File size: 31,258 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import array
import itertools
import warnings
from collections import defaultdict
from numbers import Integral

import numpy as np
import scipy.sparse as sp

from ..base import BaseEstimator, TransformerMixin, _fit_context
from ..utils import column_or_1d
from ..utils._array_api import _setdiff1d, device, get_namespace
from ..utils._encode import _encode, _unique
from ..utils._param_validation import Interval, validate_params
from ..utils.multiclass import type_of_target, unique_labels
from ..utils.sparsefuncs import min_max_axis
from ..utils.validation import _num_samples, check_array, check_is_fitted

__all__ = [
    "label_binarize",
    "LabelBinarizer",
    "LabelEncoder",
    "MultiLabelBinarizer",
]


class LabelEncoder(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None):
    """Encode target labels with value between 0 and n_classes-1.

    This transformer should be used to encode target values, *i.e.* `y`, and
    not the input `X`.

    Read more in the :ref:`User Guide <preprocessing_targets>`.

    .. versionadded:: 0.12

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,)
        Holds the label for each class.

    See Also
    --------
    OrdinalEncoder : Encode categorical features using an ordinal encoding
        scheme.
    OneHotEncoder : Encode categorical features as a one-hot numeric array.

    Examples
    --------
    `LabelEncoder` can be used to normalize labels.

    >>> from sklearn.preprocessing import LabelEncoder
    >>> le = LabelEncoder()
    >>> le.fit([1, 2, 2, 6])
    LabelEncoder()
    >>> le.classes_
    array([1, 2, 6])
    >>> le.transform([1, 1, 2, 6])
    array([0, 0, 1, 2]...)
    >>> le.inverse_transform([0, 0, 1, 2])
    array([1, 1, 2, 6])

    It can also be used to transform non-numerical labels (as long as they are
    hashable and comparable) to numerical labels.

    >>> le = LabelEncoder()
    >>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
    LabelEncoder()
    >>> list(le.classes_)
    [np.str_('amsterdam'), np.str_('paris'), np.str_('tokyo')]
    >>> le.transform(["tokyo", "tokyo", "paris"])
    array([2, 2, 1]...)
    >>> list(le.inverse_transform([2, 2, 1]))
    [np.str_('tokyo'), np.str_('tokyo'), np.str_('paris')]
    """

    def fit(self, y):
        """Fit label encoder.

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Target values.

        Returns
        -------
        self : returns an instance of self.
            Fitted label encoder.
        """
        y = column_or_1d(y, warn=True)
        self.classes_ = _unique(y)
        return self

    def fit_transform(self, y):
        """Fit label encoder and return encoded labels.

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Target values.

        Returns
        -------
        y : array-like of shape (n_samples,)
            Encoded labels.
        """
        y = column_or_1d(y, warn=True)
        self.classes_, y = _unique(y, return_inverse=True)
        return y

    def transform(self, y):
        """Transform labels to normalized encoding.

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Target values.

        Returns
        -------
        y : array-like of shape (n_samples,)
            Labels as normalized encodings.
        """
        check_is_fitted(self)
        xp, _ = get_namespace(y)
        y = column_or_1d(y, dtype=self.classes_.dtype, warn=True)
        # transform of empty array is empty array
        if _num_samples(y) == 0:
            return xp.asarray([])

        return _encode(y, uniques=self.classes_)

    def inverse_transform(self, y):
        """Transform labels back to original encoding.

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Target values.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            Original encoding.
        """
        check_is_fitted(self)
        xp, _ = get_namespace(y)
        y = column_or_1d(y, warn=True)
        # inverse transform of empty array is empty array
        if _num_samples(y) == 0:
            return xp.asarray([])

        diff = _setdiff1d(
            ar1=y,
            ar2=xp.arange(self.classes_.shape[0], device=device(y)),
            xp=xp,
        )
        if diff.shape[0]:
            raise ValueError("y contains previously unseen labels: %s" % str(diff))
        y = xp.asarray(y)
        return xp.take(self.classes_, y, axis=0)

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.array_api_support = True
        tags.input_tags.two_d_array = False
        tags.target_tags.one_d_labels = True
        return tags


class LabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None):
    """Binarize labels in a one-vs-all fashion.

