File size: 6,793 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import warnings

import numpy as np
import pytest

from sklearn.base import clone
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import (
    MaxAbsScaler,
    MinMaxScaler,
    PowerTransformer,
    QuantileTransformer,
    RobustScaler,
    StandardScaler,
    maxabs_scale,
    minmax_scale,
    power_transform,
    quantile_transform,
    robust_scale,
    scale,
)
from sklearn.utils._testing import assert_allclose, assert_array_equal
from sklearn.utils.fixes import (
    BSR_CONTAINERS,
    COO_CONTAINERS,
    CSC_CONTAINERS,
    CSR_CONTAINERS,
    DIA_CONTAINERS,
    DOK_CONTAINERS,
    LIL_CONTAINERS,
)

iris = load_iris()


def _get_valid_samples_by_column(X, col):
    """Get non NaN samples in column of X"""
    return X[:, [col]][~np.isnan(X[:, col])]


@pytest.mark.parametrize(
    "est, func, support_sparse, strictly_positive, omit_kwargs",
    [
        (MaxAbsScaler(), maxabs_scale, True, False, []),
        (MinMaxScaler(), minmax_scale, False, False, ["clip"]),
        (StandardScaler(), scale, False, False, []),
        (StandardScaler(with_mean=False), scale, True, False, []),
        (PowerTransformer("yeo-johnson"), power_transform, False, False, []),
        (PowerTransformer("box-cox"), power_transform, False, True, []),
        (QuantileTransformer(n_quantiles=10), quantile_transform, True, False, []),
        (RobustScaler(), robust_scale, False, False, []),
        (RobustScaler(with_centering=False), robust_scale, True, False, []),
    ],
)
def test_missing_value_handling(
    est, func, support_sparse, strictly_positive, omit_kwargs
):
    # check that the preprocessing method let pass nan
    rng = np.random.RandomState(42)
    X = iris.data.copy()
    n_missing = 50
    X[
        rng.randint(X.shape[0], size=n_missing), rng.randint(X.shape[1], size=n_missing)
    ] = np.nan
    if strictly_positive:
        X += np.nanmin(X) + 0.1
    X_train, X_test = train_test_split(X, random_state=1)
    # sanity check
    assert not np.all(np.isnan(X_train), axis=0).any()
    assert np.any(np.isnan(X_train), axis=0).all()
    assert np.any(np.isnan(X_test), axis=0).all()
    X_test[:, 0] = np.nan  # make sure this boundary case is tested

    with warnings.catch_warnings():
        warnings.simplefilter("error", RuntimeWarning)
        Xt = est.fit(X_train).transform(X_test)
    # ensure no warnings are raised
    # missing values should still be missing, and only them
    assert_array_equal(np.isnan(Xt), np.isnan(X_test))

    # check that the function leads to the same results as the class
    with warnings.catch_warnings():
        warnings.simplefilter("error", RuntimeWarning)
        Xt_class = est.transform(X_train)
    kwargs = est.get_params()
    # remove the parameters which should be omitted because they
    # are not defined in the counterpart function of the preprocessing class
    for kwarg in omit_kwargs:
        _ = kwargs.pop(kwarg)
    Xt_func = func(X_train, **kwargs)
    assert_array_equal(np.isnan(Xt_func), np.isnan(Xt_class))
    assert_allclose(Xt_func[~np.isnan(Xt_func)], Xt_class[~np.isnan(Xt_class)])

    # check that the inverse transform keep NaN
    Xt_inv = est.inverse_transform(Xt)
    assert_array_equal(np.isnan(Xt_inv), np.isnan(X_test))
    # FIXME: we can introduce equal_nan=True in recent version of numpy.
    # For the moment which just check that non-NaN values are almost equal.
    assert_allclose(Xt_inv[~np.isnan(Xt_inv)], X_test[~np.isnan(X_test)])

    for i in range(X.shape[1]):
        # train only on non-NaN
        est.fit(_get_valid_samples_by_column(X_train, i))
        # check transforming with NaN works even when training without NaN
        with warnings.catch_warnings():
            warnings.simplefilter("error", RuntimeWarning)
            Xt_col = est.transform(X_test[:, [i]])
        assert_allclose(Xt_col, Xt[:, [i]])
        # check non-NaN is handled as before - the 1st column is all nan
        if not np.isnan(X_test[:, i]).all():
            Xt_col_nonan = est.transform(_get_valid_samples_by_column(X_test, i))
            assert_array_equal(Xt_col_nonan, Xt_col[~np.isnan(Xt_col.squeeze())])

    if support_sparse:
        est_dense = clone(est)
        est_sparse = clone(est)

        with warnings.catch_warnings():
            warnings.simplefilter("error", RuntimeWarning)
            Xt_dense = est_dense.fit(X_train).transform(X_test)
            Xt_inv_dense = est_dense.inverse_transform(Xt_dense)

        for sparse_container in (
            BSR_CONTAINERS
            + COO_CONTAINERS
            + CSC_CONTAINERS
            + CSR_CONTAINERS
            + DIA_CONTAINERS
            + DOK_CONTAINERS
            + LIL_CONTAINERS
        ):
            # check that the dense and sparse inputs lead to the same results
            # precompute the matrix to avoid catching side warnings
            X_train_sp = sparse_container(X_train)
            X_test_sp = sparse_container(X_test)
            with warnings.catch_warnings():
                warnings.simplefilter("ignore", PendingDeprecationWarning)
                warnings.simplefilter("error", RuntimeWarning)
                Xt_sp = est_sparse.fit(X_train_sp).transform(X_test_sp)

            assert_allclose(Xt_sp.toarray(), Xt_dense)
            with warnings.catch_warnings():
                warnings.simplefilter("ignore", PendingDeprecationWarning)
                warnings.simplefilter("error", RuntimeWarning)
                Xt_inv_sp = est_sparse.inverse_transform(Xt_sp)

            assert_allclose(Xt_inv_sp.toarray(), Xt_inv_dense)


@pytest.mark.parametrize(
    "est, func",
    [
        (MaxAbsScaler(), maxabs_scale),
        (MinMaxScaler(), minmax_scale),
        (StandardScaler(), scale),
        (StandardScaler(with_mean=False), scale),
        (PowerTransformer("yeo-johnson"), power_transform),
        (
            PowerTransformer("box-cox"),
            power_transform,
        ),
        (QuantileTransformer(n_quantiles=3), quantile_transform),
        (RobustScaler(), robust_scale),
        (RobustScaler(with_centering=False), robust_scale),
    ],
)
def test_missing_value_pandas_na_support(est, func):
    # Test pandas IntegerArray with pd.NA
    pd = pytest.importorskip("pandas")

    X = np.array(
        [
            [1, 2, 3, np.nan, np.nan, 4, 5, 1],
            [np.nan, np.nan, 8, 4, 6, np.nan, np.nan, 8],
            [1, 2, 3, 4, 5, 6, 7, 8],
        ]
    ).T

    # Creates dataframe with IntegerArrays with pd.NA
    X_df = pd.DataFrame(X, dtype="Int16", columns=["a", "b", "c"])
    X_df["c"] = X_df["c"].astype("int")

    X_trans = est.fit_transform(X)
    X_df_trans = est.fit_transform(X_df)

    assert_allclose(X_trans, X_df_trans)