File size: 31,258 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 |
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import array
import itertools
import warnings
from collections import defaultdict
from numbers import Integral
import numpy as np
import scipy.sparse as sp
from ..base import BaseEstimator, TransformerMixin, _fit_context
from ..utils import column_or_1d
from ..utils._array_api import _setdiff1d, device, get_namespace
from ..utils._encode import _encode, _unique
from ..utils._param_validation import Interval, validate_params
from ..utils.multiclass import type_of_target, unique_labels
from ..utils.sparsefuncs import min_max_axis
from ..utils.validation import _num_samples, check_array, check_is_fitted
__all__ = [
"label_binarize",
"LabelBinarizer",
"LabelEncoder",
"MultiLabelBinarizer",
]
class LabelEncoder(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None):
"""Encode target labels with value between 0 and n_classes-1.
This transformer should be used to encode target values, *i.e.* `y`, and
not the input `X`.
Read more in the :ref:`User Guide <preprocessing_targets>`.
.. versionadded:: 0.12
Attributes
----------
classes_ : ndarray of shape (n_classes,)
Holds the label for each class.
See Also
--------
OrdinalEncoder : Encode categorical features using an ordinal encoding
scheme.
OneHotEncoder : Encode categorical features as a one-hot numeric array.
Examples
--------
`LabelEncoder` can be used to normalize labels.
>>> from sklearn.preprocessing import LabelEncoder
>>> le = LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2]...)
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])
It can also be used to transform non-numerical labels (as long as they are
hashable and comparable) to numerical labels.
>>> le = LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
[np.str_('amsterdam'), np.str_('paris'), np.str_('tokyo')]
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1]...)
>>> list(le.inverse_transform([2, 2, 1]))
[np.str_('tokyo'), np.str_('tokyo'), np.str_('paris')]
"""
def fit(self, y):
"""Fit label encoder.
Parameters
----------
y : array-like of shape (n_samples,)
Target values.
Returns
-------
self : returns an instance of self.
Fitted label encoder.
"""
y = column_or_1d(y, warn=True)
self.classes_ = _unique(y)
return self
def fit_transform(self, y):
"""Fit label encoder and return encoded labels.
Parameters
----------
y : array-like of shape (n_samples,)
Target values.
Returns
-------
y : array-like of shape (n_samples,)
Encoded labels.
"""
y = column_or_1d(y, warn=True)
self.classes_, y = _unique(y, return_inverse=True)
return y
def transform(self, y):
"""Transform labels to normalized encoding.
Parameters
----------
y : array-like of shape (n_samples,)
Target values.
Returns
-------
y : array-like of shape (n_samples,)
Labels as normalized encodings.
"""
check_is_fitted(self)
xp, _ = get_namespace(y)
y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)
# transform of empty array is empty array
if _num_samples(y) == 0:
return xp.asarray([])
return _encode(y, uniques=self.classes_)
def inverse_transform(self, y):
"""Transform labels back to original encoding.
Parameters
----------
y : array-like of shape (n_samples,)
Target values.
Returns
-------
y : ndarray of shape (n_samples,)
Original encoding.
"""
check_is_fitted(self)
xp, _ = get_namespace(y)
y = column_or_1d(y, warn=True)
# inverse transform of empty array is empty array
if _num_samples(y) == 0:
return xp.asarray([])
diff = _setdiff1d(
ar1=y,
ar2=xp.arange(self.classes_.shape[0], device=device(y)),
xp=xp,
)
if diff.shape[0]:
raise ValueError("y contains previously unseen labels: %s" % str(diff))
y = xp.asarray(y)
return xp.take(self.classes_, y, axis=0)
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.array_api_support = True
tags.input_tags.two_d_array = False
tags.target_tags.one_d_labels = True
return tags
class LabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None):
"""Binarize labels in a one-vs-all fashion.
Several regression and binary classification algorithms are
available in scikit-learn. A simple way to extend these algorithms
to the multi-class classification case is to use the so-called
one-vs-all scheme.
At learning time, this simply consists in learning one regressor
or binary classifier per class. In doing so, one needs to convert
multi-class labels to binary labels (belong or does not belong
to the class). `LabelBinarizer` makes this process easy with the
transform method.
