File size: 78,236 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
"""Metrics to assess performance on classification task given scores.

Functions named as ``*_score`` return a scalar value to maximize: the higher
the better.

Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize:
the lower the better.
"""

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause


import warnings
from functools import partial
from numbers import Integral, Real

import numpy as np
from scipy.integrate import trapezoid
from scipy.sparse import csr_matrix, issparse
from scipy.stats import rankdata

from ..exceptions import UndefinedMetricWarning
from ..preprocessing import label_binarize
from ..utils import (
    assert_all_finite,
    check_array,
    check_consistent_length,
    column_or_1d,
)
from ..utils._encode import _encode, _unique
from ..utils._param_validation import Hidden, Interval, StrOptions, validate_params
from ..utils.extmath import stable_cumsum
from ..utils.multiclass import type_of_target
from ..utils.sparsefuncs import count_nonzero
from ..utils.validation import _check_pos_label_consistency, _check_sample_weight
from ._base import _average_binary_score, _average_multiclass_ovo_score


@validate_params(
    {"x": ["array-like"], "y": ["array-like"]},
    prefer_skip_nested_validation=True,
)
def auc(x, y):
    """Compute Area Under the Curve (AUC) using the trapezoidal rule.

    This is a general function, given points on a curve.  For computing the
    area under the ROC-curve, see :func:`roc_auc_score`.  For an alternative
    way to summarize a precision-recall curve, see
    :func:`average_precision_score`.

    Parameters
    ----------
    x : array-like of shape (n,)
        X coordinates. These must be either monotonic increasing or monotonic
        decreasing.
    y : array-like of shape (n,)
        Y coordinates.

    Returns
    -------
    auc : float
        Area Under the Curve.

    See Also
    --------
    roc_auc_score : Compute the area under the ROC curve.
    average_precision_score : Compute average precision from prediction scores.
    precision_recall_curve : Compute precision-recall pairs for different
        probability thresholds.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn import metrics
    >>> y = np.array([1, 1, 2, 2])
    >>> pred = np.array([0.1, 0.4, 0.35, 0.8])
    >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
    >>> metrics.auc(fpr, tpr)
    np.float64(0.75)
    """
    check_consistent_length(x, y)
    x = column_or_1d(x)
    y = column_or_1d(y)

    if x.shape[0] < 2:
        raise ValueError(
            "At least 2 points are needed to compute area under curve, but x.shape = %s"
            % x.shape
        )

    direction = 1
    dx = np.diff(x)
    if np.any(dx < 0):
        if np.all(dx <= 0):
            direction = -1
        else:
            raise ValueError("x is neither increasing nor decreasing : {}.".format(x))

    area = direction * trapezoid(y, x)
    if isinstance(area, np.memmap):
        # Reductions such as .sum used internally in trapezoid do not return a
        # scalar by default for numpy.memmap instances contrary to
        # regular numpy.ndarray instances.
        area = area.dtype.type(area)
    return area


@validate_params(
    {
        "y_true": ["array-like"],
        "y_score": ["array-like"],
        "average": [StrOptions({"micro", "samples", "weighted", "macro"}), None],
        "pos_label": [Real, str, "boolean"],
        "sample_weight": ["array-like", None],
    },
    prefer_skip_nested_validation=True,
)
def average_precision_score(
    y_true, y_score, *, average="macro", pos_label=1, sample_weight=None
):
    """Compute average precision (AP) from prediction scores.

    AP summarizes a precision-recall curve as the weighted mean of precisions
    achieved at each threshold, with the increase in recall from the previous
    threshold used as the weight:

    .. math::
        \\text{AP} = \\sum_n (R_n - R_{n-1}) P_n

    where :math:`P_n` and :math:`R_n` are the precision and recall at the nth
    threshold [1]_. This implementation is not interpolated and is different
    from computing the area under the precision-recall curve with the
    trapezoidal rule, which uses linear interpolation and can be too
    optimistic.

    Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_classes)
        True binary labels or binary label indicators.

    y_score : array-like of shape (n_samples,) or (n_samples, n_classes)
        Target scores, can either be probability estimates of the positive
        class, confidence values, or non-thresholded measure of decisions
        (as returned by :term:`decision_function` on some classifiers).
        For :term:`decision_function` scores, values greater than or equal to
        zero should indicate the positive class.

    average : {'micro', 'samples', 'weighted', 'macro'} or None, \
            default='macro'
        If ``None``, the scores for each class are returned. Otherwise,
        this determines the type of averaging performed on the data:

        ``'micro'``:
            Calculate metrics globally by considering each element of the label
            indicator matrix as a label.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average, weighted
            by support (the number of true instances for each label).
        ``'samples'``:
            Calculate metrics for each instance, and find their average.

        Will be ignored when ``y_true`` is binary.

    pos_label : int, float, bool or str, default=1
        The label of the positive class. Only applied to binary ``y_true``.
        For multilabel-indicator ``y_true``, ``pos_label`` is fixed to 1.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    Returns
    -------
    average_precision : float
        Average precision score.

    See Also
    --------
    roc_auc_score : Compute the area under the ROC curve.
    precision_recall_curve : Compute precision-recall pairs for different
        probability thresholds.

    Notes
    -----
    .. versionchanged:: 0.19
      Instead of linearly interpolating between operating points, precisions
      are weighted by the change in recall since the last operating point.

    References
    ----------
    .. [1] `Wikipedia entry for the Average precision
           <https://en.wikipedia.org/w/index.php?title=Information_retrieval&
           oldid=793358396#Average_precision>`_

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import average_precision_score
    >>> y_true = np.array([0, 0, 1, 1])
    >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
    >>> average_precision_score(y_true, y_scores)
    np.float64(0.83...)
    >>> y_true = np.array([0, 0, 1, 1, 2, 2])
    >>> y_scores = np.array([
    ...     [0.7, 0.2, 0.1],
    ...     [0.4, 0.3, 0.3],
    ...     [0.1, 0.8, 0.1],
    ...     [0.2, 0.3, 0.5],
    ...     [0.4, 0.4, 0.2],
    ...     [0.1, 0.2, 0.7],
    ... ])
    >>> average_precision_score(y_true, y_scores)
    np.float64(0.77...)
    """

    def _binary_uninterpolated_average_precision(
        y_true, y_score, pos_label=1, sample_weight=None
    ):
        precision, recall, _ = precision_recall_curve(
            y_true, y_score, pos_label=pos_label, sample_weight=sample_weight
        )
        # Return the step function integral
        # The following works because the last entry of precision is
        # guaranteed to be 1, as returned by precision_recall_curve.
        # Due to numerical error, we can get `-0.0` and we therefore clip it.
        return max(0.0, -np.sum(np.diff(recall) * np.array(precision)[:-1]))

    y_type = type_of_target(y_true, input_name="y_true")

    # Convert to Python primitive type to avoid NumPy type / Python str
    # comparison. See https://github.com/numpy/numpy/issues/6784
    present_labels = np.unique(y_true).tolist()

    if y_type == "binary":
        if len(present_labels) == 2 and pos_label not in present_labels:
            raise ValueError(
                f"pos_label={pos_label} is not a valid label. It should be "
                f"one of {present_labels}"
            )

    elif y_type == "multilabel-indicator" and pos_label != 1:
        raise ValueError(
            "Parameter pos_label is fixed to 1 for multilabel-indicator y_true. "
            "Do not set pos_label or set pos_label to 1."
        )

    elif y_type == "multiclass":
        if pos_label != 1:
            raise ValueError(
                "Parameter pos_label is fixed to 1 for multiclass y_true. "
                "Do not set pos_label or set pos_label to 1."
            )
        y_true = label_binarize(y_true, classes=present_labels)

    average_precision = partial(
        _binary_uninterpolated_average_precision, pos_label=pos_label
    )
    return _average_binary_score(
        average_precision, y_true, y_score, average, sample_weight=sample_weight
    )


@validate_params(
    {
        "y_true": ["array-like"],
        "y_score": ["array-like"],
        "pos_label": [Real, str, "boolean", None],
        "sample_weight": ["array-like", None],
    },
    prefer_skip_nested_validation=True,
)
def det_curve(y_true, y_score, pos_label=None, sample_weight=None):
    """Compute error rates for different probability thresholds.

    .. note::
       This metric is used for evaluation of ranking and error tradeoffs of
       a binary classification task.

    Read more in the :ref:`User Guide <det_curve>`.

