File size: 31,621 Bytes
7885a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 |
"""Gaussian Mixture Model."""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import numpy as np
from scipy import linalg
from ..utils import check_array
from ..utils._param_validation import StrOptions
from ..utils.extmath import row_norms
from ._base import BaseMixture, _check_shape
###############################################################################
# Gaussian mixture shape checkers used by the GaussianMixture class
def _check_weights(weights, n_components):
"""Check the user provided 'weights'.
Parameters
----------
weights : array-like of shape (n_components,)
The proportions of components of each mixture.
n_components : int
Number of components.
Returns
-------
weights : array, shape (n_components,)
"""
weights = check_array(weights, dtype=[np.float64, np.float32], ensure_2d=False)
_check_shape(weights, (n_components,), "weights")
# check range
if any(np.less(weights, 0.0)) or any(np.greater(weights, 1.0)):
raise ValueError(
"The parameter 'weights' should be in the range "
"[0, 1], but got max value %.5f, min value %.5f"
% (np.min(weights), np.max(weights))
)
# check normalization
if not np.allclose(np.abs(1.0 - np.sum(weights)), 0.0):
raise ValueError(
"The parameter 'weights' should be normalized, but got sum(weights) = %.5f"
% np.sum(weights)
)
return weights
def _check_means(means, n_components, n_features):
"""Validate the provided 'means'.
Parameters
----------
means : array-like of shape (n_components, n_features)
The centers of the current components.
n_components : int
Number of components.
n_features : int
Number of features.
Returns
-------
means : array, (n_components, n_features)
"""
means = check_array(means, dtype=[np.float64, np.float32], ensure_2d=False)
_check_shape(means, (n_components, n_features), "means")
return means
def _check_precision_positivity(precision, covariance_type):
"""Check a precision vector is positive-definite."""
if np.any(np.less_equal(precision, 0.0)):
raise ValueError("'%s precision' should be positive" % covariance_type)
def _check_precision_matrix(precision, covariance_type):
"""Check a precision matrix is symmetric and positive-definite."""
if not (
np.allclose(precision, precision.T) and np.all(linalg.eigvalsh(precision) > 0.0)
):
raise ValueError(
"'%s precision' should be symmetric, positive-definite" % covariance_type
)
def _check_precisions_full(precisions, covariance_type):
"""Check the precision matrices are symmetric and positive-definite."""
for prec in precisions:
_check_precision_matrix(prec, covariance_type)
def _check_precisions(precisions, covariance_type, n_components, n_features):
"""Validate user provided precisions.
Parameters
----------
precisions : array-like
'full' : shape of (n_components, n_features, n_features)
'tied' : shape of (n_features, n_features)
'diag' : shape of (n_components, n_features)
'spherical' : shape of (n_components,)
covariance_type : str
n_components : int
Number of components.
n_features : int
Number of features.
Returns
-------
precisions : array
"""
precisions = check_array(
precisions,
dtype=[np.float64, np.float32],
ensure_2d=False,
allow_nd=covariance_type == "full",
)
precisions_shape = {
"full": (n_components, n_features, n_features),
"tied": (n_features, n_features),
"diag": (n_components, n_features),
"spherical": (n_components,),
}
_check_shape(
precisions, precisions_shape[covariance_type], "%s precision" % covariance_type
)
_check_precisions = {
"full": _check_precisions_full,
"tied": _check_precision_matrix,
"diag": _check_precision_positivity,
"spherical": _check_precision_positivity,
}
_check_precisions[covariance_type](precisions, covariance_type)
return precisions
###############################################################################
# Gaussian mixture parameters estimators (used by the M-Step)
def _estimate_gaussian_covariances_full(resp, X, nk, means, reg_covar):
"""Estimate the full covariance matrices.
Parameters
----------
resp : array-like of shape (n_samples, n_components)
X : array-like of shape (n_samples, n_features)
nk : array-like of shape (n_components,)
means : array-like of shape (n_components, n_features)
reg_covar : float
Returns
-------
covariances : array, shape (n_components, n_features, n_features)
The covariance matrix of the current components.