At prediction time, one assigns the class for which the corresponding
model gave the greatest confidence. `LabelBinarizer` makes this easy
with the :meth:`inverse_transform` method.
Read more in the :ref:`User Guide <preprocessing_targets>`.
Parameters
----------
neg_label : int, default=0
Value with which negative labels must be encoded.
pos_label : int, default=1
Value with which positive labels must be encoded.
sparse_output : bool, default=False
True if the returned array from transform is desired to be in sparse
CSR format.
Attributes
----------
classes_ : ndarray of shape (n_classes,)
Holds the label for each class.
y_type_ : str
Represents the type of the target data as evaluated by
:func:`~sklearn.utils.multiclass.type_of_target`. Possible type are
'continuous', 'continuous-multioutput', 'binary', 'multiclass',
'multiclass-multioutput', 'multilabel-indicator', and 'unknown'.
sparse_input_ : bool
`True` if the input data to transform is given as a sparse matrix,
`False` otherwise.
See Also
--------
label_binarize : Function to perform the transform operation of
LabelBinarizer with fixed classes.
OneHotEncoder : Encode categorical features using a one-hot aka one-of-K
scheme.
Examples
--------
>>> from sklearn.preprocessing import LabelBinarizer
>>> lb = LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer()
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],
[0, 0, 0, 1]])
Binary targets transform to a column vector
>>> lb = LabelBinarizer()
>>> lb.fit_transform(['yes', 'no', 'no', 'yes'])
array([[1],
[0],
[0],
[1]])
Passing a 2D matrix for multilabel classification
>>> import numpy as np
>>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]]))
LabelBinarizer()
>>> lb.classes_
array([0, 1, 2])
>>> lb.transform([0, 1, 2, 1])
array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[0, 1, 0]])
"""
_parameter_constraints: dict = {
"neg_label": [Integral],
"pos_label": [Integral],
"sparse_output": ["boolean"],
}
def __init__(self, *, neg_label=0, pos_label=1, sparse_output=False):
self.neg_label = neg_label
self.pos_label = pos_label
self.sparse_output = sparse_output
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, y):
"""Fit label binarizer.
Parameters
----------
y : ndarray of shape (n_samples,) or (n_samples, n_classes)
Target values. The 2-d matrix should only contain 0 and 1,
represents multilabel classification.
Returns
-------
self : object
Returns the instance itself.
"""
if self.neg_label >= self.pos_label:
raise ValueError(
f"neg_label={self.neg_label} must be strictly less than "
f"pos_label={self.pos_label}."
)
if self.sparse_output and (self.pos_label == 0 or self.neg_label != 0):
raise ValueError(
"Sparse binarization is only supported with non "
"zero pos_label and zero neg_label, got "
f"pos_label={self.pos_label} and neg_label={self.neg_label}"
)
self.y_type_ = type_of_target(y, input_name="y")
if "multioutput" in self.y_type_:
raise ValueError(
"Multioutput target data is not supported with label binarization"
)
if _num_samples(y) == 0:
raise ValueError("y has 0 samples: %r" % y)
self.sparse_input_ = sp.issparse(y)
self.classes_ = unique_labels(y)
return self
def fit_transform(self, y):
"""Fit label binarizer/transform multi-class labels to binary labels.
The output of transform is sometimes referred to as
the 1-of-K coding scheme.
Parameters
----------
y : {ndarray, sparse matrix} of shape (n_samples,) or \
(n_samples, n_classes)
Target values. The 2-d matrix should only contain 0 and 1,
represents multilabel classification. Sparse matrix can be
CSR, CSC, COO, DOK, or LIL.
Returns
-------
Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
Shape will be (n_samples, 1) for binary problems. Sparse matrix
will be of CSR format.
"""
return self.fit(y).transform(y)
def transform(self, y):
"""Transform multi-class labels to binary labels.
The output of transform is sometimes referred to by some authors as
the 1-of-K coding scheme.
Parameters
----------
y : {array, sparse matrix} of shape (n_samples,) or \
(n_samples, n_classes)
Target values. The 2-d matrix should only contain 0 and 1,
represents multilabel classification. Sparse matrix can be
CSR, CSC, COO, DOK, or LIL.
Returns
-------
Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
Shape will be (n_samples, 1) for binary problems. Sparse matrix
will be of CSR format.