    .. versionadded:: 0.24

    Parameters
    ----------
    y_true : ndarray of shape (n_samples,)
        True binary labels. If labels are not either {-1, 1} or {0, 1}, then
        pos_label should be explicitly given.

    y_score : ndarray of shape of (n_samples,)
        Target scores, can either be probability estimates of the positive
        class, confidence values, or non-thresholded measure of decisions
        (as returned by "decision_function" on some classifiers).
        For :term:`decision_function` scores, values greater than or equal to
        zero should indicate the positive class.

    pos_label : int, float, bool or str, default=None
        The label of the positive class.
        When ``pos_label=None``, if `y_true` is in {-1, 1} or {0, 1},
        ``pos_label`` is set to 1, otherwise an error will be raised.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    Returns
    -------
    fpr : ndarray of shape (n_thresholds,)
        False positive rate (FPR) such that element i is the false positive
        rate of predictions with score >= thresholds[i]. This is occasionally
        referred to as false acceptance probability or fall-out.

    fnr : ndarray of shape (n_thresholds,)
        False negative rate (FNR) such that element i is the false negative
        rate of predictions with score >= thresholds[i]. This is occasionally
        referred to as false rejection or miss rate.

    thresholds : ndarray of shape (n_thresholds,)
        Decreasing score values.

    See Also
    --------
    DetCurveDisplay.from_estimator : Plot DET curve given an estimator and
        some data.
    DetCurveDisplay.from_predictions : Plot DET curve given the true and
        predicted labels.
    DetCurveDisplay : DET curve visualization.
    roc_curve : Compute Receiver operating characteristic (ROC) curve.
    precision_recall_curve : Compute precision-recall curve.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import det_curve
    >>> y_true = np.array([0, 0, 1, 1])
    >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
    >>> fpr, fnr, thresholds = det_curve(y_true, y_scores)
    >>> fpr
    array([0.5, 0.5, 0. ])
    >>> fnr
    array([0. , 0.5, 0.5])
    >>> thresholds
    array([0.35, 0.4 , 0.8 ])
    """
    fps, tps, thresholds = _binary_clf_curve(
        y_true, y_score, pos_label=pos_label, sample_weight=sample_weight
    )

    if len(np.unique(y_true)) != 2:
        raise ValueError(
            "Only one class is present in y_true. Detection error "
            "tradeoff curve is not defined in that case."
        )

    fns = tps[-1] - tps
    p_count = tps[-1]
    n_count = fps[-1]

    # start with false positives zero
    first_ind = (
        fps.searchsorted(fps[0], side="right") - 1
        if fps.searchsorted(fps[0], side="right") > 0
        else None
    )
    # stop with false negatives zero
    last_ind = tps.searchsorted(tps[-1]) + 1
    sl = slice(first_ind, last_ind)

    # reverse the output such that list of false positives is decreasing
    return (fps[sl][::-1] / n_count, fns[sl][::-1] / p_count, thresholds[sl][::-1])


def _binary_roc_auc_score(y_true, y_score, sample_weight=None, max_fpr=None):
    """Binary roc auc score."""
    if len(np.unique(y_true)) != 2:
        warnings.warn(
            (
                "Only one class is present in y_true. ROC AUC score "
                "is not defined in that case."
            ),
            UndefinedMetricWarning,
        )
        return np.nan

    fpr, tpr, _ = roc_curve(y_true, y_score, sample_weight=sample_weight)
    if max_fpr is None or max_fpr == 1:
        return auc(fpr, tpr)
    if max_fpr <= 0 or max_fpr > 1:
        raise ValueError("Expected max_fpr in range (0, 1], got: %r" % max_fpr)

    # Add a single point at max_fpr by linear interpolation
    stop = np.searchsorted(fpr, max_fpr, "right")
    x_interp = [fpr[stop - 1], fpr[stop]]
    y_interp = [tpr[stop - 1], tpr[stop]]
    tpr = np.append(tpr[:stop], np.interp(max_fpr, x_interp, y_interp))
    fpr = np.append(fpr[:stop], max_fpr)
    partial_auc = auc(fpr, tpr)

    # McClish correction: standardize result to be 0.5 if non-discriminant
    # and 1 if maximal
    min_area = 0.5 * max_fpr**2
    max_area = max_fpr
    return 0.5 * (1 + (partial_auc - min_area) / (max_area - min_area))


@validate_params(
    {
        "y_true": ["array-like"],
        "y_score": ["array-like"],
        "average": [StrOptions({"micro", "macro", "samples", "weighted"}), None],
        "sample_weight": ["array-like", None],
        "max_fpr": [Interval(Real, 0.0, 1, closed="right"), None],
        "multi_class": [StrOptions({"raise", "ovr", "ovo"})],
        "labels": ["array-like", None],
    },
    prefer_skip_nested_validation=True,
)
def roc_auc_score(
    y_true,
    y_score,
    *,
    average="macro",
    sample_weight=None,
    max_fpr=None,
    multi_class="raise",
    labels=None,
):
    """Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) \
    from prediction scores.

    Note: this implementation can be used with binary, multiclass and
    multilabel classification, but some restrictions apply (see Parameters).

    Read more in the :ref:`User Guide <roc_metrics>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_classes)
        True labels or binary label indicators. The binary and multiclass cases
        expect labels with shape (n_samples,) while the multilabel case expects
        binary label indicators with shape (n_samples, n_classes).

    y_score : array-like of shape (n_samples,) or (n_samples, n_classes)
        Target scores.

        * In the binary case, it corresponds to an array of shape
          `(n_samples,)`. Both probability estimates and non-thresholded
          decision values can be provided. The probability estimates correspond
          to the **probability of the class with the greater label**,
          i.e. `estimator.classes_[1]` and thus
          `estimator.predict_proba(X, y)[:, 1]`. The decision values
          corresponds to the output of `estimator.decision_function(X, y)`.
          See more information in the :ref:`User guide <roc_auc_binary>`;
        * In the multiclass case, it corresponds to an array of shape
          `(n_samples, n_classes)` of probability estimates provided by the
          `predict_proba` method. The probability estimates **must**
          sum to 1 across the possible classes. In addition, the order of the
          class scores must correspond to the order of ``labels``,
          if provided, or else to the numerical or lexicographical order of
          the labels in ``y_true``. See more information in the
          :ref:`User guide <roc_auc_multiclass>`;
        * In the multilabel case, it corresponds to an array of shape
          `(n_samples, n_classes)`. Probability estimates are provided by the
          `predict_proba` method and the non-thresholded decision values by
          the `decision_function` method. The probability estimates correspond
          to the **probability of the class with the greater label for each
          output** of the classifier. See more information in the
          :ref:`User guide <roc_auc_multilabel>`.

    average : {'micro', 'macro', 'samples', 'weighted'} or None, \
            default='macro'
        If ``None``, the scores for each class are returned.
        Otherwise, this determines the type of averaging performed on the data.
        Note: multiclass ROC AUC currently only handles the 'macro' and
        'weighted' averages. For multiclass targets, `average=None` is only
        implemented for `multi_class='ovr'` and `average='micro'` is only
        implemented for `multi_class='ovr'`.

        ``'micro'``:
            Calculate metrics globally by considering each element of the label
            indicator matrix as a label.
        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean.  This does not take label imbalance into account.
        ``'weighted'``:
            Calculate metrics for each label, and find their average, weighted
            by support (the number of true instances for each label).
        ``'samples'``:
            Calculate metrics for each instance, and find their average.

        Will be ignored when ``y_true`` is binary.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    max_fpr : float > 0 and <= 1, default=None
        If not ``None``, the standardized partial AUC [2]_ over the range
        [0, max_fpr] is returned. For the multiclass case, ``max_fpr``,
        should be either equal to ``None`` or ``1.0`` as AUC ROC partial
        computation currently is not supported for multiclass.

    multi_class : {'raise', 'ovr', 'ovo'}, default='raise'
        Only used for multiclass targets. Determines the type of configuration
        to use. The default value raises an error, so either
        ``'ovr'`` or ``'ovo'`` must be passed explicitly.

        ``'ovr'``:
            Stands for One-vs-rest. Computes the AUC of each class
            against the rest [3]_ [4]_. This
            treats the multiclass case in the same way as the multilabel case.
            Sensitive to class imbalance even when ``average == 'macro'``,
            because class imbalance affects the composition of each of the
            'rest' groupings.
        ``'ovo'``:
            Stands for One-vs-one. Computes the average AUC of all
            possible pairwise combinations of classes [5]_.
            Insensitive to class imbalance when
            ``average == 'macro'``.

    labels : array-like of shape (n_classes,), default=None
        Only used for multiclass targets. List of labels that index the
        classes in ``y_score``. If ``None``, the numerical or lexicographical
        order of the labels in ``y_true`` is used.

    Returns
    -------
    auc : float
        Area Under the Curve score.

    See Also
    --------
    average_precision_score : Area under the precision-recall curve.
    roc_curve : Compute Receiver operating characteristic (ROC) curve.
    RocCurveDisplay.from_estimator : Plot Receiver Operating Characteristic
        (ROC) curve given an estimator and some data.
    RocCurveDisplay.from_predictions : Plot Receiver Operating Characteristic
        (ROC) curve given the true and predicted values.