    Several regression and binary classification algorithms are
    available in scikit-learn. A simple way to extend these algorithms
    to the multi-class classification case is to use the so-called
    one-vs-all scheme.

    At learning time, this simply consists in learning one regressor
    or binary classifier per class. In doing so, one needs to convert
    multi-class labels to binary labels (belong or does not belong
    to the class). `LabelBinarizer` makes this process easy with the
    transform method.

    At prediction time, one assigns the class for which the corresponding
    model gave the greatest confidence. `LabelBinarizer` makes this easy
    with the :meth:`inverse_transform` method.

    Read more in the :ref:`User Guide <preprocessing_targets>`.

    Parameters
    ----------
    neg_label : int, default=0
        Value with which negative labels must be encoded.

    pos_label : int, default=1
        Value with which positive labels must be encoded.

    sparse_output : bool, default=False
        True if the returned array from transform is desired to be in sparse
        CSR format.

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,)
        Holds the label for each class.

    y_type_ : str
        Represents the type of the target data as evaluated by
        :func:`~sklearn.utils.multiclass.type_of_target`. Possible type are
        'continuous', 'continuous-multioutput', 'binary', 'multiclass',
        'multiclass-multioutput', 'multilabel-indicator', and 'unknown'.

    sparse_input_ : bool
        `True` if the input data to transform is given as a sparse matrix,
         `False` otherwise.

    See Also
    --------
    label_binarize : Function to perform the transform operation of
        LabelBinarizer with fixed classes.
    OneHotEncoder : Encode categorical features using a one-hot aka one-of-K
        scheme.

    Examples
    --------
    >>> from sklearn.preprocessing import LabelBinarizer
    >>> lb = LabelBinarizer()
    >>> lb.fit([1, 2, 6, 4, 2])
    LabelBinarizer()
    >>> lb.classes_
    array([1, 2, 4, 6])
    >>> lb.transform([1, 6])
    array([[1, 0, 0, 0],
           [0, 0, 0, 1]])

    Binary targets transform to a column vector

    >>> lb = LabelBinarizer()
    >>> lb.fit_transform(['yes', 'no', 'no', 'yes'])
    array([[1],
           [0],
           [0],
           [1]])

    Passing a 2D matrix for multilabel classification

    >>> import numpy as np
    >>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]]))
    LabelBinarizer()
    >>> lb.classes_
    array([0, 1, 2])
    >>> lb.transform([0, 1, 2, 1])
    array([[1, 0, 0],
           [0, 1, 0],
           [0, 0, 1],
           [0, 1, 0]])
    """

    _parameter_constraints: dict = {
        "neg_label": [Integral],
        "pos_label": [Integral],
        "sparse_output": ["boolean"],
    }

    def __init__(self, *, neg_label=0, pos_label=1, sparse_output=False):
        self.neg_label = neg_label
        self.pos_label = pos_label
        self.sparse_output = sparse_output

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, y):
        """Fit label binarizer.

        Parameters
        ----------
        y : ndarray of shape (n_samples,) or (n_samples, n_classes)
            Target values. The 2-d matrix should only contain 0 and 1,
            represents multilabel classification.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        if self.neg_label >= self.pos_label:
            raise ValueError(
                f"neg_label={self.neg_label} must be strictly less than "
                f"pos_label={self.pos_label}."
            )

        if self.sparse_output and (self.pos_label == 0 or self.neg_label != 0):
            raise ValueError(
                "Sparse binarization is only supported with non "
                "zero pos_label and zero neg_label, got "
                f"pos_label={self.pos_label} and neg_label={self.neg_label}"
            )

        self.y_type_ = type_of_target(y, input_name="y")

        if "multioutput" in self.y_type_:
            raise ValueError(
                "Multioutput target data is not supported with label binarization"
            )
        if _num_samples(y) == 0:
            raise ValueError("y has 0 samples: %r" % y)

        self.sparse_input_ = sp.issparse(y)
        self.classes_ = unique_labels(y)
        return self

    def fit_transform(self, y):
        """Fit label binarizer/transform multi-class labels to binary labels.