"""
n_components, n_features = means.shape
covariances = np.empty((n_components, n_features, n_features))
for k in range(n_components):
diff = X - means[k]
covariances[k] = np.dot(resp[:, k] * diff.T, diff) / nk[k]
covariances[k].flat[:: n_features + 1] += reg_covar
return covariances
def _estimate_gaussian_covariances_tied(resp, X, nk, means, reg_covar):
"""Estimate the tied covariance matrix.
Parameters
----------
resp : array-like of shape (n_samples, n_components)
X : array-like of shape (n_samples, n_features)
nk : array-like of shape (n_components,)
means : array-like of shape (n_components, n_features)
reg_covar : float
Returns
-------
covariance : array, shape (n_features, n_features)
The tied covariance matrix of the components.
"""
avg_X2 = np.dot(X.T, X)
avg_means2 = np.dot(nk * means.T, means)
covariance = avg_X2 - avg_means2
covariance /= nk.sum()
covariance.flat[:: len(covariance) + 1] += reg_covar
return covariance
def _estimate_gaussian_covariances_diag(resp, X, nk, means, reg_covar):
"""Estimate the diagonal covariance vectors.
Parameters
----------
responsibilities : array-like of shape (n_samples, n_components)
X : array-like of shape (n_samples, n_features)
nk : array-like of shape (n_components,)
means : array-like of shape (n_components, n_features)
reg_covar : float
Returns
-------
covariances : array, shape (n_components, n_features)
The covariance vector of the current components.
"""
avg_X2 = np.dot(resp.T, X * X) / nk[:, np.newaxis]
avg_means2 = means**2
avg_X_means = means * np.dot(resp.T, X) / nk[:, np.newaxis]
return avg_X2 - 2 * avg_X_means + avg_means2 + reg_covar
def _estimate_gaussian_covariances_spherical(resp, X, nk, means, reg_covar):
"""Estimate the spherical variance values.
Parameters
----------
responsibilities : array-like of shape (n_samples, n_components)
X : array-like of shape (n_samples, n_features)
nk : array-like of shape (n_components,)
means : array-like of shape (n_components, n_features)
reg_covar : float
Returns
-------
variances : array, shape (n_components,)
The variance values of each components.
"""
return _estimate_gaussian_covariances_diag(resp, X, nk, means, reg_covar).mean(1)
def _estimate_gaussian_parameters(X, resp, reg_covar, covariance_type):
"""Estimate the Gaussian distribution parameters.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input data array.
resp : array-like of shape (n_samples, n_components)
The responsibilities for each data sample in X.
reg_covar : float
The regularization added to the diagonal of the covariance matrices.
covariance_type : {'full', 'tied', 'diag', 'spherical'}
The type of precision matrices.
Returns
-------
nk : array-like of shape (n_components,)
The numbers of data samples in the current components.
means : array-like of shape (n_components, n_features)
The centers of the current components.
covariances : array-like
The covariance matrix of the current components.
The shape depends of the covariance_type.
"""
nk = resp.sum(axis=0) + 10 * np.finfo(resp.dtype).eps
means = np.dot(resp.T, X) / nk[:, np.newaxis]
covariances = {
"full": _estimate_gaussian_covariances_full,
"tied": _estimate_gaussian_covariances_tied,
"diag": _estimate_gaussian_covariances_diag,
"spherical": _estimate_gaussian_covariances_spherical,
}[covariance_type](resp, X, nk, means, reg_covar)
return nk, means, covariances
def _compute_precision_cholesky(covariances, covariance_type):
"""Compute the Cholesky decomposition of the precisions.
Parameters
----------
covariances : array-like
The covariance matrix of the current components.
The shape depends of the covariance_type.
covariance_type : {'full', 'tied', 'diag', 'spherical'}
The type of precision matrices.
Returns
-------
precisions_cholesky : array-like
The cholesky decomposition of sample precisions of the current
components. The shape depends of the covariance_type.
"""
estimate_precision_error_message = (
"Fitting the mixture model failed because some components have "
"ill-defined empirical covariance (for instance caused by singleton "
"or collapsed samples). Try to decrease the number of components, "
"or increase reg_covar."