"""
check_is_fitted(self)
y_is_multilabel = type_of_target(y).startswith("multilabel")
if y_is_multilabel and not self.y_type_.startswith("multilabel"):
raise ValueError("The object was not fitted with multilabel input.")
return label_binarize(
y,
classes=self.classes_,
pos_label=self.pos_label,
neg_label=self.neg_label,
sparse_output=self.sparse_output,
)
def inverse_transform(self, Y, threshold=None):
"""Transform binary labels back to multi-class labels.
Parameters
----------
Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
Target values. All sparse matrices are converted to CSR before
inverse transformation.
threshold : float, default=None
Threshold used in the binary and multi-label cases.
Use 0 when ``Y`` contains the output of :term:`decision_function`
(classifier).
Use 0.5 when ``Y`` contains the output of :term:`predict_proba`.
If None, the threshold is assumed to be half way between
neg_label and pos_label.
Returns
-------
y : {ndarray, sparse matrix} of shape (n_samples,)
Target values. Sparse matrix will be of CSR format.
Notes
-----
In the case when the binary labels are fractional
(probabilistic), :meth:`inverse_transform` chooses the class with the
greatest value. Typically, this allows to use the output of a
linear model's :term:`decision_function` method directly as the input
of :meth:`inverse_transform`.
"""
check_is_fitted(self)
if threshold is None:
threshold = (self.pos_label + self.neg_label) / 2.0
if self.y_type_ == "multiclass":
y_inv = _inverse_binarize_multiclass(Y, self.classes_)
else:
y_inv = _inverse_binarize_thresholding(
Y, self.y_type_, self.classes_, threshold
)
if self.sparse_input_:
y_inv = sp.csr_matrix(y_inv)
elif sp.issparse(y_inv):
y_inv = y_inv.toarray()
return y_inv
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.two_d_array = False
tags.target_tags.one_d_labels = True
return tags
@validate_params(
{
"y": ["array-like", "sparse matrix"],
"classes": ["array-like"],
"neg_label": [Interval(Integral, None, None, closed="neither")],
"pos_label": [Interval(Integral, None, None, closed="neither")],
"sparse_output": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def label_binarize(y, *, classes, neg_label=0, pos_label=1, sparse_output=False):
"""Binarize labels in a one-vs-all fashion.
Several regression and binary classification algorithms are
available in scikit-learn. A simple way to extend these algorithms
to the multi-class classification case is to use the so-called
one-vs-all scheme.
This function makes it possible to compute this transformation for a
fixed set of class labels known ahead of time.
Parameters
----------
y : array-like or sparse matrix
Sequence of integer labels or multilabel data to encode.
classes : array-like of shape (n_classes,)
Uniquely holds the label for each class.
neg_label : int, default=0
Value with which negative labels must be encoded.
pos_label : int, default=1
Value with which positive labels must be encoded.
sparse_output : bool, default=False,
Set to true if output binary array is desired in CSR sparse format.
Returns
-------
Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
Shape will be (n_samples, 1) for binary problems. Sparse matrix will
be of CSR format.
See Also
--------
LabelBinarizer : Class used to wrap the functionality of label_binarize and
allow for fitting to classes independently of the transform operation.