        The output of transform is sometimes referred to as
        the 1-of-K coding scheme.

        Parameters
        ----------
        y : {ndarray, sparse matrix} of shape (n_samples,) or \
                (n_samples, n_classes)
            Target values. The 2-d matrix should only contain 0 and 1,
            represents multilabel classification. Sparse matrix can be
            CSR, CSC, COO, DOK, or LIL.

        Returns
        -------
        Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            Shape will be (n_samples, 1) for binary problems. Sparse matrix
            will be of CSR format.
        """
        return self.fit(y).transform(y)

    def transform(self, y):
        """Transform multi-class labels to binary labels.

        The output of transform is sometimes referred to by some authors as
        the 1-of-K coding scheme.

        Parameters
        ----------
        y : {array, sparse matrix} of shape (n_samples,) or \
                (n_samples, n_classes)
            Target values. The 2-d matrix should only contain 0 and 1,
            represents multilabel classification. Sparse matrix can be
            CSR, CSC, COO, DOK, or LIL.

        Returns
        -------
        Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            Shape will be (n_samples, 1) for binary problems. Sparse matrix
            will be of CSR format.
        """
        check_is_fitted(self)

        y_is_multilabel = type_of_target(y).startswith("multilabel")
        if y_is_multilabel and not self.y_type_.startswith("multilabel"):
            raise ValueError("The object was not fitted with multilabel input.")

        return label_binarize(
            y,
            classes=self.classes_,
            pos_label=self.pos_label,
            neg_label=self.neg_label,
            sparse_output=self.sparse_output,
        )

    def inverse_transform(self, Y, threshold=None):
        """Transform binary labels back to multi-class labels.

        Parameters
        ----------
        Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            Target values. All sparse matrices are converted to CSR before
            inverse transformation.

        threshold : float, default=None
            Threshold used in the binary and multi-label cases.

            Use 0 when ``Y`` contains the output of :term:`decision_function`
            (classifier).
            Use 0.5 when ``Y`` contains the output of :term:`predict_proba`.

            If None, the threshold is assumed to be half way between
            neg_label and pos_label.

        Returns
        -------
        y : {ndarray, sparse matrix} of shape (n_samples,)
            Target values. Sparse matrix will be of CSR format.

        Notes
        -----
        In the case when the binary labels are fractional
        (probabilistic), :meth:`inverse_transform` chooses the class with the
        greatest value. Typically, this allows to use the output of a
        linear model's :term:`decision_function` method directly as the input
        of :meth:`inverse_transform`.
        """
        check_is_fitted(self)

        if threshold is None:
            threshold = (self.pos_label + self.neg_label) / 2.0

        if self.y_type_ == "multiclass":
            y_inv = _inverse_binarize_multiclass(Y, self.classes_)
        else:
            y_inv = _inverse_binarize_thresholding(
                Y, self.y_type_, self.classes_, threshold
            )

        if self.sparse_input_:
            y_inv = sp.csr_matrix(y_inv)
        elif sp.issparse(y_inv):
            y_inv = y_inv.toarray()

        return y_inv

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.two_d_array = False
        tags.target_tags.one_d_labels = True
        return tags


@validate_params(
    {
        "y": ["array-like", "sparse matrix"],
        "classes": ["array-like"],
        "neg_label": [Interval(Integral, None, None, closed="neither")],
        "pos_label": [Interval(Integral, None, None, closed="neither")],
        "sparse_output": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def label_binarize(y, *, classes, neg_label=0, pos_label=1, sparse_output=False):
    """Binarize labels in a one-vs-all fashion.