)
if covariance_type == "full":
n_components, n_features, _ = covariances.shape
precisions_chol = np.empty((n_components, n_features, n_features))
for k, covariance in enumerate(covariances):
try:
cov_chol = linalg.cholesky(covariance, lower=True)
except linalg.LinAlgError:
raise ValueError(estimate_precision_error_message)
precisions_chol[k] = linalg.solve_triangular(
cov_chol, np.eye(n_features), lower=True
).T
elif covariance_type == "tied":
_, n_features = covariances.shape
try:
cov_chol = linalg.cholesky(covariances, lower=True)
except linalg.LinAlgError:
raise ValueError(estimate_precision_error_message)
precisions_chol = linalg.solve_triangular(
cov_chol, np.eye(n_features), lower=True
).T
else:
if np.any(np.less_equal(covariances, 0.0)):
raise ValueError(estimate_precision_error_message)
precisions_chol = 1.0 / np.sqrt(covariances)
return precisions_chol
def _flipudlr(array):
"""Reverse the rows and columns of an array."""
return np.flipud(np.fliplr(array))
def _compute_precision_cholesky_from_precisions(precisions, covariance_type):
r"""Compute the Cholesky decomposition of precisions using precisions themselves.
As implemented in :func:`_compute_precision_cholesky`, the `precisions_cholesky_` is
an upper-triangular matrix for each Gaussian component, which can be expressed as
the $UU^T$ factorization of the precision matrix for each Gaussian component, where
$U$ is an upper-triangular matrix.
In order to use the Cholesky decomposition to get $UU^T$, the precision matrix
$\Lambda$ needs to be permutated such that its rows and columns are reversed, which
can be done by applying a similarity transformation with an exchange matrix $J$,
where the 1 elements reside on the anti-diagonal and all other elements are 0. In
particular, the Cholesky decomposition of the transformed precision matrix is
$J\Lambda J=LL^T$, where $L$ is a lower-triangular matrix. Because $\Lambda=UU^T$
and $J=J^{-1}=J^T$, the `precisions_cholesky_` for each Gaussian component can be
expressed as $JLJ$.
Refer to #26415 for details.
Parameters
----------
precisions : array-like
The precision matrix of the current components.
The shape depends on the covariance_type.
covariance_type : {'full', 'tied', 'diag', 'spherical'}
The type of precision matrices.
Returns
-------
precisions_cholesky : array-like
The cholesky decomposition of sample precisions of the current
components. The shape depends on the covariance_type.
"""
if covariance_type == "full":
precisions_cholesky = np.array(
[
_flipudlr(linalg.cholesky(_flipudlr(precision), lower=True))
for precision in precisions
]
)
elif covariance_type == "tied":
precisions_cholesky = _flipudlr(
linalg.cholesky(_flipudlr(precisions), lower=True)
)
else:
precisions_cholesky = np.sqrt(precisions)
return precisions_cholesky
###############################################################################
# Gaussian mixture probability estimators
def _compute_log_det_cholesky(matrix_chol, covariance_type, n_features):
"""Compute the log-det of the cholesky decomposition of matrices.
Parameters
----------
matrix_chol : array-like
Cholesky decompositions of the matrices.
'full' : shape of (n_components, n_features, n_features)
'tied' : shape of (n_features, n_features)
'diag' : shape of (n_components, n_features)
'spherical' : shape of (n_components,)
covariance_type : {'full', 'tied', 'diag', 'spherical'}
n_features : int
Number of features.
Returns
-------
log_det_precision_chol : array-like of shape (n_components,)
The determinant of the precision matrix for each component.
"""
if covariance_type == "full":
n_components, _, _ = matrix_chol.shape
log_det_chol = np.sum(
np.log(matrix_chol.reshape(n_components, -1)[:, :: n_features + 1]), 1
)
elif covariance_type == "tied":
log_det_chol = np.sum(np.log(np.diag(matrix_chol)))
elif covariance_type == "diag":
log_det_chol = np.sum(np.log(matrix_chol), axis=1)
else:
log_det_chol = n_features * (np.log(matrix_chol))
return log_det_chol
def _estimate_log_gaussian_prob(X, means, precisions_chol, covariance_type):
"""Estimate the log Gaussian probability.
