File size: 14,691 Bytes
7885a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import numbers

import numpy as np

from ...utils import _safe_indexing, check_random_state
from ...utils._optional_dependencies import check_matplotlib_support
from ...utils._plotting import _validate_style_kwargs


class PredictionErrorDisplay:
    """Visualization of the prediction error of a regression model.

    This tool can display "residuals vs predicted" or "actual vs predicted"
    using scatter plots to qualitatively assess the behavior of a regressor,
    preferably on held-out data points.

    See the details in the docstrings of
    :func:`~sklearn.metrics.PredictionErrorDisplay.from_estimator` or
    :func:`~sklearn.metrics.PredictionErrorDisplay.from_predictions` to
    create a visualizer. All parameters are stored as attributes.

    For general information regarding `scikit-learn` visualization tools, read
    more in the :ref:`Visualization Guide <visualizations>`.
    For details regarding interpreting these plots, refer to the
    :ref:`Model Evaluation Guide <visualization_regression_evaluation>`.

    .. versionadded:: 1.2

    Parameters
    ----------
    y_true : ndarray of shape (n_samples,)
        True values.

    y_pred : ndarray of shape (n_samples,)
        Prediction values.

    Attributes
    ----------
    line_ : matplotlib Artist
        Optimal line representing `y_true == y_pred`. Therefore, it is a
        diagonal line for `kind="predictions"` and a horizontal line for
        `kind="residuals"`.

    errors_lines_ : matplotlib Artist or None
        Residual lines. If `with_errors=False`, then it is set to `None`.

    scatter_ : matplotlib Artist
        Scatter data points.

    ax_ : matplotlib Axes
        Axes with the different matplotlib axis.

    figure_ : matplotlib Figure
        Figure containing the scatter and lines.

    See Also
    --------
    PredictionErrorDisplay.from_estimator : Prediction error visualization
        given an estimator and some data.
    PredictionErrorDisplay.from_predictions : Prediction error visualization
        given the true and predicted targets.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from sklearn.datasets import load_diabetes
    >>> from sklearn.linear_model import Ridge
    >>> from sklearn.metrics import PredictionErrorDisplay
    >>> X, y = load_diabetes(return_X_y=True)
    >>> ridge = Ridge().fit(X, y)
    >>> y_pred = ridge.predict(X)
    >>> display = PredictionErrorDisplay(y_true=y, y_pred=y_pred)
    >>> display.plot()
    <...>
    >>> plt.show()
    """

    def __init__(self, *, y_true, y_pred):
        self.y_true = y_true
        self.y_pred = y_pred

    def plot(
        self,
        ax=None,
        *,
        kind="residual_vs_predicted",
        scatter_kwargs=None,
        line_kwargs=None,
    ):
        """Plot visualization.

        Extra keyword arguments will be passed to matplotlib's ``plot``.

        Parameters
        ----------
        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        kind : {"actual_vs_predicted", "residual_vs_predicted"}, \
                default="residual_vs_predicted"
            The type of plot to draw:

            - "actual_vs_predicted" draws the observed values (y-axis) vs.
              the predicted values (x-axis).
            - "residual_vs_predicted" draws the residuals, i.e. difference
              between observed and predicted values, (y-axis) vs. the predicted
              values (x-axis).

        scatter_kwargs : dict, default=None
            Dictionary with keywords passed to the `matplotlib.pyplot.scatter`
            call.

        line_kwargs : dict, default=None
            Dictionary with keyword passed to the `matplotlib.pyplot.plot`
            call to draw the optimal line.

        Returns
        -------
        display : :class:`~sklearn.metrics.PredictionErrorDisplay`

            Object that stores computed values.
        """
        check_matplotlib_support(f"{self.__class__.__name__}.plot")

        expected_kind = ("actual_vs_predicted", "residual_vs_predicted")
        if kind not in expected_kind:
            raise ValueError(
                f"`kind` must be one of {', '.join(expected_kind)}. "
                f"Got {kind!r} instead."
            )

        import matplotlib.pyplot as plt

        if scatter_kwargs is None:
            scatter_kwargs = {}
        if line_kwargs is None:
            line_kwargs = {}

        default_scatter_kwargs = {"color": "tab:blue", "alpha": 0.8}
        default_line_kwargs = {"color": "black", "alpha": 0.7, "linestyle": "--"}