    Several regression and binary classification algorithms are
    available in scikit-learn. A simple way to extend these algorithms
    to the multi-class classification case is to use the so-called
    one-vs-all scheme.

    This function makes it possible to compute this transformation for a
    fixed set of class labels known ahead of time.

    Parameters
    ----------
    y : array-like or sparse matrix
        Sequence of integer labels or multilabel data to encode.

    classes : array-like of shape (n_classes,)
        Uniquely holds the label for each class.

    neg_label : int, default=0
        Value with which negative labels must be encoded.

    pos_label : int, default=1
        Value with which positive labels must be encoded.

    sparse_output : bool, default=False,
        Set to true if output binary array is desired in CSR sparse format.

    Returns
    -------
    Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)
        Shape will be (n_samples, 1) for binary problems. Sparse matrix will
        be of CSR format.

    See Also
    --------
    LabelBinarizer : Class used to wrap the functionality of label_binarize and
        allow for fitting to classes independently of the transform operation.

    Examples
    --------
    >>> from sklearn.preprocessing import label_binarize
    >>> label_binarize([1, 6], classes=[1, 2, 4, 6])
    array([[1, 0, 0, 0],
           [0, 0, 0, 1]])

    The class ordering is preserved:

    >>> label_binarize([1, 6], classes=[1, 6, 4, 2])
    array([[1, 0, 0, 0],
           [0, 1, 0, 0]])

    Binary targets transform to a column vector

    >>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes'])
    array([[1],
           [0],
           [0],
           [1]])
    """
    if not isinstance(y, list):
        # XXX Workaround that will be removed when list of list format is
        # dropped
        y = check_array(
            y, input_name="y", accept_sparse="csr", ensure_2d=False, dtype=None
        )
    else:
        if _num_samples(y) == 0:
            raise ValueError("y has 0 samples: %r" % y)
    if neg_label >= pos_label:
        raise ValueError(
            "neg_label={0} must be strictly less than pos_label={1}.".format(
                neg_label, pos_label
            )
        )

    if sparse_output and (pos_label == 0 or neg_label != 0):
        raise ValueError(
            "Sparse binarization is only supported with non "
            "zero pos_label and zero neg_label, got "
            "pos_label={0} and neg_label={1}"
            "".format(pos_label, neg_label)
        )

    # To account for pos_label == 0 in the dense case
    pos_switch = pos_label == 0
    if pos_switch:
        pos_label = -neg_label

    y_type = type_of_target(y)
    if "multioutput" in y_type:
        raise ValueError(
            "Multioutput target data is not supported with label binarization"
        )
    if y_type == "unknown":
        raise ValueError("The type of target data is not known")

    n_samples = y.shape[0] if sp.issparse(y) else len(y)
    n_classes = len(classes)
    classes = np.asarray(classes)

    if y_type == "binary":
        if n_classes == 1:
            if sparse_output:
                return sp.csr_matrix((n_samples, 1), dtype=int)
            else:
                Y = np.zeros((len(y), 1), dtype=int)
                Y += neg_label
                return Y
        elif len(classes) >= 3:
            y_type = "multiclass"

    sorted_class = np.sort(classes)
    if y_type == "multilabel-indicator":
        y_n_classes = y.shape[1] if hasattr(y, "shape") else len(y[0])
        if classes.size != y_n_classes:
            raise ValueError(
                "classes {0} mismatch with the labels {1} found in the data".format(
                    classes, unique_labels(y)
                )
            )

    if y_type in ("binary", "multiclass"):
        y = column_or_1d(y)