Parameters
----------
X : array-like of shape (n_samples, n_features)
means : array-like of shape (n_components, n_features)
precisions_chol : array-like
Cholesky decompositions of the precision matrices.
'full' : shape of (n_components, n_features, n_features)
'tied' : shape of (n_features, n_features)
'diag' : shape of (n_components, n_features)
'spherical' : shape of (n_components,)
covariance_type : {'full', 'tied', 'diag', 'spherical'}
Returns
-------
log_prob : array, shape (n_samples, n_components)
"""
n_samples, n_features = X.shape
n_components, _ = means.shape
# The determinant of the precision matrix from the Cholesky decomposition
# corresponds to the negative half of the determinant of the full precision
# matrix.
# In short: det(precision_chol) = - det(precision) / 2
log_det = _compute_log_det_cholesky(precisions_chol, covariance_type, n_features)
if covariance_type == "full":
log_prob = np.empty((n_samples, n_components))
for k, (mu, prec_chol) in enumerate(zip(means, precisions_chol)):
y = np.dot(X, prec_chol) - np.dot(mu, prec_chol)
log_prob[:, k] = np.sum(np.square(y), axis=1)
elif covariance_type == "tied":
log_prob = np.empty((n_samples, n_components))
for k, mu in enumerate(means):
y = np.dot(X, precisions_chol) - np.dot(mu, precisions_chol)
log_prob[:, k] = np.sum(np.square(y), axis=1)
elif covariance_type == "diag":
precisions = precisions_chol**2
log_prob = (
np.sum((means**2 * precisions), 1)
- 2.0 * np.dot(X, (means * precisions).T)
+ np.dot(X**2, precisions.T)
)
elif covariance_type == "spherical":
precisions = precisions_chol**2
log_prob = (
np.sum(means**2, 1) * precisions
- 2 * np.dot(X, means.T * precisions)
+ np.outer(row_norms(X, squared=True), precisions)
)
# Since we are using the precision of the Cholesky decomposition,
# `- 0.5 * log_det_precision` becomes `+ log_det_precision_chol`
return -0.5 * (n_features * np.log(2 * np.pi) + log_prob) + log_det
class GaussianMixture(BaseMixture):
"""Gaussian Mixture.
Representation of a Gaussian mixture model probability distribution.
This class allows to estimate the parameters of a Gaussian mixture
distribution.
Read more in the :ref:`User Guide <gmm>`.
.. versionadded:: 0.18
Parameters
----------
n_components : int, default=1
The number of mixture components.
covariance_type : {'full', 'tied', 'diag', 'spherical'}, default='full'
String describing the type of covariance parameters to use.
Must be one of:
- 'full': each component has its own general covariance matrix.
- 'tied': all components share the same general covariance matrix.
- 'diag': each component has its own diagonal covariance matrix.
- 'spherical': each component has its own single variance.
tol : float, default=1e-3
The convergence threshold. EM iterations will stop when the
lower bound average gain is below this threshold.
reg_covar : float, default=1e-6
Non-negative regularization added to the diagonal of covariance.
Allows to assure that the covariance matrices are all positive.
max_iter : int, default=100
The number of EM iterations to perform.
n_init : int, default=1
The number of initializations to perform. The best results are kept.
init_params : {'kmeans', 'k-means++', 'random', 'random_from_data'}, \
default='kmeans'
The method used to initialize the weights, the means and the
precisions.
String must be one of:
- 'kmeans' : responsibilities are initialized using kmeans.
- 'k-means++' : use the k-means++ method to initialize.
- 'random' : responsibilities are initialized randomly.
- 'random_from_data' : initial means are randomly selected data points.
.. versionchanged:: v1.1
`init_params` now accepts 'random_from_data' and 'k-means++' as
initialization methods.
weights_init : array-like of shape (n_components, ), default=None
The user-provided initial weights.
If it is None, weights are initialized using the `init_params` method.
means_init : array-like of shape (n_components, n_features), default=None
The user-provided initial means,
If it is None, means are initialized using the `init_params` method.
precisions_init : array-like, default=None
The user-provided initial precisions (inverse of the covariance
matrices).
If it is None, precisions are initialized using the 'init_params'
method.