    Notes
    -----
    The Gini Coefficient is a summary measure of the ranking ability of binary
    classifiers. It is expressed using the area under of the ROC as follows:

    G = 2 * AUC - 1

    Where G is the Gini coefficient and AUC is the ROC-AUC score. This normalisation
    will ensure that random guessing will yield a score of 0 in expectation, and it is
    upper bounded by 1.

    References
    ----------
    .. [1] `Wikipedia entry for the Receiver operating characteristic
            <https://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_

    .. [2] `Analyzing a portion of the ROC curve. McClish, 1989
            <https://www.ncbi.nlm.nih.gov/pubmed/2668680>`_

    .. [3] Provost, F., Domingos, P. (2000). Well-trained PETs: Improving
           probability estimation trees (Section 6.2), CeDER Working Paper
           #IS-00-04, Stern School of Business, New York University.

    .. [4] `Fawcett, T. (2006). An introduction to ROC analysis. Pattern
            Recognition Letters, 27(8), 861-874.
            <https://www.sciencedirect.com/science/article/pii/S016786550500303X>`_

    .. [5] `Hand, D.J., Till, R.J. (2001). A Simple Generalisation of the Area
            Under the ROC Curve for Multiple Class Classification Problems.
            Machine Learning, 45(2), 171-186.
            <http://link.springer.com/article/10.1023/A:1010920819831>`_
    .. [6] `Wikipedia entry for the Gini coefficient
            <https://en.wikipedia.org/wiki/Gini_coefficient>`_

    Examples
    --------
    Binary case:

    >>> from sklearn.datasets import load_breast_cancer
    >>> from sklearn.linear_model import LogisticRegression
    >>> from sklearn.metrics import roc_auc_score
    >>> X, y = load_breast_cancer(return_X_y=True)
    >>> clf = LogisticRegression(solver="liblinear", random_state=0).fit(X, y)
    >>> roc_auc_score(y, clf.predict_proba(X)[:, 1])
    np.float64(0.99...)
    >>> roc_auc_score(y, clf.decision_function(X))
    np.float64(0.99...)

    Multiclass case:

    >>> from sklearn.datasets import load_iris
    >>> X, y = load_iris(return_X_y=True)
    >>> clf = LogisticRegression(solver="liblinear").fit(X, y)
    >>> roc_auc_score(y, clf.predict_proba(X), multi_class='ovr')
    np.float64(0.99...)

    Multilabel case:

    >>> import numpy as np
    >>> from sklearn.datasets import make_multilabel_classification
    >>> from sklearn.multioutput import MultiOutputClassifier
    >>> X, y = make_multilabel_classification(random_state=0)
    >>> clf = MultiOutputClassifier(clf).fit(X, y)
    >>> # get a list of n_output containing probability arrays of shape
    >>> # (n_samples, n_classes)
    >>> y_pred = clf.predict_proba(X)
    >>> # extract the positive columns for each output
    >>> y_pred = np.transpose([pred[:, 1] for pred in y_pred])
    >>> roc_auc_score(y, y_pred, average=None)
    array([0.82..., 0.86..., 0.94..., 0.85... , 0.94...])
    >>> from sklearn.linear_model import RidgeClassifierCV
    >>> clf = RidgeClassifierCV().fit(X, y)
    >>> roc_auc_score(y, clf.decision_function(X), average=None)
    array([0.81..., 0.84... , 0.93..., 0.87..., 0.94...])
    """

    y_type = type_of_target(y_true, input_name="y_true")
    y_true = check_array(y_true, ensure_2d=False, dtype=None)
    y_score = check_array(y_score, ensure_2d=False)

    if y_type == "multiclass" or (
        y_type == "binary" and y_score.ndim == 2 and y_score.shape[1] > 2
    ):
        # do not support partial ROC computation for multiclass
        if max_fpr is not None and max_fpr != 1.0:
            raise ValueError(
                "Partial AUC computation not available in "
                "multiclass setting, 'max_fpr' must be"
                " set to `None`, received `max_fpr={0}` "
                "instead".format(max_fpr)
            )
        if multi_class == "raise":
            raise ValueError("multi_class must be in ('ovo', 'ovr')")
        return _multiclass_roc_auc_score(
            y_true, y_score, labels, multi_class, average, sample_weight
        )
    elif y_type == "binary":
        labels = np.unique(y_true)
        y_true = label_binarize(y_true, classes=labels)[:, 0]
        return _average_binary_score(
            partial(_binary_roc_auc_score, max_fpr=max_fpr),
            y_true,
            y_score,
            average,
            sample_weight=sample_weight,
        )
    else:  # multilabel-indicator
        return _average_binary_score(
            partial(_binary_roc_auc_score, max_fpr=max_fpr),
            y_true,
            y_score,
            average,
            sample_weight=sample_weight,
        )


def _multiclass_roc_auc_score(
    y_true, y_score, labels, multi_class, average, sample_weight
):
    """Multiclass roc auc score.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,)
        True multiclass labels.

    y_score : array-like of shape (n_samples, n_classes)
        Target scores corresponding to probability estimates of a sample
        belonging to a particular class

    labels : array-like of shape (n_classes,) or None
        List of labels to index ``y_score`` used for multiclass. If ``None``,
        the lexical order of ``y_true`` is used to index ``y_score``.

    multi_class : {'ovr', 'ovo'}
        Determines the type of multiclass configuration to use.
        ``'ovr'``:
            Calculate metrics for the multiclass case using the one-vs-rest
            approach.
        ``'ovo'``:
            Calculate metrics for the multiclass case using the one-vs-one
            approach.

    average : {'micro', 'macro', 'weighted'}
        Determines the type of averaging performed on the pairwise binary
        metric scores
        ``'micro'``:
            Calculate metrics for the binarized-raveled classes. Only supported
            for `multi_class='ovr'`.

        .. versionadded:: 1.2

        ``'macro'``:
            Calculate metrics for each label, and find their unweighted
            mean. This does not take label imbalance into account. Classes
            are assumed to be uniformly distributed.
        ``'weighted'``:
            Calculate metrics for each label, taking into account the
            prevalence of the classes.

    sample_weight : array-like of shape (n_samples,) or None
        Sample weights.

    """
    # validation of the input y_score
    if not np.allclose(1, y_score.sum(axis=1)):
        raise ValueError(
            "Target scores need to be probabilities for multiclass "
            "roc_auc, i.e. they should sum up to 1.0 over classes"
        )

    # validation for multiclass parameter specifications
    average_options = ("macro", "weighted", None)
    if multi_class == "ovr":
        average_options = ("micro",) + average_options
    if average not in average_options:
        raise ValueError(
            "average must be one of {0} for multiclass problems".format(average_options)
        )

    multiclass_options = ("ovo", "ovr")
    if multi_class not in multiclass_options:
        raise ValueError(
            "multi_class='{0}' is not supported "
            "for multiclass ROC AUC, multi_class must be "
            "in {1}".format(multi_class, multiclass_options)
        )

    if average is None and multi_class == "ovo":
        raise NotImplementedError(
            "average=None is not implemented for multi_class='ovo'."
        )

    if labels is not None:
        labels = column_or_1d(labels)
        classes = _unique(labels)
        if len(classes) != len(labels):
            raise ValueError("Parameter 'labels' must be unique")
        if not np.array_equal(classes, labels):
            raise ValueError("Parameter 'labels' must be ordered")
        if len(classes) != y_score.shape[1]:
            raise ValueError(
                "Number of given labels, {0}, not equal to the number "
                "of columns in 'y_score', {1}".format(len(classes), y_score.shape[1])
            )
        if len(np.setdiff1d(y_true, classes)):
            raise ValueError("'y_true' contains labels not in parameter 'labels'")
    else:
        classes = _unique(y_true)
        if len(classes) != y_score.shape[1]:
            raise ValueError(
                "Number of classes in y_true not equal to the number of "
                "columns in 'y_score'"
            )

    if multi_class == "ovo":
        if sample_weight is not None:
            raise ValueError(
                "sample_weight is not supported "
                "for multiclass one-vs-one ROC AUC, "
                "'sample_weight' must be None in this case."
            )
        y_true_encoded = _encode(y_true, uniques=classes)
        # Hand & Till (2001) implementation (ovo)
        return _average_multiclass_ovo_score(
            _binary_roc_auc_score, y_true_encoded, y_score, average=average
        )
    else:
        # ovr is same as multi-label
        y_true_multilabel = label_binarize(y_true, classes=classes)
        return _average_binary_score(
            _binary_roc_auc_score,
            y_true_multilabel,
            y_score,
            average,
            sample_weight=sample_weight,
        )


def _binary_clf_curve(y_true, y_score, pos_label=None, sample_weight=None):
    """Calculate true and false positives per binary classification threshold.