Examples
--------
>>> from sklearn.preprocessing import label_binarize
>>> label_binarize([1, 6], classes=[1, 2, 4, 6])
array([[1, 0, 0, 0],
[0, 0, 0, 1]])
The class ordering is preserved:
>>> label_binarize([1, 6], classes=[1, 6, 4, 2])
array([[1, 0, 0, 0],
[0, 1, 0, 0]])
Binary targets transform to a column vector
>>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes'])
array([[1],
[0],
[0],
[1]])
"""
if not isinstance(y, list):
# XXX Workaround that will be removed when list of list format is
# dropped
y = check_array(
y, input_name="y", accept_sparse="csr", ensure_2d=False, dtype=None
)
else:
if _num_samples(y) == 0:
raise ValueError("y has 0 samples: %r" % y)
if neg_label >= pos_label:
raise ValueError(
"neg_label={0} must be strictly less than pos_label={1}.".format(
neg_label, pos_label
)
)
if sparse_output and (pos_label == 0 or neg_label != 0):
raise ValueError(
"Sparse binarization is only supported with non "
"zero pos_label and zero neg_label, got "
"pos_label={0} and neg_label={1}"
"".format(pos_label, neg_label)
)
# To account for pos_label == 0 in the dense case
pos_switch = pos_label == 0
if pos_switch:
pos_label = -neg_label
y_type = type_of_target(y)
if "multioutput" in y_type:
raise ValueError(
"Multioutput target data is not supported with label binarization"
)
if y_type == "unknown":
raise ValueError("The type of target data is not known")
n_samples = y.shape[0] if sp.issparse(y) else len(y)
n_classes = len(classes)
classes = np.asarray(classes)
if y_type == "binary":
if n_classes == 1:
if sparse_output:
return sp.csr_matrix((n_samples, 1), dtype=int)
else:
Y = np.zeros((len(y), 1), dtype=int)
Y += neg_label
return Y
elif len(classes) >= 3:
y_type = "multiclass"
sorted_class = np.sort(classes)
if y_type == "multilabel-indicator":
y_n_classes = y.shape[1] if hasattr(y, "shape") else len(y[0])
if classes.size != y_n_classes:
raise ValueError(
"classes {0} mismatch with the labels {1} found in the data".format(
classes, unique_labels(y)
)
)
if y_type in ("binary", "multiclass"):
y = column_or_1d(y)
# pick out the known labels from y
y_in_classes = np.isin(y, classes)
y_seen = y[y_in_classes]
indices = np.searchsorted(sorted_class, y_seen)
indptr = np.hstack((0, np.cumsum(y_in_classes)))
data = np.empty_like(indices)
data.fill(pos_label)
Y = sp.csr_matrix((data, indices, indptr), shape=(n_samples, n_classes))
elif y_type == "multilabel-indicator":
Y = sp.csr_matrix(y)
if pos_label != 1:
data = np.empty_like(Y.data)
data.fill(pos_label)
Y.data = data
else:
raise ValueError(
"%s target data is not supported with label binarization" % y_type
)
if not sparse_output:
Y = Y.toarray()
Y = Y.astype(int, copy=False)
if neg_label != 0:
Y[Y == 0] = neg_label
if pos_switch:
Y[Y == pos_label] = 0
else:
Y.data = Y.data.astype(int, copy=False)
# preserve label ordering
if np.any(classes != sorted_class):
indices = np.searchsorted(sorted_class, classes)
Y = Y[:, indices]
if y_type == "binary":
if sparse_output:
Y = Y.getcol(-1)
else:
Y = Y[:, -1].reshape((-1, 1))
return Y
def _inverse_binarize_multiclass(y, classes):
"""Inverse label binarization transformation for multiclass.
Multiclass uses the maximal score instead of a threshold.
"""
classes = np.asarray(classes)
if sp.issparse(y):
# Find the argmax for each row in y where y is a CSR matrix
y = y.tocsr()
n_samples, n_outputs = y.shape
outputs = np.arange(n_outputs)
row_max = min_max_axis(y, 1)[1]
row_nnz = np.diff(y.indptr)
y_data_repeated_max = np.repeat(row_max, row_nnz)
# picks out all indices obtaining the maximum per row
y_i_all_argmax = np.flatnonzero(y_data_repeated_max == y.data)
# For corner case where last row has a max of 0
if row_max[-1] == 0:
y_i_all_argmax = np.append(y_i_all_argmax, [len(y.data)])
# Gets the index of the first argmax in each row from y_i_all_argmax
index_first_argmax = np.searchsorted(y_i_all_argmax, y.indptr[:-1])
# first argmax of each row
y_ind_ext = np.append(y.indices, [0])
y_i_argmax = y_ind_ext[y_i_all_argmax[index_first_argmax]]
# Handle rows of all 0
y_i_argmax[np.where(row_nnz == 0)[0]] = 0
# Handles rows with max of 0 that contain negative numbers
samples = np.arange(n_samples)[(row_nnz > 0) & (row_max.ravel() == 0)]
for i in samples:
ind = y.indices[y.indptr[i] : y.indptr[i + 1]]
y_i_argmax[i] = classes[np.setdiff1d(outputs, ind)][0]
return classes[y_i_argmax]
else:
return classes.take(y.argmax(axis=1), mode="clip")
def _inverse_binarize_thresholding(y, output_type, classes, threshold):
"""Inverse label binarization transformation using thresholding."""
if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2:
raise ValueError("output_type='binary', but y.shape = {0}".format(y.shape))
if output_type != "binary" and y.shape[1] != len(classes):
raise ValueError(
"The number of class is not equal to the number of dimension of y."