        scatter_kwargs = _validate_style_kwargs(default_scatter_kwargs, scatter_kwargs)
        line_kwargs = _validate_style_kwargs(default_line_kwargs, line_kwargs)

        scatter_kwargs = {**default_scatter_kwargs, **scatter_kwargs}
        line_kwargs = {**default_line_kwargs, **line_kwargs}

        if ax is None:
            _, ax = plt.subplots()

        if kind == "actual_vs_predicted":
            max_value = max(np.max(self.y_true), np.max(self.y_pred))
            min_value = min(np.min(self.y_true), np.min(self.y_pred))
            self.line_ = ax.plot(
                [min_value, max_value], [min_value, max_value], **line_kwargs
            )[0]

            x_data, y_data = self.y_pred, self.y_true
            xlabel, ylabel = "Predicted values", "Actual values"

            self.scatter_ = ax.scatter(x_data, y_data, **scatter_kwargs)

            # force to have a squared axis
            ax.set_aspect("equal", adjustable="datalim")
            ax.set_xticks(np.linspace(min_value, max_value, num=5))
            ax.set_yticks(np.linspace(min_value, max_value, num=5))
        else:  # kind == "residual_vs_predicted"
            self.line_ = ax.plot(
                [np.min(self.y_pred), np.max(self.y_pred)],
                [0, 0],
                **line_kwargs,
            )[0]
            self.scatter_ = ax.scatter(
                self.y_pred, self.y_true - self.y_pred, **scatter_kwargs
            )
            xlabel, ylabel = "Predicted values", "Residuals (actual - predicted)"

        ax.set(xlabel=xlabel, ylabel=ylabel)

        self.ax_ = ax
        self.figure_ = ax.figure

        return self

    @classmethod
    def from_estimator(
        cls,
        estimator,
        X,
        y,
        *,
        kind="residual_vs_predicted",
        subsample=1_000,
        random_state=None,
        ax=None,
        scatter_kwargs=None,
        line_kwargs=None,
    ):
        """Plot the prediction error given a regressor and some data.

        For general information regarding `scikit-learn` visualization tools,
        read more in the :ref:`Visualization Guide <visualizations>`.
        For details regarding interpreting these plots, refer to the
        :ref:`Model Evaluation Guide <visualization_regression_evaluation>`.

        .. versionadded:: 1.2

        Parameters
        ----------
        estimator : estimator instance
            Fitted regressor or a fitted :class:`~sklearn.pipeline.Pipeline`
            in which the last estimator is a regressor.

        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Input values.

        y : array-like of shape (n_samples,)
            Target values.

        kind : {"actual_vs_predicted", "residual_vs_predicted"}, \
                default="residual_vs_predicted"
            The type of plot to draw:

            - "actual_vs_predicted" draws the observed values (y-axis) vs.
              the predicted values (x-axis).
            - "residual_vs_predicted" draws the residuals, i.e. difference
              between observed and predicted values, (y-axis) vs. the predicted
              values (x-axis).

        subsample : float, int or None, default=1_000
            Sampling the samples to be shown on the scatter plot. If `float`,
            it should be between 0 and 1 and represents the proportion of the
            original dataset. If `int`, it represents the number of samples
            display on the scatter plot. If `None`, no subsampling will be
            applied. by default, 1000 samples or less will be displayed.

        random_state : int or RandomState, default=None
            Controls the randomness when `subsample` is not `None`.
            See :term:`Glossary <random_state>` for details.

        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        scatter_kwargs : dict, default=None
            Dictionary with keywords passed to the `matplotlib.pyplot.scatter`
            call.

        line_kwargs : dict, default=None
            Dictionary with keyword passed to the `matplotlib.pyplot.plot`
            call to draw the optimal line.

        Returns
        -------
        display : :class:`~sklearn.metrics.PredictionErrorDisplay`
            Object that stores the computed values.