    Parameters
    ----------
    y_true : ndarray of shape (n_samples,)
        True targets of binary classification.

    y_score : ndarray of shape (n_samples,)
        Estimated probabilities or output of a decision function.

    pos_label : int, float, bool or str, default=None
        The label of the positive class.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    Returns
    -------
    fps : ndarray of shape (n_thresholds,)
        A count of false positives, at index i being the number of negative
        samples assigned a score >= thresholds[i]. The total number of
        negative samples is equal to fps[-1] (thus true negatives are given by
        fps[-1] - fps).

    tps : ndarray of shape (n_thresholds,)
        An increasing count of true positives, at index i being the number
        of positive samples assigned a score >= thresholds[i]. The total
        number of positive samples is equal to tps[-1] (thus false negatives
        are given by tps[-1] - tps).

    thresholds : ndarray of shape (n_thresholds,)
        Decreasing score values.
    """
    # Check to make sure y_true is valid
    y_type = type_of_target(y_true, input_name="y_true")
    if not (y_type == "binary" or (y_type == "multiclass" and pos_label is not None)):
        raise ValueError("{0} format is not supported".format(y_type))

    check_consistent_length(y_true, y_score, sample_weight)
    y_true = column_or_1d(y_true)
    y_score = column_or_1d(y_score)
    assert_all_finite(y_true)
    assert_all_finite(y_score)

    # Filter out zero-weighted samples, as they should not impact the result
    if sample_weight is not None:
        sample_weight = column_or_1d(sample_weight)
        sample_weight = _check_sample_weight(sample_weight, y_true)
        nonzero_weight_mask = sample_weight != 0
        y_true = y_true[nonzero_weight_mask]
        y_score = y_score[nonzero_weight_mask]
        sample_weight = sample_weight[nonzero_weight_mask]

    pos_label = _check_pos_label_consistency(pos_label, y_true)

    # make y_true a boolean vector
    y_true = y_true == pos_label

    # sort scores and corresponding truth values
    desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1]
    y_score = y_score[desc_score_indices]
    y_true = y_true[desc_score_indices]
    if sample_weight is not None:
        weight = sample_weight[desc_score_indices]
    else:
        weight = 1.0

    # y_score typically has many tied values. Here we extract
    # the indices associated with the distinct values. We also
    # concatenate a value for the end of the curve.
    distinct_value_indices = np.where(np.diff(y_score))[0]
    threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1]

    # accumulate the true positives with decreasing threshold
    tps = stable_cumsum(y_true * weight)[threshold_idxs]
    if sample_weight is not None:
        # express fps as a cumsum to ensure fps is increasing even in
        # the presence of floating point errors
        fps = stable_cumsum((1 - y_true) * weight)[threshold_idxs]
    else:
        fps = 1 + threshold_idxs - tps
    return fps, tps, y_score[threshold_idxs]


@validate_params(
    {
        "y_true": ["array-like"],
        "y_score": ["array-like", Hidden(None)],
        "pos_label": [Real, str, "boolean", None],
        "sample_weight": ["array-like", None],
        "drop_intermediate": ["boolean"],
        "probas_pred": [
            "array-like",
            Hidden(StrOptions({"deprecated"})),
        ],
    },
    prefer_skip_nested_validation=True,
)
def precision_recall_curve(
    y_true,
    y_score=None,
    *,
    pos_label=None,
    sample_weight=None,
    drop_intermediate=False,
    probas_pred="deprecated",
):
    """Compute precision-recall pairs for different probability thresholds.

    Note: this implementation is restricted to the binary classification task.

    The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of
    true positives and ``fp`` the number of false positives. The precision is
    intuitively the ability of the classifier not to label as positive a sample
    that is negative.

    The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of
    true positives and ``fn`` the number of false negatives. The recall is
    intuitively the ability of the classifier to find all the positive samples.

    The last precision and recall values are 1. and 0. respectively and do not
    have a corresponding threshold. This ensures that the graph starts on the
    y axis.

    The first precision and recall values are precision=class balance and recall=1.0
    which corresponds to a classifier that always predicts the positive class.

    Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,)
        True binary labels. If labels are not either {-1, 1} or {0, 1}, then
        pos_label should be explicitly given.

    y_score : array-like of shape (n_samples,)
        Target scores, can either be probability estimates of the positive
        class, or non-thresholded measure of decisions (as returned by
        `decision_function` on some classifiers).
        For :term:`decision_function` scores, values greater than or equal to
        zero should indicate the positive class.

    pos_label : int, float, bool or str, default=None
        The label of the positive class.
        When ``pos_label=None``, if y_true is in {-1, 1} or {0, 1},
        ``pos_label`` is set to 1, otherwise an error will be raised.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    drop_intermediate : bool, default=False
        Whether to drop some suboptimal thresholds which would not appear
        on a plotted precision-recall curve. This is useful in order to create
        lighter precision-recall curves.

        .. versionadded:: 1.3

    probas_pred : array-like of shape (n_samples,)
        Target scores, can either be probability estimates of the positive
        class, or non-thresholded measure of decisions (as returned by
        `decision_function` on some classifiers).

        .. deprecated:: 1.5
            `probas_pred` is deprecated and will be removed in 1.7. Use
            `y_score` instead.

    Returns
    -------
    precision : ndarray of shape (n_thresholds + 1,)
        Precision values such that element i is the precision of
        predictions with score >= thresholds[i] and the last element is 1.

    recall : ndarray of shape (n_thresholds + 1,)
        Decreasing recall values such that element i is the recall of
        predictions with score >= thresholds[i] and the last element is 0.

    thresholds : ndarray of shape (n_thresholds,)
        Increasing thresholds on the decision function used to compute
        precision and recall where `n_thresholds = len(np.unique(probas_pred))`.

    See Also
    --------
    PrecisionRecallDisplay.from_estimator : Plot Precision Recall Curve given
        a binary classifier.
    PrecisionRecallDisplay.from_predictions : Plot Precision Recall Curve
        using predictions from a binary classifier.
    average_precision_score : Compute average precision from prediction scores.
    det_curve: Compute error rates for different probability thresholds.
    roc_curve : Compute Receiver operating characteristic (ROC) curve.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import precision_recall_curve
    >>> y_true = np.array([0, 0, 1, 1])
    >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
    >>> precision, recall, thresholds = precision_recall_curve(
    ...     y_true, y_scores)
    >>> precision
    array([0.5       , 0.66666667, 0.5       , 1.        , 1.        ])
    >>> recall
    array([1. , 1. , 0.5, 0.5, 0. ])
    >>> thresholds
    array([0.1 , 0.35, 0.4 , 0.8 ])
    """
    # TODO(1.7): remove in 1.7 and reset y_score to be required
    # Note: validate params will raise an error if probas_pred is not array-like,
    # or "deprecated"
    if y_score is not None and not isinstance(probas_pred, str):
        raise ValueError(
            "`probas_pred` and `y_score` cannot be both specified. Please use `y_score`"
            " only as `probas_pred` is deprecated in v1.5 and will be removed in v1.7."
        )
    if y_score is None:
        warnings.warn(
            (
                "probas_pred was deprecated in version 1.5 and will be removed in 1.7."
                "Please use ``y_score`` instead."
            ),
            FutureWarning,
        )
        y_score = probas_pred

    fps, tps, thresholds = _binary_clf_curve(
        y_true, y_score, pos_label=pos_label, sample_weight=sample_weight
    )

    if drop_intermediate and len(fps) > 2:
        # Drop thresholds corresponding to points where true positives (tps)
        # do not change from the previous or subsequent point. This will keep
        # only the first and last point for each tps value. All points
        # with the same tps value have the same recall and thus x coordinate.
        # They appear as a vertical line on the plot.
        optimal_idxs = np.where(
            np.concatenate(
                [[True], np.logical_or(np.diff(tps[:-1]), np.diff(tps[1:])), [True]]
            )
        )[0]
        fps = fps[optimal_idxs]
        tps = tps[optimal_idxs]
        thresholds = thresholds[optimal_idxs]

    ps = tps + fps
    # Initialize the result array with zeros to make sure that precision[ps == 0]
    # does not contain uninitialized values.
    precision = np.zeros_like(tps)
    np.divide(tps, ps, out=precision, where=(ps != 0))

    # When no positive label in y_true, recall is set to 1 for all thresholds
    # tps[-1] == 0 <=> y_true == all negative labels
    if tps[-1] == 0:
        warnings.warn(
            "No positive class found in y_true, "
            "recall is set to one for all thresholds."
        )
        recall = np.ones_like(tps)
    else:
        recall = tps / tps[-1]

    # reverse the outputs so recall is decreasing
    sl = slice(None, None, -1)
    return np.hstack((precision[sl], 1)), np.hstack((recall[sl], 0)), thresholds[sl]


@validate_params(
    {
        "y_true": ["array-like"],
        "y_score": ["array-like"],
        "pos_label": [Real, str, "boolean", None],
        "sample_weight": ["array-like", None],
        "drop_intermediate": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def roc_curve(
    y_true, y_score, *, pos_label=None, sample_weight=None, drop_intermediate=True
):
    """Compute Receiver operating characteristic (ROC).