        # pick out the known labels from y
        y_in_classes = np.isin(y, classes)
        y_seen = y[y_in_classes]
        indices = np.searchsorted(sorted_class, y_seen)
        indptr = np.hstack((0, np.cumsum(y_in_classes)))

        data = np.empty_like(indices)
        data.fill(pos_label)
        Y = sp.csr_matrix((data, indices, indptr), shape=(n_samples, n_classes))
    elif y_type == "multilabel-indicator":
        Y = sp.csr_matrix(y)
        if pos_label != 1:
            data = np.empty_like(Y.data)
            data.fill(pos_label)
            Y.data = data
    else:
        raise ValueError(
            "%s target data is not supported with label binarization" % y_type
        )

    if not sparse_output:
        Y = Y.toarray()
        Y = Y.astype(int, copy=False)

        if neg_label != 0:
            Y[Y == 0] = neg_label

        if pos_switch:
            Y[Y == pos_label] = 0
    else:
        Y.data = Y.data.astype(int, copy=False)

    # preserve label ordering
    if np.any(classes != sorted_class):
        indices = np.searchsorted(sorted_class, classes)
        Y = Y[:, indices]

    if y_type == "binary":
        if sparse_output:
            Y = Y.getcol(-1)
        else:
            Y = Y[:, -1].reshape((-1, 1))

    return Y


def _inverse_binarize_multiclass(y, classes):
    """Inverse label binarization transformation for multiclass.

    Multiclass uses the maximal score instead of a threshold.
    """
    classes = np.asarray(classes)

    if sp.issparse(y):
        # Find the argmax for each row in y where y is a CSR matrix

        y = y.tocsr()
        n_samples, n_outputs = y.shape
        outputs = np.arange(n_outputs)
        row_max = min_max_axis(y, 1)[1]
        row_nnz = np.diff(y.indptr)

        y_data_repeated_max = np.repeat(row_max, row_nnz)
        # picks out all indices obtaining the maximum per row
        y_i_all_argmax = np.flatnonzero(y_data_repeated_max == y.data)

        # For corner case where last row has a max of 0
        if row_max[-1] == 0:
            y_i_all_argmax = np.append(y_i_all_argmax, [len(y.data)])

        # Gets the index of the first argmax in each row from y_i_all_argmax
        index_first_argmax = np.searchsorted(y_i_all_argmax, y.indptr[:-1])
        # first argmax of each row
        y_ind_ext = np.append(y.indices, [0])
        y_i_argmax = y_ind_ext[y_i_all_argmax[index_first_argmax]]
        # Handle rows of all 0
        y_i_argmax[np.where(row_nnz == 0)[0]] = 0

        # Handles rows with max of 0 that contain negative numbers
        samples = np.arange(n_samples)[(row_nnz > 0) & (row_max.ravel() == 0)]
        for i in samples:
            ind = y.indices[y.indptr[i] : y.indptr[i + 1]]
            y_i_argmax[i] = classes[np.setdiff1d(outputs, ind)][0]

        return classes[y_i_argmax]
    else:
        return classes.take(y.argmax(axis=1), mode="clip")


def _inverse_binarize_thresholding(y, output_type, classes, threshold):
    """Inverse label binarization transformation using thresholding."""

    if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2:
        raise ValueError("output_type='binary', but y.shape = {0}".format(y.shape))

    if output_type != "binary" and y.shape[1] != len(classes):
        raise ValueError(
            "The number of class is not equal to the number of dimension of y."
        )

    classes = np.asarray(classes)

    # Perform thresholding
    if sp.issparse(y):
        if threshold > 0:
            if y.format not in ("csr", "csc"):
                y = y.tocsr()
            y.data = np.array(y.data > threshold, dtype=int)
            y.eliminate_zeros()
        else:
            y = np.array(y.toarray() > threshold, dtype=int)
    else:
        y = np.array(y > threshold, dtype=int)

    # Inverse transform data
    if output_type == "binary":
        if sp.issparse(y):
            y = y.toarray()
        if y.ndim == 2 and y.shape[1] == 2:
            return classes[y[:, 1]]
        else:
            if len(classes) == 1:
                return np.repeat(classes[0], len(y))
            else:
                return classes[y.ravel()]

    elif output_type == "multilabel-indicator":
        return y

    else:
        raise ValueError("{0} format is not supported".format(output_type))


class MultiLabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None):
    """Transform between iterable of iterables and a multilabel format.