)
classes = np.asarray(classes)
# Perform thresholding
if sp.issparse(y):
if threshold > 0:
if y.format not in ("csr", "csc"):
y = y.tocsr()
y.data = np.array(y.data > threshold, dtype=int)
y.eliminate_zeros()
else:
y = np.array(y.toarray() > threshold, dtype=int)
else:
y = np.array(y > threshold, dtype=int)
# Inverse transform data
if output_type == "binary":
if sp.issparse(y):
y = y.toarray()
if y.ndim == 2 and y.shape[1] == 2:
return classes[y[:, 1]]
else:
if len(classes) == 1:
return np.repeat(classes[0], len(y))
else:
return classes[y.ravel()]
elif output_type == "multilabel-indicator":
return y
else:
raise ValueError("{0} format is not supported".format(output_type))
class MultiLabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None):
"""Transform between iterable of iterables and a multilabel format.
Although a list of sets or tuples is a very intuitive format for multilabel
data, it is unwieldy to process. This transformer converts between this
intuitive format and the supported multilabel format: a (samples x classes)
binary matrix indicating the presence of a class label.
Parameters
----------
classes : array-like of shape (n_classes,), default=None
Indicates an ordering for the class labels.
All entries should be unique (cannot contain duplicate classes).
sparse_output : bool, default=False
Set to True if output binary array is desired in CSR sparse format.
Attributes
----------
classes_ : ndarray of shape (n_classes,)
A copy of the `classes` parameter when provided.
Otherwise it corresponds to the sorted set of classes found
when fitting.
See Also
--------
OneHotEncoder : Encode categorical features using a one-hot aka one-of-K
scheme.
Examples
--------
>>> from sklearn.preprocessing import MultiLabelBinarizer
>>> mlb = MultiLabelBinarizer()
>>> mlb.fit_transform([(1, 2), (3,)])
array([[1, 1, 0],
[0, 0, 1]])
>>> mlb.classes_
array([1, 2, 3])
>>> mlb.fit_transform([{'sci-fi', 'thriller'}, {'comedy'}])
array([[0, 1, 1],
[1, 0, 0]])
>>> list(mlb.classes_)
['comedy', 'sci-fi', 'thriller']
A common mistake is to pass in a list, which leads to the following issue:
>>> mlb = MultiLabelBinarizer()
>>> mlb.fit(['sci-fi', 'thriller', 'comedy'])
MultiLabelBinarizer()
>>> mlb.classes_
array(['-', 'c', 'd', 'e', 'f', 'h', 'i', 'l', 'm', 'o', 'r', 's', 't',
'y'], dtype=object)
To correct this, the list of labels should be passed in as:
>>> mlb = MultiLabelBinarizer()
>>> mlb.fit([['sci-fi', 'thriller', 'comedy']])
MultiLabelBinarizer()
>>> mlb.classes_
array(['comedy', 'sci-fi', 'thriller'], dtype=object)
"""
_parameter_constraints: dict = {
"classes": ["array-like", None],
"sparse_output": ["boolean"],
}
def __init__(self, *, classes=None, sparse_output=False):
self.classes = classes
self.sparse_output = sparse_output
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, y):
"""Fit the label sets binarizer, storing :term:`classes_`.
Parameters
----------
y : iterable of iterables
A set of labels (any orderable and hashable object) for each
sample. If the `classes` parameter is set, `y` will not be
iterated.
Returns
-------
self : object
Fitted estimator.
"""
self._cached_dict = None
if self.classes is None:
classes = sorted(set(itertools.chain.from_iterable(y)))
elif len(set(self.classes)) < len(self.classes):
raise ValueError(
"The classes argument contains duplicate "
"classes. Remove these duplicates before passing "
"them to MultiLabelBinarizer."
)
else:
classes = self.classes
dtype = int if all(isinstance(c, int) for c in classes) else object
self.classes_ = np.empty(len(classes), dtype=dtype)
self.classes_[:] = classes
return self
@_fit_context(prefer_skip_nested_validation=True)
def fit_transform(self, y):
"""Fit the label sets binarizer and transform the given label sets.