    Note: this implementation is restricted to the binary classification task.

    Read more in the :ref:`User Guide <roc_metrics>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,)
        True binary labels. If labels are not either {-1, 1} or {0, 1}, then
        pos_label should be explicitly given.

    y_score : array-like of shape (n_samples,)
        Target scores, can either be probability estimates of the positive
        class, confidence values, or non-thresholded measure of decisions
        (as returned by "decision_function" on some classifiers).
        For :term:`decision_function` scores, values greater than or equal to
        zero should indicate the positive class.

    pos_label : int, float, bool or str, default=None
        The label of the positive class.
        When ``pos_label=None``, if `y_true` is in {-1, 1} or {0, 1},
        ``pos_label`` is set to 1, otherwise an error will be raised.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    drop_intermediate : bool, default=True
        Whether to drop some suboptimal thresholds which would not appear
        on a plotted ROC curve. This is useful in order to create lighter
        ROC curves.

        .. versionadded:: 0.17
           parameter *drop_intermediate*.

    Returns
    -------
    fpr : ndarray of shape (>2,)
        Increasing false positive rates such that element i is the false
        positive rate of predictions with score >= `thresholds[i]`.

    tpr : ndarray of shape (>2,)
        Increasing true positive rates such that element `i` is the true
        positive rate of predictions with score >= `thresholds[i]`.

    thresholds : ndarray of shape (n_thresholds,)
        Decreasing thresholds on the decision function used to compute
        fpr and tpr. `thresholds[0]` represents no instances being predicted
        and is arbitrarily set to `np.inf`.

    See Also
    --------
    RocCurveDisplay.from_estimator : Plot Receiver Operating Characteristic
        (ROC) curve given an estimator and some data.
    RocCurveDisplay.from_predictions : Plot Receiver Operating Characteristic
        (ROC) curve given the true and predicted values.
    det_curve: Compute error rates for different probability thresholds.
    roc_auc_score : Compute the area under the ROC curve.

    Notes
    -----
    Since the thresholds are sorted from low to high values, they
    are reversed upon returning them to ensure they correspond to both ``fpr``
    and ``tpr``, which are sorted in reversed order during their calculation.

    An arbitrary threshold is added for the case `tpr=0` and `fpr=0` to
    ensure that the curve starts at `(0, 0)`. This threshold corresponds to the
    `np.inf`.

    References
    ----------
    .. [1] `Wikipedia entry for the Receiver operating characteristic
            <https://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_

    .. [2] Fawcett T. An introduction to ROC analysis[J]. Pattern Recognition
           Letters, 2006, 27(8):861-874.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn import metrics
    >>> y = np.array([1, 1, 2, 2])
    >>> scores = np.array([0.1, 0.4, 0.35, 0.8])
    >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
    >>> fpr
    array([0. , 0. , 0.5, 0.5, 1. ])
    >>> tpr
    array([0. , 0.5, 0.5, 1. , 1. ])
    >>> thresholds
    array([ inf, 0.8 , 0.4 , 0.35, 0.1 ])
    """
    fps, tps, thresholds = _binary_clf_curve(
        y_true, y_score, pos_label=pos_label, sample_weight=sample_weight
    )

    # Attempt to drop thresholds corresponding to points in between and
    # collinear with other points. These are always suboptimal and do not
    # appear on a plotted ROC curve (and thus do not affect the AUC).
    # Here np.diff(_, 2) is used as a "second derivative" to tell if there
    # is a corner at the point. Both fps and tps must be tested to handle
    # thresholds with multiple data points (which are combined in
    # _binary_clf_curve). This keeps all cases where the point should be kept,
    # but does not drop more complicated cases like fps = [1, 3, 7],
    # tps = [1, 2, 4]; there is no harm in keeping too many thresholds.
    if drop_intermediate and len(fps) > 2:
        optimal_idxs = np.where(
            np.r_[True, np.logical_or(np.diff(fps, 2), np.diff(tps, 2)), True]
        )[0]
        fps = fps[optimal_idxs]
        tps = tps[optimal_idxs]
        thresholds = thresholds[optimal_idxs]

    # Add an extra threshold position
    # to make sure that the curve starts at (0, 0)
    tps = np.r_[0, tps]
    fps = np.r_[0, fps]
    # get dtype of `y_score` even if it is an array-like
    thresholds = np.r_[np.inf, thresholds]

    if fps[-1] <= 0:
        warnings.warn(
            "No negative samples in y_true, false positive value should be meaningless",
            UndefinedMetricWarning,
        )
        fpr = np.repeat(np.nan, fps.shape)
    else:
        fpr = fps / fps[-1]

    if tps[-1] <= 0:
        warnings.warn(
            "No positive samples in y_true, true positive value should be meaningless",
            UndefinedMetricWarning,
        )
        tpr = np.repeat(np.nan, tps.shape)
    else:
        tpr = tps / tps[-1]

    return fpr, tpr, thresholds


@validate_params(
    {
        "y_true": ["array-like", "sparse matrix"],
        "y_score": ["array-like"],
        "sample_weight": ["array-like", None],
    },
    prefer_skip_nested_validation=True,
)
def label_ranking_average_precision_score(y_true, y_score, *, sample_weight=None):
    """Compute ranking-based average precision.

    Label ranking average precision (LRAP) is the average over each ground
    truth label assigned to each sample, of the ratio of true vs. total
    labels with lower score.

    This metric is used in multilabel ranking problem, where the goal
    is to give better rank to the labels associated to each sample.

    The obtained score is always strictly greater than 0 and
    the best value is 1.

    Read more in the :ref:`User Guide <label_ranking_average_precision>`.

    Parameters
    ----------
    y_true : {array-like, sparse matrix} of shape (n_samples, n_labels)
        True binary labels in binary indicator format.

    y_score : array-like of shape (n_samples, n_labels)
        Target scores, can either be probability estimates of the positive
        class, confidence values, or non-thresholded measure of decisions
        (as returned by "decision_function" on some classifiers).
        For :term:`decision_function` scores, values greater than or equal to
        zero should indicate the positive class.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

        .. versionadded:: 0.20

    Returns
    -------
    score : float
        Ranking-based average precision score.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import label_ranking_average_precision_score
    >>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
    >>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
    >>> label_ranking_average_precision_score(y_true, y_score)
    np.float64(0.416...)
    """
    check_consistent_length(y_true, y_score, sample_weight)
    y_true = check_array(y_true, ensure_2d=False, accept_sparse="csr")
    y_score = check_array(y_score, ensure_2d=False)

    if y_true.shape != y_score.shape:
        raise ValueError("y_true and y_score have different shape")

    # Handle badly formatted array and the degenerate case with one label
    y_type = type_of_target(y_true, input_name="y_true")
    if y_type != "multilabel-indicator" and not (
        y_type == "binary" and y_true.ndim == 2
    ):
        raise ValueError("{0} format is not supported".format(y_type))

    if not issparse(y_true):
        y_true = csr_matrix(y_true)

    y_score = -y_score

    n_samples, n_labels = y_true.shape

    out = 0.0
    for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])):
        relevant = y_true.indices[start:stop]

        if relevant.size == 0 or relevant.size == n_labels:
            # If all labels are relevant or unrelevant, the score is also
            # equal to 1. The label ranking has no meaning.
            aux = 1.0
        else:
            scores_i = y_score[i]
            rank = rankdata(scores_i, "max")[relevant]
            L = rankdata(scores_i[relevant], "max")
            aux = (L / rank).mean()

        if sample_weight is not None:
            aux = aux * sample_weight[i]
        out += aux

    if sample_weight is None:
        out /= n_samples
    else:
        out /= np.sum(sample_weight)

    return out


@validate_params(
    {
        "y_true": ["array-like"],
        "y_score": ["array-like"],
        "sample_weight": ["array-like", None],
    },
    prefer_skip_nested_validation=True,
)
def coverage_error(y_true, y_score, *, sample_weight=None):
    """Coverage error measure.

    Compute how far we need to go through the ranked scores to cover all
    true labels. The best value is equal to the average number
    of labels in ``y_true`` per sample.