    Although a list of sets or tuples is a very intuitive format for multilabel
    data, it is unwieldy to process. This transformer converts between this
    intuitive format and the supported multilabel format: a (samples x classes)
    binary matrix indicating the presence of a class label.

    Parameters
    ----------
    classes : array-like of shape (n_classes,), default=None
        Indicates an ordering for the class labels.
        All entries should be unique (cannot contain duplicate classes).

    sparse_output : bool, default=False
        Set to True if output binary array is desired in CSR sparse format.

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,)
        A copy of the `classes` parameter when provided.
        Otherwise it corresponds to the sorted set of classes found
        when fitting.

    See Also
    --------
    OneHotEncoder : Encode categorical features using a one-hot aka one-of-K
        scheme.

    Examples
    --------
    >>> from sklearn.preprocessing import MultiLabelBinarizer
    >>> mlb = MultiLabelBinarizer()
    >>> mlb.fit_transform([(1, 2), (3,)])
    array([[1, 1, 0],
           [0, 0, 1]])
    >>> mlb.classes_
    array([1, 2, 3])

    >>> mlb.fit_transform([{'sci-fi', 'thriller'}, {'comedy'}])
    array([[0, 1, 1],
           [1, 0, 0]])
    >>> list(mlb.classes_)
    ['comedy', 'sci-fi', 'thriller']

    A common mistake is to pass in a list, which leads to the following issue:

    >>> mlb = MultiLabelBinarizer()
    >>> mlb.fit(['sci-fi', 'thriller', 'comedy'])
    MultiLabelBinarizer()
    >>> mlb.classes_
    array(['-', 'c', 'd', 'e', 'f', 'h', 'i', 'l', 'm', 'o', 'r', 's', 't',
        'y'], dtype=object)

    To correct this, the list of labels should be passed in as:

    >>> mlb = MultiLabelBinarizer()
    >>> mlb.fit([['sci-fi', 'thriller', 'comedy']])
    MultiLabelBinarizer()
    >>> mlb.classes_
    array(['comedy', 'sci-fi', 'thriller'], dtype=object)
    """

    _parameter_constraints: dict = {
        "classes": ["array-like", None],
        "sparse_output": ["boolean"],
    }

    def __init__(self, *, classes=None, sparse_output=False):
        self.classes = classes
        self.sparse_output = sparse_output

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, y):
        """Fit the label sets binarizer, storing :term:`classes_`.

        Parameters
        ----------
        y : iterable of iterables
            A set of labels (any orderable and hashable object) for each
            sample. If the `classes` parameter is set, `y` will not be
            iterated.

        Returns
        -------
        self : object
            Fitted estimator.
        """
        self._cached_dict = None

        if self.classes is None:
            classes = sorted(set(itertools.chain.from_iterable(y)))
        elif len(set(self.classes)) < len(self.classes):
            raise ValueError(
                "The classes argument contains duplicate "
                "classes. Remove these duplicates before passing "
                "them to MultiLabelBinarizer."
            )
        else:
            classes = self.classes
        dtype = int if all(isinstance(c, int) for c in classes) else object
        self.classes_ = np.empty(len(classes), dtype=dtype)
        self.classes_[:] = classes
        return self

    @_fit_context(prefer_skip_nested_validation=True)
    def fit_transform(self, y):
        """Fit the label sets binarizer and transform the given label sets.

        Parameters
        ----------
        y : iterable of iterables
            A set of labels (any orderable and hashable object) for each
            sample. If the `classes` parameter is set, `y` will not be
            iterated.