The shape depends on 'covariance_type'::
(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'
random_state : int, RandomState instance or None, default=None
Controls the random seed given to the method chosen to initialize the
parameters (see `init_params`).
In addition, it controls the generation of random samples from the
fitted distribution (see the method `sample`).
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
warm_start : bool, default=False
If 'warm_start' is True, the solution of the last fitting is used as
initialization for the next call of fit(). This can speed up
convergence when fit is called several times on similar problems.
In that case, 'n_init' is ignored and only a single initialization
occurs upon the first call.
See :term:`the Glossary <warm_start>`.
verbose : int, default=0
Enable verbose output. If 1 then it prints the current
initialization and each iteration step. If greater than 1 then
it prints also the log probability and the time needed
for each step.
verbose_interval : int, default=10
Number of iteration done before the next print.
Attributes
----------
weights_ : array-like of shape (n_components,)
The weights of each mixture components.
means_ : array-like of shape (n_components, n_features)
The mean of each mixture component.
covariances_ : array-like
The covariance of each mixture component.
The shape depends on `covariance_type`::
(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'
precisions_ : array-like
The precision matrices for each component in the mixture. A precision
matrix is the inverse of a covariance matrix. A covariance matrix is
symmetric positive definite so the mixture of Gaussian can be
equivalently parameterized by the precision matrices. Storing the
precision matrices instead of the covariance matrices makes it more
efficient to compute the log-likelihood of new samples at test time.
The shape depends on `covariance_type`::
(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'
precisions_cholesky_ : array-like
The cholesky decomposition of the precision matrices of each mixture
component. A precision matrix is the inverse of a covariance matrix.
A covariance matrix is symmetric positive definite so the mixture of
Gaussian can be equivalently parameterized by the precision matrices.
Storing the precision matrices instead of the covariance matrices makes
it more efficient to compute the log-likelihood of new samples at test
time. The shape depends on `covariance_type`::
(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'
converged_ : bool
True when convergence of the best fit of EM was reached, False otherwise.
n_iter_ : int
Number of step used by the best fit of EM to reach the convergence.
lower_bound_ : float
Lower bound value on the log-likelihood (of the training data with
respect to the model) of the best fit of EM.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
BayesianGaussianMixture : Gaussian mixture model fit with a variational
inference.
Examples
--------
>>> import numpy as np
>>> from sklearn.mixture import GaussianMixture
>>> X = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]])
>>> gm = GaussianMixture(n_components=2, random_state=0).fit(X)
>>> gm.means_
array([[10., 2.],
[ 1., 2.]])
>>> gm.predict([[0, 0], [12, 3]])
array([1, 0])
"""
_parameter_constraints: dict = {
**BaseMixture._parameter_constraints,
"covariance_type": [StrOptions({"full", "tied", "diag", "spherical"})],
"weights_init": ["array-like", None],
"means_init": ["array-like", None],
"precisions_init": ["array-like", None],
}
def __init__(
self,
n_components=1,
*,
covariance_type="full",
tol=1e-3,
reg_covar=1e-6,
max_iter=100,
n_init=1,
init_params="kmeans",
weights_init=None,
means_init=None,
precisions_init=None,
random_state=None,
warm_start=False,
verbose=0,
verbose_interval=10,
):
super().__init__(
n_components=n_components,
tol=tol,
reg_covar=reg_covar,
max_iter=max_iter,
n_init=n_init,
init_params=init_params,
random_state=random_state,
warm_start=warm_start,
verbose=verbose,
verbose_interval=verbose_interval,
)
self.covariance_type = covariance_type
self.weights_init = weights_init
self.means_init = means_init
self.precisions_init = precisions_init
def _check_parameters(self, X):
"""Check the Gaussian mixture parameters are well defined."""
_, n_features = X.shape
if self.weights_init is not None:
self.weights_init = _check_weights(self.weights_init, self.n_components)
if self.means_init is not None:
self.means_init = _check_means(
self.means_init, self.n_components, n_features
)
if self.precisions_init is not None:
self.precisions_init = _check_precisions(
self.precisions_init,
self.covariance_type,
self.n_components,
n_features,
)
def _initialize_parameters(self, X, random_state):
# If all the initial parameters are all provided, then there is no need to run
# the initialization.
compute_resp = (
self.weights_init is None
or self.means_init is None
or self.precisions_init is None
)
if compute_resp:
super()._initialize_parameters(X, random_state)
else:
self._initialize(X, None)
def _initialize(self, X, resp):
"""Initialization of the Gaussian mixture parameters.