    Ties in ``y_scores`` are broken by giving maximal rank that would have
    been assigned to all tied values.

    Note: Our implementation's score is 1 greater than the one given in
    Tsoumakas et al., 2010. This extends it to handle the degenerate case
    in which an instance has 0 true labels.

    Read more in the :ref:`User Guide <coverage_error>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples, n_labels)
        True binary labels in binary indicator format.

    y_score : array-like of shape (n_samples, n_labels)
        Target scores, can either be probability estimates of the positive
        class, confidence values, or non-thresholded measure of decisions
        (as returned by "decision_function" on some classifiers).
        For :term:`decision_function` scores, values greater than or equal to
        zero should indicate the positive class.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    Returns
    -------
    coverage_error : float
        The coverage error.

    References
    ----------
    .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010).
           Mining multi-label data. In Data mining and knowledge discovery
           handbook (pp. 667-685). Springer US.

    Examples
    --------
    >>> from sklearn.metrics import coverage_error
    >>> y_true = [[1, 0, 0], [0, 1, 1]]
    >>> y_score = [[1, 0, 0], [0, 1, 1]]
    >>> coverage_error(y_true, y_score)
    np.float64(1.5)
    """
    y_true = check_array(y_true, ensure_2d=True)
    y_score = check_array(y_score, ensure_2d=True)
    check_consistent_length(y_true, y_score, sample_weight)

    y_type = type_of_target(y_true, input_name="y_true")
    if y_type != "multilabel-indicator":
        raise ValueError("{0} format is not supported".format(y_type))

    if y_true.shape != y_score.shape:
        raise ValueError("y_true and y_score have different shape")

    y_score_mask = np.ma.masked_array(y_score, mask=np.logical_not(y_true))
    y_min_relevant = y_score_mask.min(axis=1).reshape((-1, 1))
    coverage = (y_score >= y_min_relevant).sum(axis=1)
    coverage = coverage.filled(0)

    return np.average(coverage, weights=sample_weight)


@validate_params(
    {
        "y_true": ["array-like", "sparse matrix"],
        "y_score": ["array-like"],
        "sample_weight": ["array-like", None],
    },
    prefer_skip_nested_validation=True,
)
def label_ranking_loss(y_true, y_score, *, sample_weight=None):
    """Compute Ranking loss measure.

    Compute the average number of label pairs that are incorrectly ordered
    given y_score weighted by the size of the label set and the number of
    labels not in the label set.

    This is similar to the error set size, but weighted by the number of
    relevant and irrelevant labels. The best performance is achieved with
    a ranking loss of zero.

    Read more in the :ref:`User Guide <label_ranking_loss>`.

    .. versionadded:: 0.17
       A function *label_ranking_loss*

    Parameters
    ----------
    y_true : {array-like, sparse matrix} of shape (n_samples, n_labels)
        True binary labels in binary indicator format.

    y_score : array-like of shape (n_samples, n_labels)
        Target scores, can either be probability estimates of the positive
        class, confidence values, or non-thresholded measure of decisions
        (as returned by "decision_function" on some classifiers).
        For :term:`decision_function` scores, values greater than or equal to
        zero should indicate the positive class.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    Returns
    -------
    loss : float
        Average number of label pairs that are incorrectly ordered given
        y_score weighted by the size of the label set and the number of labels not
        in the label set.

    References
    ----------
    .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010).
           Mining multi-label data. In Data mining and knowledge discovery
           handbook (pp. 667-685). Springer US.

    Examples
    --------
    >>> from sklearn.metrics import label_ranking_loss
    >>> y_true = [[1, 0, 0], [0, 0, 1]]
    >>> y_score = [[0.75, 0.5, 1], [1, 0.2, 0.1]]
    >>> label_ranking_loss(y_true, y_score)
    np.float64(0.75...)
    """
    y_true = check_array(y_true, ensure_2d=False, accept_sparse="csr")
    y_score = check_array(y_score, ensure_2d=False)
    check_consistent_length(y_true, y_score, sample_weight)

    y_type = type_of_target(y_true, input_name="y_true")
    if y_type not in ("multilabel-indicator",):
        raise ValueError("{0} format is not supported".format(y_type))

    if y_true.shape != y_score.shape:
        raise ValueError("y_true and y_score have different shape")

    n_samples, n_labels = y_true.shape

    y_true = csr_matrix(y_true)

    loss = np.zeros(n_samples)
    for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])):
        # Sort and bin the label scores
        unique_scores, unique_inverse = np.unique(y_score[i], return_inverse=True)
        true_at_reversed_rank = np.bincount(
            unique_inverse[y_true.indices[start:stop]], minlength=len(unique_scores)
        )
        all_at_reversed_rank = np.bincount(unique_inverse, minlength=len(unique_scores))
        false_at_reversed_rank = all_at_reversed_rank - true_at_reversed_rank

        # if the scores are ordered, it's possible to count the number of
        # incorrectly ordered paires in linear time by cumulatively counting
        # how many false labels of a given score have a score higher than the
        # accumulated true labels with lower score.
        loss[i] = np.dot(true_at_reversed_rank.cumsum(), false_at_reversed_rank)

    n_positives = count_nonzero(y_true, axis=1)
    with np.errstate(divide="ignore", invalid="ignore"):
        loss /= (n_labels - n_positives) * n_positives

    # When there is no positive or no negative labels, those values should
    # be consider as correct, i.e. the ranking doesn't matter.
    loss[np.logical_or(n_positives == 0, n_positives == n_labels)] = 0.0

    return np.average(loss, weights=sample_weight)


def _dcg_sample_scores(y_true, y_score, k=None, log_base=2, ignore_ties=False):
    """Compute Discounted Cumulative Gain.

    Sum the true scores ranked in the order induced by the predicted scores,
    after applying a logarithmic discount.

    This ranking metric yields a high value if true labels are ranked high by
    ``y_score``.

    Parameters
    ----------
    y_true : ndarray of shape (n_samples, n_labels)
        True targets of multilabel classification, or true scores of entities
        to be ranked.

    y_score : ndarray of shape (n_samples, n_labels)
        Target scores, can either be probability estimates, confidence values,
        or non-thresholded measure of decisions (as returned by
        "decision_function" on some classifiers).

    k : int, default=None
        Only consider the highest k scores in the ranking. If `None`, use all
        outputs.

    log_base : float, default=2
        Base of the logarithm used for the discount. A low value means a
        sharper discount (top results are more important).

    ignore_ties : bool, default=False
        Assume that there are no ties in y_score (which is likely to be the
        case if y_score is continuous) for efficiency gains.

    Returns
    -------
    discounted_cumulative_gain : ndarray of shape (n_samples,)
        The DCG score for each sample.

    See Also
    --------
    ndcg_score : The Discounted Cumulative Gain divided by the Ideal Discounted
        Cumulative Gain (the DCG obtained for a perfect ranking), in order to
        have a score between 0 and 1.
    """
    discount = 1 / (np.log(np.arange(y_true.shape[1]) + 2) / np.log(log_base))
    if k is not None:
        discount[k:] = 0
    if ignore_ties:
        ranking = np.argsort(y_score)[:, ::-1]
        ranked = y_true[np.arange(ranking.shape[0])[:, np.newaxis], ranking]
        cumulative_gains = discount.dot(ranked.T)
    else:
        discount_cumsum = np.cumsum(discount)
        cumulative_gains = [
            _tie_averaged_dcg(y_t, y_s, discount_cumsum)
            for y_t, y_s in zip(y_true, y_score)
        ]
        cumulative_gains = np.asarray(cumulative_gains)
    return cumulative_gains


def _tie_averaged_dcg(y_true, y_score, discount_cumsum):
    """
    Compute DCG by averaging over possible permutations of ties.

    The gain (`y_true`) of an index falling inside a tied group (in the order
    induced by `y_score`) is replaced by the average gain within this group.
    The discounted gain for a tied group is then the average `y_true` within
    this group times the sum of discounts of the corresponding ranks.

    This amounts to averaging scores for all possible orderings of the tied
    groups.

    (note in the case of dcg@k the discount is 0 after index k)

    Parameters
    ----------
    y_true : ndarray
        The true relevance scores.

    y_score : ndarray
        Predicted scores.

    discount_cumsum : ndarray
        Precomputed cumulative sum of the discounts.

    Returns
    -------
    discounted_cumulative_gain : float
        The discounted cumulative gain.