        Returns
        -------
        y_indicator : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]`
            is in `y[i]`, and 0 otherwise. Sparse matrix will be of CSR
            format.
        """
        if self.classes is not None:
            return self.fit(y).transform(y)

        self._cached_dict = None

        # Automatically increment on new class
        class_mapping = defaultdict(int)
        class_mapping.default_factory = class_mapping.__len__
        yt = self._transform(y, class_mapping)

        # sort classes and reorder columns
        tmp = sorted(class_mapping, key=class_mapping.get)

        # (make safe for tuples)
        dtype = int if all(isinstance(c, int) for c in tmp) else object
        class_mapping = np.empty(len(tmp), dtype=dtype)
        class_mapping[:] = tmp
        self.classes_, inverse = np.unique(class_mapping, return_inverse=True)
        # ensure yt.indices keeps its current dtype
        yt.indices = np.asarray(inverse[yt.indices], dtype=yt.indices.dtype)

        if not self.sparse_output:
            yt = yt.toarray()

        return yt

    def transform(self, y):
        """Transform the given label sets.

        Parameters
        ----------
        y : iterable of iterables
            A set of labels (any orderable and hashable object) for each
            sample. If the `classes` parameter is set, `y` will not be
            iterated.

        Returns
        -------
        y_indicator : array or CSR matrix, shape (n_samples, n_classes)
            A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in
            `y[i]`, and 0 otherwise.
        """
        check_is_fitted(self)

        class_to_index = self._build_cache()
        yt = self._transform(y, class_to_index)

        if not self.sparse_output:
            yt = yt.toarray()

        return yt

    def _build_cache(self):
        if self._cached_dict is None:
            self._cached_dict = dict(zip(self.classes_, range(len(self.classes_))))

        return self._cached_dict

    def _transform(self, y, class_mapping):
        """Transforms the label sets with a given mapping.

        Parameters
        ----------
        y : iterable of iterables
            A set of labels (any orderable and hashable object) for each
            sample. If the `classes` parameter is set, `y` will not be
            iterated.

        class_mapping : Mapping
            Maps from label to column index in label indicator matrix.

        Returns
        -------
        y_indicator : sparse matrix of shape (n_samples, n_classes)
            Label indicator matrix. Will be of CSR format.
        """
        indices = array.array("i")
        indptr = array.array("i", [0])
        unknown = set()
        for labels in y:
            index = set()
            for label in labels:
                try:
                    index.add(class_mapping[label])
                except KeyError:
                    unknown.add(label)
            indices.extend(index)
            indptr.append(len(indices))
        if unknown:
            warnings.warn(
                "unknown class(es) {0} will be ignored".format(sorted(unknown, key=str))
            )
        data = np.ones(len(indices), dtype=int)

        return sp.csr_matrix(
            (data, indices, indptr), shape=(len(indptr) - 1, len(class_mapping))
        )

    def inverse_transform(self, yt):
        """Transform the given indicator matrix into label sets.

        Parameters
        ----------
        yt : {ndarray, sparse matrix} of shape (n_samples, n_classes)
            A matrix containing only 1s ands 0s.

        Returns
        -------
        y : list of tuples
            The set of labels for each sample such that `y[i]` consists of
            `classes_[j]` for each `yt[i, j] == 1`.
        """
        check_is_fitted(self)

        if yt.shape[1] != len(self.classes_):
            raise ValueError(
                "Expected indicator for {0} classes, but got {1}".format(
                    len(self.classes_), yt.shape[1]
                )
            )

        if sp.issparse(yt):
            yt = yt.tocsr()
            if len(yt.data) != 0 and len(np.setdiff1d(yt.data, [0, 1])) > 0:
                raise ValueError("Expected only 0s and 1s in label indicator.")
            return [
                tuple(self.classes_.take(yt.indices[start:end]))
                for start, end in zip(yt.indptr[:-1], yt.indptr[1:])
            ]
        else:
            unexpected = np.setdiff1d(yt, [0, 1])
            if len(unexpected) > 0:
                raise ValueError(
                    "Expected only 0s and 1s in label indicator. Also got {0}".format(
                        unexpected
                    )
                )
            return [tuple(self.classes_.compress(indicators)) for indicators in yt]

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.input_tags.two_d_array = False
        tags.target_tags.two_d_labels = True
        return tags