Parameters
----------
X : array-like of shape (n_samples, n_features)
resp : array-like of shape (n_samples, n_components)
"""
n_samples, _ = X.shape
weights, means, covariances = None, None, None
if resp is not None:
weights, means, covariances = _estimate_gaussian_parameters(
X, resp, self.reg_covar, self.covariance_type
)
if self.weights_init is None:
weights /= n_samples
self.weights_ = weights if self.weights_init is None else self.weights_init
self.means_ = means if self.means_init is None else self.means_init
if self.precisions_init is None:
self.covariances_ = covariances
self.precisions_cholesky_ = _compute_precision_cholesky(
covariances, self.covariance_type
)
else:
self.precisions_cholesky_ = _compute_precision_cholesky_from_precisions(
self.precisions_init, self.covariance_type
)
def _m_step(self, X, log_resp):
"""M step.
Parameters
----------
X : array-like of shape (n_samples, n_features)
log_resp : array-like of shape (n_samples, n_components)
Logarithm of the posterior probabilities (or responsibilities) of
the point of each sample in X.
"""
self.weights_, self.means_, self.covariances_ = _estimate_gaussian_parameters(
X, np.exp(log_resp), self.reg_covar, self.covariance_type
)
self.weights_ /= self.weights_.sum()
self.precisions_cholesky_ = _compute_precision_cholesky(
self.covariances_, self.covariance_type
)
def _estimate_log_prob(self, X):
return _estimate_log_gaussian_prob(
X, self.means_, self.precisions_cholesky_, self.covariance_type
)
def _estimate_log_weights(self):
return np.log(self.weights_)
def _compute_lower_bound(self, _, log_prob_norm):
return log_prob_norm
def _get_parameters(self):
return (
self.weights_,
self.means_,
self.covariances_,
self.precisions_cholesky_,
)
def _set_parameters(self, params):
(
self.weights_,
self.means_,
self.covariances_,
self.precisions_cholesky_,
) = params
# Attributes computation
_, n_features = self.means_.shape
if self.covariance_type == "full":
self.precisions_ = np.empty(self.precisions_cholesky_.shape)
for k, prec_chol in enumerate(self.precisions_cholesky_):
self.precisions_[k] = np.dot(prec_chol, prec_chol.T)
elif self.covariance_type == "tied":
self.precisions_ = np.dot(
self.precisions_cholesky_, self.precisions_cholesky_.T
)
else:
self.precisions_ = self.precisions_cholesky_**2
def _n_parameters(self):
"""Return the number of free parameters in the model."""
_, n_features = self.means_.shape
if self.covariance_type == "full":
cov_params = self.n_components * n_features * (n_features + 1) / 2.0
elif self.covariance_type == "diag":
cov_params = self.n_components * n_features
elif self.covariance_type == "tied":
cov_params = n_features * (n_features + 1) / 2.0
elif self.covariance_type == "spherical":
cov_params = self.n_components
mean_params = n_features * self.n_components
return int(cov_params + mean_params + self.n_components - 1)
def bic(self, X):
"""Bayesian information criterion for the current model on the input X.
You can refer to this :ref:`mathematical section <aic_bic>` for more
details regarding the formulation of the BIC used.
Parameters
----------
X : array of shape (n_samples, n_dimensions)
The input samples.
Returns
-------
bic : float
The lower the better.
"""
return -2 * self.score(X) * X.shape[0] + self._n_parameters() * np.log(
X.shape[0]
)
def aic(self, X):
"""Akaike information criterion for the current model on the input X.
You can refer to this :ref:`mathematical section <aic_bic>` for more
details regarding the formulation of the AIC used.
Parameters
----------
X : array of shape (n_samples, n_dimensions)
The input samples.
Returns
-------
aic : float
The lower the better.
"""
return -2 * self.score(X) * X.shape[0] + 2 * self._n_parameters()
|