    References
    ----------
    McSherry, F., & Najork, M. (2008, March). Computing information retrieval
    performance measures efficiently in the presence of tied scores. In
    European conference on information retrieval (pp. 414-421). Springer,
    Berlin, Heidelberg.
    """
    _, inv, counts = np.unique(-y_score, return_inverse=True, return_counts=True)
    ranked = np.zeros(len(counts))
    np.add.at(ranked, inv, y_true)
    ranked /= counts
    groups = np.cumsum(counts) - 1
    discount_sums = np.empty(len(counts))
    discount_sums[0] = discount_cumsum[groups[0]]
    discount_sums[1:] = np.diff(discount_cumsum[groups])
    return (ranked * discount_sums).sum()


def _check_dcg_target_type(y_true):
    y_type = type_of_target(y_true, input_name="y_true")
    supported_fmt = (
        "multilabel-indicator",
        "continuous-multioutput",
        "multiclass-multioutput",
    )
    if y_type not in supported_fmt:
        raise ValueError(
            "Only {} formats are supported. Got {} instead".format(
                supported_fmt, y_type
            )
        )


@validate_params(
    {
        "y_true": ["array-like"],
        "y_score": ["array-like"],
        "k": [Interval(Integral, 1, None, closed="left"), None],
        "log_base": [Interval(Real, 0.0, None, closed="neither")],
        "sample_weight": ["array-like", None],
        "ignore_ties": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def dcg_score(
    y_true, y_score, *, k=None, log_base=2, sample_weight=None, ignore_ties=False
):
    """Compute Discounted Cumulative Gain.

    Sum the true scores ranked in the order induced by the predicted scores,
    after applying a logarithmic discount.

    This ranking metric yields a high value if true labels are ranked high by
    ``y_score``.

    Usually the Normalized Discounted Cumulative Gain (NDCG, computed by
    ndcg_score) is preferred.

    Parameters
    ----------
    y_true : array-like of shape (n_samples, n_labels)
        True targets of multilabel classification, or true scores of entities
        to be ranked.

    y_score : array-like of shape (n_samples, n_labels)
        Target scores, can either be probability estimates, confidence values,
        or non-thresholded measure of decisions (as returned by
        "decision_function" on some classifiers).

    k : int, default=None
        Only consider the highest k scores in the ranking. If None, use all
        outputs.

    log_base : float, default=2
        Base of the logarithm used for the discount. A low value means a
        sharper discount (top results are more important).

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights. If `None`, all samples are given the same weight.

    ignore_ties : bool, default=False
        Assume that there are no ties in y_score (which is likely to be the
        case if y_score is continuous) for efficiency gains.

    Returns
    -------
    discounted_cumulative_gain : float
        The averaged sample DCG scores.

    See Also
    --------
    ndcg_score : The Discounted Cumulative Gain divided by the Ideal Discounted
        Cumulative Gain (the DCG obtained for a perfect ranking), in order to
        have a score between 0 and 1.

    References
    ----------
    `Wikipedia entry for Discounted Cumulative Gain
    <https://en.wikipedia.org/wiki/Discounted_cumulative_gain>`_.

    Jarvelin, K., & Kekalainen, J. (2002).
    Cumulated gain-based evaluation of IR techniques. ACM Transactions on
    Information Systems (TOIS), 20(4), 422-446.

    Wang, Y., Wang, L., Li, Y., He, D., Chen, W., & Liu, T. Y. (2013, May).
    A theoretical analysis of NDCG ranking measures. In Proceedings of the 26th
    Annual Conference on Learning Theory (COLT 2013).

    McSherry, F., & Najork, M. (2008, March). Computing information retrieval
    performance measures efficiently in the presence of tied scores. In
    European conference on information retrieval (pp. 414-421). Springer,
    Berlin, Heidelberg.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import dcg_score
    >>> # we have ground-truth relevance of some answers to a query:
    >>> true_relevance = np.asarray([[10, 0, 0, 1, 5]])
    >>> # we predict scores for the answers
    >>> scores = np.asarray([[.1, .2, .3, 4, 70]])
    >>> dcg_score(true_relevance, scores)
    np.float64(9.49...)
    >>> # we can set k to truncate the sum; only top k answers contribute
    >>> dcg_score(true_relevance, scores, k=2)
    np.float64(5.63...)
    >>> # now we have some ties in our prediction
    >>> scores = np.asarray([[1, 0, 0, 0, 1]])
    >>> # by default ties are averaged, so here we get the average true
    >>> # relevance of our top predictions: (10 + 5) / 2 = 7.5
    >>> dcg_score(true_relevance, scores, k=1)
    np.float64(7.5)
    >>> # we can choose to ignore ties for faster results, but only
    >>> # if we know there aren't ties in our scores, otherwise we get
    >>> # wrong results:
    >>> dcg_score(true_relevance,
    ...           scores, k=1, ignore_ties=True)
    np.float64(5.0)
    """
    y_true = check_array(y_true, ensure_2d=False)
    y_score = check_array(y_score, ensure_2d=False)
    check_consistent_length(y_true, y_score, sample_weight)
    _check_dcg_target_type(y_true)
    return np.average(
        _dcg_sample_scores(
            y_true, y_score, k=k, log_base=log_base, ignore_ties=ignore_ties
        ),
        weights=sample_weight,
    )


def _ndcg_sample_scores(y_true, y_score, k=None, ignore_ties=False):
    """Compute Normalized Discounted Cumulative Gain.

    Sum the true scores ranked in the order induced by the predicted scores,
    after applying a logarithmic discount. Then divide by the best possible
    score (Ideal DCG, obtained for a perfect ranking) to obtain a score between
    0 and 1.

    This ranking metric yields a high value if true labels are ranked high by
    ``y_score``.

    Parameters
    ----------
    y_true : ndarray of shape (n_samples, n_labels)
        True targets of multilabel classification, or true scores of entities
        to be ranked.

    y_score : ndarray of shape (n_samples, n_labels)
        Target scores, can either be probability estimates, confidence values,
        or non-thresholded measure of decisions (as returned by
        "decision_function" on some classifiers).

    k : int, default=None
        Only consider the highest k scores in the ranking. If None, use all
        outputs.

    ignore_ties : bool, default=False
        Assume that there are no ties in y_score (which is likely to be the
        case if y_score is continuous) for efficiency gains.

    Returns
    -------
    normalized_discounted_cumulative_gain : ndarray of shape (n_samples,)
        The NDCG score for each sample (float in [0., 1.]).

    See Also
    --------
    dcg_score : Discounted Cumulative Gain (not normalized).

    """
    gain = _dcg_sample_scores(y_true, y_score, k, ignore_ties=ignore_ties)
    # Here we use the order induced by y_true so we can ignore ties since
    # the gain associated to tied indices is the same (permuting ties doesn't
    # change the value of the re-ordered y_true)
    normalizing_gain = _dcg_sample_scores(y_true, y_true, k, ignore_ties=True)
    all_irrelevant = normalizing_gain == 0
    gain[all_irrelevant] = 0
    gain[~all_irrelevant] /= normalizing_gain[~all_irrelevant]
    return gain


@validate_params(
    {
        "y_true": ["array-like"],
        "y_score": ["array-like"],
        "k": [Interval(Integral, 1, None, closed="left"), None],
        "sample_weight": ["array-like", None],
        "ignore_ties": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def ndcg_score(y_true, y_score, *, k=None, sample_weight=None, ignore_ties=False):
    """Compute Normalized Discounted Cumulative Gain.

    Sum the true scores ranked in the order induced by the predicted scores,
    after applying a logarithmic discount. Then divide by the best possible
    score (Ideal DCG, obtained for a perfect ranking) to obtain a score between
    0 and 1.

    This ranking metric returns a high value if true labels are ranked high by
    ``y_score``.

    Parameters
    ----------
    y_true : array-like of shape (n_samples, n_labels)
        True targets of multilabel classification, or true scores of entities
        to be ranked. Negative values in `y_true` may result in an output
        that is not between 0 and 1.

    y_score : array-like of shape (n_samples, n_labels)
        Target scores, can either be probability estimates, confidence values,
        or non-thresholded measure of decisions (as returned by
        "decision_function" on some classifiers).

    k : int, default=None
        Only consider the highest k scores in the ranking. If `None`, use all
        outputs.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights. If `None`, all samples are given the same weight.

    ignore_ties : bool, default=False
        Assume that there are no ties in y_score (which is likely to be the
        case if y_score is continuous) for efficiency gains.

    Returns
    -------
    normalized_discounted_cumulative_gain : float in [0., 1.]
        The averaged NDCG scores for all samples.

    See Also
    --------
    dcg_score : Discounted Cumulative Gain (not normalized).

    References
    ----------
    `Wikipedia entry for Discounted Cumulative Gain
    <https://en.wikipedia.org/wiki/Discounted_cumulative_gain>`_

    Jarvelin, K., & Kekalainen, J. (2002).
    Cumulated gain-based evaluation of IR techniques. ACM Transactions on
    Information Systems (TOIS), 20(4), 422-446.