        See Also
        --------
        PredictionErrorDisplay : Prediction error visualization for regression.
        PredictionErrorDisplay.from_predictions : Prediction error visualization
            given the true and predicted targets.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import load_diabetes
        >>> from sklearn.linear_model import Ridge
        >>> from sklearn.metrics import PredictionErrorDisplay
        >>> X, y = load_diabetes(return_X_y=True)
        >>> ridge = Ridge().fit(X, y)
        >>> disp = PredictionErrorDisplay.from_estimator(ridge, X, y)
        >>> plt.show()
        """
        check_matplotlib_support(f"{cls.__name__}.from_estimator")

        y_pred = estimator.predict(X)

        return cls.from_predictions(
            y_true=y,
            y_pred=y_pred,
            kind=kind,
            subsample=subsample,
            random_state=random_state,
            ax=ax,
            scatter_kwargs=scatter_kwargs,
            line_kwargs=line_kwargs,
        )

    @classmethod
    def from_predictions(
        cls,
        y_true,
        y_pred,
        *,
        kind="residual_vs_predicted",
        subsample=1_000,
        random_state=None,
        ax=None,
        scatter_kwargs=None,
        line_kwargs=None,
    ):
        """Plot the prediction error given the true and predicted targets.

        For general information regarding `scikit-learn` visualization tools,
        read more in the :ref:`Visualization Guide <visualizations>`.
        For details regarding interpreting these plots, refer to the
        :ref:`Model Evaluation Guide <visualization_regression_evaluation>`.

        .. versionadded:: 1.2

        Parameters
        ----------
        y_true : array-like of shape (n_samples,)
            True target values.

        y_pred : array-like of shape (n_samples,)
            Predicted target values.

        kind : {"actual_vs_predicted", "residual_vs_predicted"}, \
                default="residual_vs_predicted"
            The type of plot to draw:

            - "actual_vs_predicted" draws the observed values (y-axis) vs.
              the predicted values (x-axis).
            - "residual_vs_predicted" draws the residuals, i.e. difference
              between observed and predicted values, (y-axis) vs. the predicted
              values (x-axis).

        subsample : float, int or None, default=1_000
            Sampling the samples to be shown on the scatter plot. If `float`,
            it should be between 0 and 1 and represents the proportion of the
            original dataset. If `int`, it represents the number of samples
            display on the scatter plot. If `None`, no subsampling will be
            applied. by default, 1000 samples or less will be displayed.

        random_state : int or RandomState, default=None
            Controls the randomness when `subsample` is not `None`.
            See :term:`Glossary <random_state>` for details.

        ax : matplotlib axes, default=None
            Axes object to plot on. If `None`, a new figure and axes is
            created.

        scatter_kwargs : dict, default=None
            Dictionary with keywords passed to the `matplotlib.pyplot.scatter`
            call.

        line_kwargs : dict, default=None
            Dictionary with keyword passed to the `matplotlib.pyplot.plot`
            call to draw the optimal line.

        Returns
        -------
        display : :class:`~sklearn.metrics.PredictionErrorDisplay`
            Object that stores the computed values.

        See Also
        --------
        PredictionErrorDisplay : Prediction error visualization for regression.
        PredictionErrorDisplay.from_estimator : Prediction error visualization
            given an estimator and some data.

        Examples
        --------
        >>> import matplotlib.pyplot as plt
        >>> from sklearn.datasets import load_diabetes
        >>> from sklearn.linear_model import Ridge
        >>> from sklearn.metrics import PredictionErrorDisplay
        >>> X, y = load_diabetes(return_X_y=True)
        >>> ridge = Ridge().fit(X, y)
        >>> y_pred = ridge.predict(X)
        >>> disp = PredictionErrorDisplay.from_predictions(y_true=y, y_pred=y_pred)
        >>> plt.show()
        """
        check_matplotlib_support(f"{cls.__name__}.from_predictions")

        random_state = check_random_state(random_state)

        n_samples = len(y_true)
        if isinstance(subsample, numbers.Integral):
            if subsample <= 0:
                raise ValueError(
                    f"When an integer, subsample={subsample} should be positive."
                )
        elif isinstance(subsample, numbers.Real):
            if subsample <= 0 or subsample >= 1:
                raise ValueError(
                    f"When a floating-point, subsample={subsample} should"
                    " be in the (0, 1) range."
                )
            subsample = int(n_samples * subsample)

        if subsample is not None and subsample < n_samples:
            indices = random_state.choice(np.arange(n_samples), size=subsample)
            y_true = _safe_indexing(y_true, indices, axis=0)
            y_pred = _safe_indexing(y_pred, indices, axis=0)

        viz = cls(
            y_true=y_true,
            y_pred=y_pred,
        )

        return viz.plot(
            ax=ax,
            kind=kind,
            scatter_kwargs=scatter_kwargs,
            line_kwargs=line_kwargs,
        )