 2, -3], [0, 3, -2], [1, 4, -1]]

    kbd = KBinsDiscretizer(n_bins=4, encode=encode).fit(X)
    Xt = kbd.transform(X)

    input_features = [f"feat{i}" for i in range(3)]
    output_names = kbd.get_feature_names_out(input_features)
    assert Xt.shape[1] == output_names.shape[0]

    assert_array_equal(output_names, expected_names)


@pytest.mark.parametrize("strategy", ["uniform", "kmeans", "quantile"])
def test_kbinsdiscretizer_subsample(strategy, global_random_seed):
    # Check that the bin edges are almost the same when subsampling is used.
    X = np.random.RandomState(global_random_seed).random_sample((100000, 1)) + 1

    kbd_subsampling = KBinsDiscretizer(
        strategy=strategy, subsample=50000, random_state=global_random_seed
    )
    kbd_subsampling.fit(X)

    kbd_no_subsampling = clone(kbd_subsampling)
    kbd_no_subsampling.set_params(subsample=None)
    kbd_no_subsampling.fit(X)

    # We use a large tolerance because we can't expect the bin edges to be exactly the
    # same when subsampling is used.
    assert_allclose(
        kbd_subsampling.bin_edges_[0], kbd_no_subsampling.bin_edges_[0], rtol=1e-2
    )


# TODO(1.7): remove this test
def test_KBD_inverse_transform_Xt_deprecation():
    X = np.arange(10)[:, None]
    kbd = KBinsDiscretizer()
    X = kbd.fit_transform(X)

    with pytest.raises(TypeError, match="Missing required positional argument"):
        kbd.inverse_transform()

    with pytest.raises(TypeError, match="Cannot use both X and Xt. Use X only"):
        kbd.inverse_transform(X=X, Xt=X)

    with warnings.catch_warnings(record=True):
        warnings.simplefilter("error")
        kbd.inverse_transform(X)

    with pytest.warns(FutureWarning, match="Xt was renamed X in version 1.5"):
        kbd.inverse_transform(Xt=X)