    Wang, Y., Wang, L., Li, Y., He, D., Chen, W., & Liu, T. Y. (2013, May).
    A theoretical analysis of NDCG ranking measures. In Proceedings of the 26th
    Annual Conference on Learning Theory (COLT 2013)

    McSherry, F., & Najork, M. (2008, March). Computing information retrieval
    performance measures efficiently in the presence of tied scores. In
    European conference on information retrieval (pp. 414-421). Springer,
    Berlin, Heidelberg.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import ndcg_score
    >>> # we have ground-truth relevance of some answers to a query:
    >>> true_relevance = np.asarray([[10, 0, 0, 1, 5]])
    >>> # we predict some scores (relevance) for the answers
    >>> scores = np.asarray([[.1, .2, .3, 4, 70]])
    >>> ndcg_score(true_relevance, scores)
    np.float64(0.69...)
    >>> scores = np.asarray([[.05, 1.1, 1., .5, .0]])
    >>> ndcg_score(true_relevance, scores)
    np.float64(0.49...)
    >>> # we can set k to truncate the sum; only top k answers contribute.
    >>> ndcg_score(true_relevance, scores, k=4)
    np.float64(0.35...)
    >>> # the normalization takes k into account so a perfect answer
    >>> # would still get 1.0
    >>> ndcg_score(true_relevance, true_relevance, k=4)
    np.float64(1.0...)
    >>> # now we have some ties in our prediction
    >>> scores = np.asarray([[1, 0, 0, 0, 1]])
    >>> # by default ties are averaged, so here we get the average (normalized)
    >>> # true relevance of our top predictions: (10 / 10 + 5 / 10) / 2 = .75
    >>> ndcg_score(true_relevance, scores, k=1)
    np.float64(0.75...)
    >>> # we can choose to ignore ties for faster results, but only
    >>> # if we know there aren't ties in our scores, otherwise we get
    >>> # wrong results:
    >>> ndcg_score(true_relevance,
    ...           scores, k=1, ignore_ties=True)
    np.float64(0.5...)
    """
    y_true = check_array(y_true, ensure_2d=False)
    y_score = check_array(y_score, ensure_2d=False)
    check_consistent_length(y_true, y_score, sample_weight)

    if y_true.min() < 0:
        raise ValueError("ndcg_score should not be used on negative y_true values.")
    if y_true.ndim > 1 and y_true.shape[1] <= 1:
        raise ValueError(
            "Computing NDCG is only meaningful when there is more than 1 document. "
            f"Got {y_true.shape[1]} instead."
        )
    _check_dcg_target_type(y_true)
    gain = _ndcg_sample_scores(y_true, y_score, k=k, ignore_ties=ignore_ties)
    return np.average(gain, weights=sample_weight)


@validate_params(
    {
        "y_true": ["array-like"],
        "y_score": ["array-like"],
        "k": [Interval(Integral, 1, None, closed="left")],
        "normalize": ["boolean"],
        "sample_weight": ["array-like", None],
        "labels": ["array-like", None],
    },
    prefer_skip_nested_validation=True,
)
def top_k_accuracy_score(
    y_true, y_score, *, k=2, normalize=True, sample_weight=None, labels=None
):
    """Top-k Accuracy classification score.

    This metric computes the number of times where the correct label is among
    the top `k` labels predicted (ranked by predicted scores). Note that the
    multilabel case isn't covered here.

    Read more in the :ref:`User Guide <top_k_accuracy_score>`

    Parameters
    ----------
    y_true : array-like of shape (n_samples,)
        True labels.

    y_score : array-like of shape (n_samples,) or (n_samples, n_classes)
        Target scores. These can be either probability estimates or
        non-thresholded decision values (as returned by
        :term:`decision_function` on some classifiers).
        The binary case expects scores with shape (n_samples,) while the
        multiclass case expects scores with shape (n_samples, n_classes).
        In the multiclass case, the order of the class scores must
        correspond to the order of ``labels``, if provided, or else to
        the numerical or lexicographical order of the labels in ``y_true``.
        If ``y_true`` does not contain all the labels, ``labels`` must be
        provided.

    k : int, default=2
        Number of most likely outcomes considered to find the correct label.

    normalize : bool, default=True
        If `True`, return the fraction of correctly classified samples.
        Otherwise, return the number of correctly classified samples.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights. If `None`, all samples are given the same weight.

    labels : array-like of shape (n_classes,), default=None
        Multiclass only. List of labels that index the classes in ``y_score``.
        If ``None``, the numerical or lexicographical order of the labels in
        ``y_true`` is used. If ``y_true`` does not contain all the labels,
        ``labels`` must be provided.

    Returns
    -------
    score : float
        The top-k accuracy score. The best performance is 1 with
        `normalize == True` and the number of samples with
        `normalize == False`.

    See Also
    --------
    accuracy_score : Compute the accuracy score. By default, the function will
        return the fraction of correct predictions divided by the total number
        of predictions.

    Notes
    -----
    In cases where two or more labels are assigned equal predicted scores,
    the labels with the highest indices will be chosen first. This might
    impact the result if the correct label falls after the threshold because
    of that.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.metrics import top_k_accuracy_score
    >>> y_true = np.array([0, 1, 2, 2])
    >>> y_score = np.array([[0.5, 0.2, 0.2],  # 0 is in top 2
    ...                     [0.3, 0.4, 0.2],  # 1 is in top 2
    ...                     [0.2, 0.4, 0.3],  # 2 is in top 2
    ...                     [0.7, 0.2, 0.1]]) # 2 isn't in top 2
    >>> top_k_accuracy_score(y_true, y_score, k=2)
    np.float64(0.75)
    >>> # Not normalizing gives the number of "correctly" classified samples
    >>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)
    np.int64(3)
    """
    y_true = check_array(y_true, ensure_2d=False, dtype=None)
    y_true = column_or_1d(y_true)
    y_type = type_of_target(y_true, input_name="y_true")
    if y_type == "binary" and labels is not None and len(labels) > 2:
        y_type = "multiclass"
    if y_type not in {"binary", "multiclass"}:
        raise ValueError(
            f"y type must be 'binary' or 'multiclass', got '{y_type}' instead."
        )
    y_score = check_array(y_score, ensure_2d=False)
    if y_type == "binary":
        if y_score.ndim == 2 and y_score.shape[1] != 1:
            raise ValueError(
                "`y_true` is binary while y_score is 2d with"
                f" {y_score.shape[1]} classes. If `y_true` does not contain all the"
                " labels, `labels` must be provided."
            )
        y_score = column_or_1d(y_score)

    check_consistent_length(y_true, y_score, sample_weight)
    y_score_n_classes = y_score.shape[1] if y_score.ndim == 2 else 2

    if labels is None:
        classes = _unique(y_true)
        n_classes = len(classes)

        if n_classes != y_score_n_classes:
            raise ValueError(
                f"Number of classes in 'y_true' ({n_classes}) not equal "
                f"to the number of classes in 'y_score' ({y_score_n_classes})."
                "You can provide a list of all known classes by assigning it "
                "to the `labels` parameter."
            )
    else:
        labels = column_or_1d(labels)
        classes = _unique(labels)
        n_labels = len(labels)
        n_classes = len(classes)

        if n_classes != n_labels:
            raise ValueError("Parameter 'labels' must be unique.")

        if not np.array_equal(classes, labels):
            raise ValueError("Parameter 'labels' must be ordered.")

        if n_classes != y_score_n_classes:
            raise ValueError(
                f"Number of given labels ({n_classes}) not equal to the "
                f"number of classes in 'y_score' ({y_score_n_classes})."
            )

        if len(np.setdiff1d(y_true, classes)):
            raise ValueError("'y_true' contains labels not in parameter 'labels'.")

    if k >= n_classes:
        warnings.warn(
            (
                f"'k' ({k}) greater than or equal to 'n_classes' ({n_classes}) "
                "will result in a perfect score and is therefore meaningless."
            ),
            UndefinedMetricWarning,
        )

    y_true_encoded = _encode(y_true, uniques=classes)

    if y_type == "binary":
        if k == 1:
            threshold = 0.5 if y_score.min() >= 0 and y_score.max() <= 1 else 0
            y_pred = (y_score > threshold).astype(np.int64)
            hits = y_pred == y_true_encoded
        else:
            hits = np.ones_like(y_score, dtype=np.bool_)
    elif y_type == "multiclass":
        sorted_pred = np.argsort(y_score, axis=1, kind="mergesort")[:, ::-1]
        hits = (y_true_encoded == sorted_pred[:, :k].T).any(axis=0)

    if normalize:
        return np.average(hits, weights=sample_weight)
    elif sample_weight is None:
        return np.sum(hits)
    else:
        return np.dot(hits, sample_weight)