Parameters
----------
y : iterable of iterables
A set of labels (any orderable and hashable object) for each
sample. If the `classes` parameter is set, `y` will not be
iterated.
Returns
-------
y_indicator : {ndarray, sparse matrix} of shape (n_samples, n_classes)
A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]`
is in `y[i]`, and 0 otherwise. Sparse matrix will be of CSR
format.
"""
if self.classes is not None:
return self.fit(y).transform(y)
self._cached_dict = None
# Automatically increment on new class
class_mapping = defaultdict(int)
class_mapping.default_factory = class_mapping.__len__
yt = self._transform(y, class_mapping)
# sort classes and reorder columns
tmp = sorted(class_mapping, key=class_mapping.get)
# (make safe for tuples)
dtype = int if all(isinstance(c, int) for c in tmp) else object
class_mapping = np.empty(len(tmp), dtype=dtype)
class_mapping[:] = tmp
self.classes_, inverse = np.unique(class_mapping, return_inverse=True)
# ensure yt.indices keeps its current dtype
yt.indices = np.asarray(inverse[yt.indices], dtype=yt.indices.dtype)
if not self.sparse_output:
yt = yt.toarray()
return yt
def transform(self, y):
"""Transform the given label sets.
Parameters
----------
y : iterable of iterables
A set of labels (any orderable and hashable object) for each
sample. If the `classes` parameter is set, `y` will not be
iterated.
Returns
-------
y_indicator : array or CSR matrix, shape (n_samples, n_classes)
A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in
`y[i]`, and 0 otherwise.
"""
check_is_fitted(self)
class_to_index = self._build_cache()
yt = self._transform(y, class_to_index)
if not self.sparse_output:
yt = yt.toarray()
return yt
def _build_cache(self):
if self._cached_dict is None:
self._cached_dict = dict(zip(self.classes_, range(len(self.classes_))))
return self._cached_dict
def _transform(self, y, class_mapping):
"""Transforms the label sets with a given mapping.
Parameters
----------
y : iterable of iterables
A set of labels (any orderable and hashable object) for each
sample. If the `classes` parameter is set, `y` will not be
iterated.
class_mapping : Mapping
Maps from label to column index in label indicator matrix.
Returns
-------
y_indicator : sparse matrix of shape (n_samples, n_classes)
Label indicator matrix. Will be of CSR format.
"""
indices = array.array("i")
indptr = array.array("i", [0])
unknown = set()
for labels in y:
index = set()
for label in labels:
try:
index.add(class_mapping[label])
except KeyError:
unknown.add(label)
indices.extend(index)
indptr.append(len(indices))
if unknown:
warnings.warn(
"unknown class(es) {0} will be ignored".format(sorted(unknown, key=str))
)
data = np.ones(len(indices), dtype=int)
return sp.csr_matrix(
(data, indices, indptr), shape=(len(indptr) - 1, len(class_mapping))
)
def inverse_transform(self, yt):
"""Transform the given indicator matrix into label sets.
Parameters
----------
yt : {ndarray, sparse matrix} of shape (n_samples, n_classes)
A matrix containing only 1s ands 0s.
Returns
-------
y : list of tuples
The set of labels for each sample such that `y[i]` consists of
`classes_[j]` for each `yt[i, j] == 1`.
"""
check_is_fitted(self)
if yt.shape[1] != len(self.classes_):
raise ValueError(
"Expected indicator for {0} classes, but got {1}".format(
len(self.classes_), yt.shape[1]
)
)
if sp.issparse(yt):
yt = yt.tocsr()
if len(yt.data) != 0 and len(np.setdiff1d(yt.data, [0, 1])) > 0:
raise ValueError("Expected only 0s and 1s in label indicator.")
return [
tuple(self.classes_.take(yt.indices[start:end]))
for start, end in zip(yt.indptr[:-1], yt.indptr[1:])
]
else:
unexpected = np.setdiff1d(yt, [0, 1])
if len(unexpected) > 0:
raise ValueError(
"Expected only 0s and 1s in label indicator. Also got {0}".format(
unexpected
)
)
return [tuple(self.classes_.compress(indicators)) for indicators in yt]
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.input_tags.two_d_array = False
tags.target_tags.two_d_labels = True
return tags
|